Active Self-Assembly of Ladder-Shaped DNA Carrier for Drug Delivery
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design of DNA Nanoladders
2.2. Self-Assembly and Characterization of DNA Nanoladders
2.3. The Effect of Incubation Time, Incubation Temperature, and Ratio on Assembly
2.4. DNA Nanoladders Serve as Structural Scaffolds with Biomolecules
3. Materials and Methods
3.1. Materials
3.2. Preparation of Basic Motifs
3.3. Self-Assembly of DNA Nanoladders
3.4. Agarose Gel Electrophoresis
3.5. Biotin–STV Binding Nanoladders
3.6. AFM Imaging
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Dey, S.; Fan, C.; Gothelf, K.V.; Li, J.; Lin, C.; Liu, L.; Liu, N.; Nijenhuis, M.A.D.; Saccà, B.; Simmel, F.C.; et al. DNA origami. Nat. Rev. Methods Prim. 2021, 1, 13. [Google Scholar] [CrossRef]
- Dong, Y.; Yao, C.; Zhu, Y.; Yang, L.; Luo, D.; Yang, D. DNA Functional Materials Assembled from Branched DNA: Design, Synthesis, and Applications. Chem. Rev. 2020, 120, 9420–9481. [Google Scholar] [CrossRef] [PubMed]
- de Renty, C.; Pond, K.W.; Yagle, M.K.; Ellis, N.A. BLM Sumoylation Is Required for Replication Stability and Normal Fork Velocity During DNA Replication. Front. Mol. Biosci. 2022, 9, 875102. [Google Scholar] [CrossRef]
- Lecca, P.; Ihekwaba-Ndibe, A.E.C. Dynamic Modelling of DNA Repair Pathway at the Molecular Level: A New Perspective. Front. Mol. Biosci. 2022, 9, 878148. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.; Fang, Q.; Xiao, X.; Liu, S.; Wu, R.; Yan, J.; Nie, B.; Liu, J. Integrating Cycled Enzymatic DNA Amplification and Surface-Enhanced Raman Scattering for Sensitive Detection of Circulating Tumor DNA. Front. Mol. Biosci. 2021, 8, 676065. [Google Scholar] [CrossRef] [PubMed]
- Ge, Z.; Gu, H.; Li, Q.; Fan, C. Concept and Development of Framework Nucleic Acids. J. Am. Chem. So.c 2018, 140, 17808–17819. [Google Scholar] [CrossRef]
- Seeman, N.C.; Sleiman, H.F. DNA nanotechnology. Nat. Rev. Mater. 2017, 3, 1–23. [Google Scholar] [CrossRef]
- Wang, P.; Wu, S.; Tian, C.; Yu, G.; Jiang, W.; Wang, G.; Mao, C. Retrosynthetic Analysis-Guided Breaking Tile Symmetry for the Assembly of Complex DNA Nanostructures. J. Am. Chem. Soc. 2016, 138, 13579–13585. [Google Scholar] [CrossRef]
- Wang, W.; Lin, T.; Zhang, S.; Bai, T.; Mi, Y.; Wei, B. Self-assembly of fully addressable DNA nanostructures from double crossover tiles. Nucleic Acids Res. 2016, 44, 7989–7996. [Google Scholar] [CrossRef] [Green Version]
- Grome, M.W.; Zhang, Z.; Pincet, F.; Lin, C. Vesicle Tubulation with Self-Assembling DNA Nanosprings. Angew. Chem. Int. Ed. Engl. 2018, 57, 5330–5334. [Google Scholar] [CrossRef]
- Li, S.; Tian, T.; Zhang, T.; Cai, X.; Lin, Y. Advances in biological applications of self-assembled DNA tetrahedral nanostructures. Mater. Today 2019, 24, 57–68. [Google Scholar] [CrossRef]
- Han, J.; Cui, Y.; Li, F.; Gu, Z.; Yang, D. Responsive disassembly of nucleic acid nanocomplex in cells for precision medicine. Nano Today 2021, 39, 101160. [Google Scholar] [CrossRef]
- Ren, K.; Xu, Y.; Liu, Y.; Yang, M.; Ju, H. A Responsive "Nano String Light" for Highly Efficient mRNA Imaging in Living Cells via Accelerated DNA Cascade Reaction. ACS Nano 2018, 12, 263–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherry, K.M.; Qian, L. Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks. Nature 2018, 559, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Mu, Z.; Sun, L.; Si, S.; Wang, B. Hidden Addressing Encoding for DNA Storage. Front. Bioeng. Biotechnol. 2022, 10, 916615. [Google Scholar] [CrossRef]
- Yin, Q.; Zheng, Y.; Wang, B.; Zhang, Q. Design of Constraint Coding Sets for Archive DNA Storage. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021, 19, 3384–3394. [Google Scholar] [CrossRef]
- Jiang, Q.; Song, C.; Nangreave, J.; Liu, X.; Lin, L.; Qiu, D.; Wang, Z.G.; Zou, G.; Liang, X.; Yan, H.; et al. DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc. 2012, 134, 13396–13403. [Google Scholar] [CrossRef]
- Wang, K.; You, M.; Chen, Y.; Han, D.; Zhu, Z.; Huang, J.; Williams, K.; Yang, C.J.; Tan, W. Self-assembly of a bifunctional DNA carrier for drug delivery. Angew. Chem. Int. Ed. Engl. 2011, 50, 6098–6101. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Li, J.; Li, Q.; Huang, Q.; Shi, J.; Yan, H.; Fan, C. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. Angew. Chem. Int. Ed. Engl. 2014, 53, 7745–7750. [Google Scholar] [CrossRef]
- Walsh, A.S.; Yin, H.F.; Erben, C.M.; Wood, M.J.A.; Turberfield, A.J. DNA Cage Delivery to Mammalian Cells. ACS Nano 2011, 5, 5427–5432. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, L.P.; Zhou, S.; Bi, S.; Zhu, J.J. DNA Polymerase-Directed Hairpin Assembly for Targeted Drug Delivery and Amplified Biosensing. ACS Appl. Mater. Interfaces 2016, 8, 26532–26540. [Google Scholar] [CrossRef]
- Kallenbach, N.R.; Ma, R.I.; Seeman, N.C. An Immobile Nucleic-Acid Junction Constructed from Oligonucleotides. Nature 1983, 305, 829–831. [Google Scholar] [CrossRef]
- Zhang, T.; Wei, B. Rational Design of Allosteric Nanodevices Based on DNA Triple Helix. J. Am. Chem. Soc. 2021, 143, 16693–16699. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Ji, B.; Liu, Y.; Zou, K.; Tian, Z.; Dai, B.; Cui, D.; Zhang, P.; Ke, Y.; Song, J. Spatiotemporal Control of Molecular Cascade Reactions by a Reconfigurable DNA Origami Domino Array. Angew. Chem. Int. Ed. Engl. 2022, 61, e202116324. [Google Scholar] [CrossRef] [PubMed]
- Rothemund, P.W. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, B.; Dai, M.; Yin, P. Complex shapes self-assembled from single-stranded DNA tiles. Nature 2012, 485, 623–626. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Wu, T.; Shi, X.; Pan, L. A study on a special DNA nanotube assembled from two single-stranded tiles. Nanotechnology 2019, 30, 115602. [Google Scholar] [CrossRef] [PubMed]
- Duckett, D.R.; Murchie, A.I.H.; Diekmann, S.; Vonkitzing, E.; Kemper, B.; Lilley, D.M.J. The Structure of the Holliday Junction, and Its Resolution. Cell 1988, 55, 79–89. [Google Scholar] [CrossRef]
- Fu, T.J.; Seeman, N.C. DNA Double-Crossover Molecules. Biochemistry 1993, 32, 3211–3220. [Google Scholar] [CrossRef]
- He, Y.; Tian, Y.; Ribbe, A.E.; Mao, C.D. Highly connected two-dimensional crystals of DNA six-point-stars. J. Am. Chem. Soc. 2006, 128, 15978–15979. [Google Scholar] [CrossRef]
- Liu, L.; Li, Z.; Li, Y.; Mao, C. Rational Design and Self-Assembly of Two-Dimensional, Dodecagonal DNA Quasicrystals. J. Am. Chem. Soc. 2019, 141, 4248–4251. [Google Scholar] [CrossRef]
- Hamada, S.; Murata, S. Substrate-assisted assembly of interconnected single-duplex DNA nanostructures. Angew. Chem. Int. Ed. Engl. 2009, 48, 6820–6823. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.Y.; Hariadi, R.F.; Choi, H.M.; Winfree, E. Integrating DNA strand-displacement circuitry with DNA tile self-assembly. Nat. Commun. 2013, 4, 1965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amodio, A.; Adedeji, A.F.; Castronovo, M.; Franco, E.; Ricci, F. pH-Controlled Assembly of DNA Tiles. J. Am. Chem. Soc. 2016, 138, 12735–12738. [Google Scholar] [CrossRef] [Green Version]
- Xing, C.; Chen, Z.; Dai, J.; Zhou, J.; Wang, L.; Zhang, K.L.; Yin, X.; Lu, C.; Yang, H. Light-Controlled, Toehold-Mediated Logic Circuit for Assembly of DNA Tiles. ACS Appl. Mater. Interfaces 2020, 12, 6336–6342. [Google Scholar] [CrossRef] [PubMed]
- Ranallo, S.; Sorrentino, D.; Ricci, F. Orthogonal regulation of DNA nanostructure self-assembly and disassembly using antibodies. Nat. Commun. 2019, 10, 5509. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Liu, L.; Mao, D.; Yu, Y.; Li, W.; Zhao, X.; Mao, C. ATP-Triggered, Allosteric Self-Assembly of DNA Nanostructures. J. Am. Chem. Soc. 2020, 142, 665–668. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Zhang, H.; Liu, X.; Lee, A.; Huang, Q.; Wang, F.; Chao, J.; Liu, H.; Li, J.; et al. Programming chain-growth copolymerization of DNA hairpin tiles for in-vitro hierarchical supramolecular organization. Nat. Commun. 2019, 10, 1006. [Google Scholar] [CrossRef] [Green Version]
- Yin, P.; Choi, H.M.T.; Calvert, C.R.; Pierce, N.A. Programming biomolecular self-assembly pathways. Nature 2008, 451, 318–322. [Google Scholar] [CrossRef] [Green Version]
- Dirks, R.M.; Pierce, N.A. Triggered amplification by hybridization chain reaction. Proc. Natl. Acad. Sci. USA 2004, 101, 15275–15278. [Google Scholar] [CrossRef]
- Nie, Z.; Wang, P.; Tian, C.; Mao, C. Synchronization of two assembly processes to build responsive DNA nanostructures. Angew. Chem. Int. Ed. Engl. 2014, 53, 8402–8405. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Chen, J.; Wang, X.; Xiao, M.; Chandrasekaran, A.R.; Li, L.; Yi, C.; Pei, H. Biointerface Engineering with Nucleic Acid Materials for Biosensing Applications. Adv. Funct. Mater. 2022, 32, 2201069. [Google Scholar] [CrossRef]
- Hellmeier, J.; Platzer, R.; Muhlgrabner, V.; Schneider, M.C.; Kurz, E.; Schutz, G.J.; Huppa, J.B.; Sevcsik, E. Strategies for the Site-Specific Decoration of DNA Origami Nanostructures with Functionally Intact Proteins. ACS Nano 2021, 15, 15057–15068. [Google Scholar] [CrossRef]
- Cao, S.; Wang, F.; Wang, L.; Fan, C.; Li, J. DNA nanotechnology-empowered finite state machines. Nanoscale Horiz. 2022, 7, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Gentile, S.; Del Grosso, E.; Prins, L.J.; Ricci, F. Reorganization of Self-Assembled DNA-Based Polymers using Orthogonally Addressable Building Blocks*. Angew. Chem. Int. Ed. Engl. 2021, 60, 12911–12917. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Wang, J.; Wang, T.; Zhong, J.; Bao, Y.; Hao, H. Recent Progress on Nanostructures for Drug Delivery Applications. J. Nanomater. 2016, 2016, 5762431. [Google Scholar] [CrossRef] [Green Version]
- de Vries, J.W.; Zhang, F.; Herrmann, A. Drug delivery systems based on nucleic acid nanostructures. J. Control. Release 2013, 172, 467–483. [Google Scholar] [CrossRef] [Green Version]
- Linko, V.; Ora, A.; Kostiainen, M.A. DNA Nanostructures as Smart Drug-Delivery Vehicles and Molecular Devices. Trends Biotechnol. 2015, 33, 586–594. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Geary, C.W.; Chen, G.; Shao, Y.; Li, M.; Mao, C.; Andersen, E.S.; Piccirilli, J.A.; Rothemund, P.W.K.; Weizmann, Y. Branched kissing loops for the construction of diverse RNA homooligomeric nanostructures. Nat. Chem. 2020, 12, 249–259. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wang, J.; Sun, L.; Wang, B.; Zhang, Q.; Zhang, X.; Cao, B. Active Self-Assembly of Ladder-Shaped DNA Carrier for Drug Delivery. Molecules 2023, 28, 797. https://doi.org/10.3390/molecules28020797
Liu Y, Wang J, Sun L, Wang B, Zhang Q, Zhang X, Cao B. Active Self-Assembly of Ladder-Shaped DNA Carrier for Drug Delivery. Molecules. 2023; 28(2):797. https://doi.org/10.3390/molecules28020797
Chicago/Turabian StyleLiu, Yuan, Jiaxin Wang, Lijun Sun, Bin Wang, Qiang Zhang, Xiaokang Zhang, and Ben Cao. 2023. "Active Self-Assembly of Ladder-Shaped DNA Carrier for Drug Delivery" Molecules 28, no. 2: 797. https://doi.org/10.3390/molecules28020797
APA StyleLiu, Y., Wang, J., Sun, L., Wang, B., Zhang, Q., Zhang, X., & Cao, B. (2023). Active Self-Assembly of Ladder-Shaped DNA Carrier for Drug Delivery. Molecules, 28(2), 797. https://doi.org/10.3390/molecules28020797