Scalable Synthesis of TRPV1 Antagonist Bipyridinyl Benzimidazole Derivative via the Suzuki–Miyaura Reaction and Selective SeO2 Oxidation
Abstract
1. Introduction
2. Result and Discussion
3. Materials and Methods
3.1. Chemicals and Instruments
3.2. Experimental Procedures
3.2.1. Synthesis of 5-(3-(Trifluoromethyl)pyridin-2-yl)-2-methylpyridine (4)
3.2.2. Synthesis of 3-(Trifluoromethyl)-2,3‘-bipyridin-6′-carboxylic acid (5) by Route 1
3.2.3. Synthesis of 3-(Trifluoromethyl)-2,3‘-bipyridin-6′-carbaldehyde (6) by Route 2
3.2.4. Synthesis of 6-Bromo-2-(3-(trifluoro)-2,3′-bipyridin-6-yl)-1H-benzo[d]imidazole (1) by Route 1
3.2.5. Synthesis of 6-Bromo-2-(3-(trifluoro)-2,3′-bipyridin-6-yl)-1H-benzo[d]imidazole (1) by Route 2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
TPPO | triphenylphosphine oxide |
BBD | 4-bromobenzene-1,2-diamine |
HBTU | O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate |
BBD | 4-Bromobenzene-1,2-diamine |
BQ | 1,4-Benzoquinone |
DIPEA | N,N-diisopropylethylamine |
DMF | N,N-dimethylformamide |
EtOAc | ethyl acetate |
IPA | isopropanol |
CAN | acetonitrile |
IPE | isopropyl ether |
References
- Goa, K.L.; Sorkin, E.M.; Gabapentin, A. Review of its Pharmacological Properties and Clinical Potential in Epilepsy. Drugs 1993, 46, 409–427. [Google Scholar] [CrossRef] [PubMed]
- Bril, V.; Franklin, G.M.; Backonja, M.; Cohen, J.J.; Toro, D.D.; Feldman, E.; Iverson, D.J.; Perkins, B.; Russell, J.W.; Zochodne, D. Evidence-based guideline: Treatment of painful diabetic neuropathy. Neurology 2011, 76, 1758–1765. [Google Scholar] [CrossRef] [PubMed]
- Schifano, F. Misuse and Abuse of Pregabalin and Gabapentin: Cause for Concern? CNS Drugs 2014, 28, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The Capsaicin Receptor: A Heat-Activated Ion Channel in the Pain Pathway. Nature 1997, 389, 816–824. [Google Scholar] [CrossRef]
- Tominaga, M.; Caterina, M.J.; Malmberg, A.B.; Rosen, T.A.; Gilbert, H.; Skinner, K.; Raumann, B.E.; Basbaum, A.I.; Julius, D. The Cloned Capsaicin Receptor Integrates Multiple Pain-Producing Stimuli. Neuron 1998, 21, 531–543. [Google Scholar] [CrossRef]
- Mezey, É.; Toth, Z.E.; Cortright, D.N.; Arzubi, M.K.; Krause, J.E.; Elde, R.; Guo, A.; Blumberg, P.M.; Szallasi, A. Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc. Natl. Acad. Sci. USA 2000, 97, 3655–3660. [Google Scholar] [CrossRef]
- Premkumar, L.S.; Ahern, G.P. Induction of vanilloid receptor channel activity by protein kinase C. Nature 2000, 408, 985–990. [Google Scholar] [CrossRef]
- Caterina, M.J.; Leffler, A.; Malmberg, A.B.; Martin, W.J.; Trafton, J.; Petersen-Zeitz, K.R.; Koltzenburg, M.; Basbaum, A.I.; Julius, D. Impaired Nociception and Pain Sensation in Mice Lacking the Capsaicin Receptor. Science 2000, 288, 306–313. [Google Scholar] [CrossRef]
- Nozawa, Y.; Nishihara, K.; Yamamoto, A.; Nakano, M.; Ajioka, H.; Matsuura, N. Distribution and characterization of vanilloid receptors in the rat stomach. Neurosci. Lett. 2001, 309, 33–36. [Google Scholar] [CrossRef]
- Yiangou, Y.; Facer, P.; Dyer, N.H.C.; Chan, C.L.H.; Knowles, C.; Williams, N.S.; Anand, P. Vanilloid receptor 1 immunoreactivity in inflamed human bowel. Lancet 2001, 357, 1338–1339. [Google Scholar] [CrossRef]
- Birder, L.A.; Kanai, A.J.; de Groat, W.C.; Kiss, S.; Nealen, M.L.; Burke, N.E.; Dineley, K.E.; Watkins, S.; Reynolds, I.J.; Caterina, M.J. Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. Proc. Natl. Acad. Sci. USA 2001, 98, 13396–13401. [Google Scholar] [CrossRef] [PubMed]
- Szallasi, A.; Appendino, G. Vanilloid Receptor TRPV1 Antagonists as the Next Generation of Painkillers. Are We Putting the Cart before the Horse? J. Med. Chem. 2004, 47, 2717–2723. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.D.; Yoon, H.C.; Kim, I.W.; Hyun, H.J. Novel Benzimidazole Derivatives and Pharmaceutical Composition Comprising the Same. KR. Patent 10/1,099,303, 27 January 2006. [Google Scholar]
- Slagt, V.F.; de Vries, A.H.M.; de Vries, J.G.; Kellogg, R.M. Practical Aspects of Carbon-Carbon Cross-Coupling Reactions Using Heteroarenes. Org. Process Res. Dev. 2010, 14, 30–47. [Google Scholar] [CrossRef]
- Li, W.; Nelson, D.P.; Jensen, M.S.; Hoerrner, R.S.; Cai, D.; Larsen, R.D. Synthesis of 3-Pyridylboronic acid and its Pinacol Ester. Application of 3-Pyridylboronic acid in SUZUKI Coupling to Prepare 3-Pyridin-3-ylquinoline. Org. Synth. 2009, 11, 393-398–398. [Google Scholar]
- Zheng, X.; Hodgetts, K.J.; Brielmann, H.; Hutchison, A.; Burkamp, F.; Jones, A.B.; Blurton, B.; Clarkson, R.; Chandrasekhar, J.; Bakthavatchalam, R.; et al. From arylureas to biarylamides to aminoquinazolines: Discovery of a novel, potent TRPV1 antagonist. Bioorganic Med. Chem. Lett. 2006, 16, 5217–5221. [Google Scholar] [CrossRef] [PubMed]
- Bakthavatchalam, R.; Blum, C.A.; Brielmann, H.; Darrow, J.W.; De Lombaert, S.; Yoon, T.Y.; Zheng, X. Substituted Biphenyl-4-carboxylic acid Arylamide Analogues. U.S. Patent 10/539,860, 19 December 2003. [Google Scholar]
- Bakthavatchalam, R.; Caldwell, T.M.; Chenard, B.L.; De Lombaert, S.; Hodgetts, K.J. Substituted Quinolin-4-ylamine Analogues. U.S. Patent 7,488,740, 14 July 2004. [Google Scholar]
- Singer, A.W.; McElvain, S.M. Picolinic acid Hydrochloride. Org. Synth. 1940, 20, 79–80. [Google Scholar]
- Mukhopadhyay, S.; Chandalia, S.B. Kinetics of the Highly Selective Liquid-Phase Oxidation of Side Chain Alkyl Groups in 2-Methylpyrazine and Picolines by Selenium Dioxide. Org. Process Res. Dev. 1999, 3, 455–459. [Google Scholar] [CrossRef]
- Artamkina, G.A.; Grinfel’d, A.A.; Beletskaya, I.P. Air Oxidation of in situ Obtained Carbanions in KOH-DME-CROWN System. Tetrahedron Lett. 1984, 25, 4989–4992. [Google Scholar] [CrossRef]
- Achremowicz, L. A New Approach to the Oxiation of Methylquinolines with Selenium Dioxide. Synth. Commun. 1996, 26, 1681–1684. [Google Scholar] [CrossRef]
- Shrader, W.D.; Kolesnikov, A.; Burgess-Henry, J.; Rai, R.; Hendrix, J.; Hu, H.; Torkelson, S.; Ton, T.; Young, W.B.; Katz, B.A.; et al. Factor VIIa inhibitors: Gaining Selectivity within the Trypsin Family. Bioorg. Med. Chem. Lett. 2006, 16, 1596–1600. [Google Scholar] [CrossRef]
- Hranjec, M.; Grdiša, M.; Pavelic, K.; Boykin, D.W.; Karminski-Zamola, G. Synthesis and Antitumor Evaluation of Some new Substituted Amidino-benzimidazolyl-furyl-phenyl-acrylates and Naphtho[2,1-b]furan-carboxylates. IL Farmaco 2003, 58, 1319–1324. [Google Scholar] [CrossRef] [PubMed]
- Eynde, J.J.V.; Delfosse, F.; Lor, P.; Haverbeke, Y.V. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone, a Mild Catalyst for the Formation of Carbon-Nitrogen Bonds. Tetrahedron 1995, 51, 5813–5818. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, J.D.; Yoon, H.C.; Kim, I.W.; Yoon, H.K.; Lee, B.G.; Lim, Y.M.; Choi, S.J. Novel Method of Preparing Benzoimidazole Derivatives. KR. Patent 1,320,752, 28 September 2011. [Google Scholar]
- Gary, B.; Ernest, J.M.; Renato, S.; Dominique, S. CXCR4 Chemokine Receptor Binding Compounds. U.S. Patent 7,291,631, 21 October 2004. [Google Scholar]
- Heirtzle, F.R.; Neuburger, M.; Zehnder, M.; Constable, E.C. Preparation and Characterization of Oligo-(2,2′-bipyridyl)pyrazines. Liebigs Ann. 1997, 2, 297–301. [Google Scholar] [CrossRef]
- Jones, R.M.; Lehmann, J.; Wong, A.S.; Hurst, D.; Young-Jun Shin, Y.J. Substituted Pyridinyl and Pyrimidinyl Derivatives as Modulators of Metabolism and Treatment of Disorders Related Thereto. U.S. Patent 2006/0155128, 13 July 2006. [Google Scholar]
- Frank, R.; Bahrenberg, G.; Christoph, T.; Lesch, B. Substituted Heteroaromatic Pyrazole-Containing Carboxamide and Urea Derivatives as Vanilloid Receptor Ligands. U.S. Patent 13/557,941, 25 July 2012. [Google Scholar]
- Habibi, M.; Bayat, Y.; Marandi, R.; Mehrdadsharif, A.A.; Salahi, S. One-pot Synthesis of 4H-Pyran-4-one Carboxaldehyde Derivatives by Using Selenium Dioxide as a Reusable Oxidant. Asian J. Chem. 2012, 24, 5239–5241. [Google Scholar]
- Trump, E.L.; Zhou, M.X. The Use of Selenium(IV) Oxide to Oxidize Aromatic Methyl Group. Trans. Kans. Acad. Sci. 1993, 96, 167–180. [Google Scholar] [CrossRef]
Entry | Reagents | Equivalent | Solvent | Amount of Solvent (V b) | Time (h) | Yield (%) |
---|---|---|---|---|---|---|
1 | KMnO4 | 8 | water | 10 | 10 | 26 |
2 | KMnO4 | 3.0 | pyridine | 4 | 4 | 48 |
3 | SeO2 | 1.6 | pyridine | 4 | 4 | 76 |
4 | SeO2 | 3.0 | pyridine | 4 | 3 | 90 |
Entry | Solvent | Amount of Solvent (V b) | Temperature (°C) | Time (h) | Yield (%) |
---|---|---|---|---|---|
1 | 1,4-Dioxane | 10 | 15 | 12 | 51 |
2 | 1,4-Dioxane | 10 | 25 | 5 | 65 |
3 | 1,4-Dioxane | 20 | 25 | 5 | 58 |
4 | THF | 10 | 15 | 12 | 52 |
5 | THF | 10 | 25 | 6 | 61 |
Entry | Solvent (10 V b) | Yield (%) | Entry | Solvent (10 V b) | Yield (%) |
---|---|---|---|---|---|
1 | 1,4-Dioxane | 60 | 6 | Ethanol | 28 |
2 | Xylene | 20 | 7 | Ethyl acetate | 35 |
3 | Toluene | 23 | 8 | Dichloroethane | 22 |
4 | Pyridine | 18 | 9 | Acetonitrile | 26 |
5 | THF | 50 | 10 | DMF c | 35 |
Entry | 1,4-Dioxane (V b) | SeO2 (eq) | Acid Catalysts | Yield (%) |
---|---|---|---|---|
1 | 5 | 1.1 | - | 10< |
2 | 5 | 1.4 | - | 22 |
3 | 5 | 2.0 | - | 10< |
4 | 10 | 2.0 | - | 36 |
5 | 10 | 3.0 | - | 60 |
6 | 10 | 4.0 | - | 39 |
7 | 10 | 3.0 | HNO3 | 69 |
8 | 10 | 3.0 | H2SO4 | 46 |
9 | 10 | 3.0 | AcOH | 10< |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-H.; Kim, J.; Kim, H. Scalable Synthesis of TRPV1 Antagonist Bipyridinyl Benzimidazole Derivative via the Suzuki–Miyaura Reaction and Selective SeO2 Oxidation. Molecules 2023, 28, 836. https://doi.org/10.3390/molecules28020836
Lee J-H, Kim J, Kim H. Scalable Synthesis of TRPV1 Antagonist Bipyridinyl Benzimidazole Derivative via the Suzuki–Miyaura Reaction and Selective SeO2 Oxidation. Molecules. 2023; 28(2):836. https://doi.org/10.3390/molecules28020836
Chicago/Turabian StyleLee, Joon-Hwan, Jiduck Kim, and Hakwon Kim. 2023. "Scalable Synthesis of TRPV1 Antagonist Bipyridinyl Benzimidazole Derivative via the Suzuki–Miyaura Reaction and Selective SeO2 Oxidation" Molecules 28, no. 2: 836. https://doi.org/10.3390/molecules28020836
APA StyleLee, J.-H., Kim, J., & Kim, H. (2023). Scalable Synthesis of TRPV1 Antagonist Bipyridinyl Benzimidazole Derivative via the Suzuki–Miyaura Reaction and Selective SeO2 Oxidation. Molecules, 28(2), 836. https://doi.org/10.3390/molecules28020836