Identification of 3-Methoxyphenylacetic Acid as a Phytotoxin, Produced by Rhizoctonia solani AG-3 TB
Abstract
:1. Introduction
2. Results
2.1. Tissue Infection and Symptom Changes in R. solani AG-3 TB Infection
2.2. Biological Activity, Isolation, and Purification of Toxin Compound of R. solani AG-3 TB
2.3. Structure Elucidation of the Toxin Compound
2.4. Pathogenicity and Virulence of Exogenous 3-MOPAA on N. tabacum
3. Discussion
4. Materials and Methods
4.1. R. solani AG-3 TB Isolation and Inoculation
4.2. Preparation and Extraction of Toxin from R. solani AG-3 TB
4.3. Biological Activity by Toxin Extraction
4.4. Isolation and Purification of Toxin Compound
4.5. Structural Identification of Toxin
4.6. The Pathogenicity of Purified Toxin Compound 3-MOPAA
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ogoshi, A. Ecology and pathogenicity of anastomosis and intraspecifc groups of Rhizoctonia Solani Kühn. Annu. Rev. Phytopathol. 1987, 25, 125–143. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, Y.; Fu, Y.; Zhao, X.; Chen, J. First report of target spot of flue-cured tobacco caused by Rhizoctonia solani AG-3 in China. Plant Dis. 2012, 96, 1824. [Google Scholar] [CrossRef] [PubMed]
- Taheri, P.; Tarighi, S. Cytomolecular aspects of rice sheath blight caused by Rhizoctonia solani. Eur. J. Plant Pathol. 2011, 129, 511–528. [Google Scholar] [CrossRef]
- Shew, H.; Main, C. Rhizoctonia leaf spot of flue-cured tobacco in north Carolina. Plant Dis. 1985, 69, 901–903. [Google Scholar] [CrossRef]
- Shew, H.; Melton, T. Target spot of tobacco. Plant Dis. 1995, 76, 6–11. [Google Scholar] [CrossRef]
- Xu, M.; Hao, K.; Yang, J.; Wang, F.; Xiao, Z.; Li, W. First Report of Rhizoctonia solani AG-3 Causing Tobacco Target Spot in Yunnan, China. Plant Dis. 2018, 16, 249. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, C.; Zhang, M. The study on pathogen identification and biological control of tobacco target spot in Sichuan Province. Hubei Agric. Sci. Chin. 2021, 60, 4. [Google Scholar]
- Tan, H. Investigation on fungal diseases of tobacco in Guangxi province. Master’s Thesis, Guangxi University, Nanning, China, 2012. (In Chinese). [Google Scholar]
- Doehlemann, G.; Ökmen, B.; Zhu, W.; Sharon, A. Plant pathogenic fungi. Microbiol. Spectr. 2017, 5, 1–23. [Google Scholar] [CrossRef]
- Nieto, C.; Granero, A.; Zon, M.; Fernández, H. Sterigmatocystin: A mycotoxin to be seriously considered. Food Chem. Toxicol. 2018, 118, 460–470. [Google Scholar] [CrossRef]
- Schafer, W. Molecular mechanisms of fungal pathogenicity to plant. Annu. Rev. Phytopathol. 1994, 32, 461–477. [Google Scholar] [CrossRef]
- Yang, G.; Conner, R.; Chen, Y.; Chen, J.; Wang, Y. Frequency and pathogenicity distribution of Rhizoctona spp. causing sheath blight on rice and banded leaf disease on Maize in Yunnan, China. J. Plant Pathol. 2008, 90, 387–392. [Google Scholar]
- Aoki, H.; Sassa, T.; Tamura, T. Phytotoxic metabolites of Rhizoctonia solani. Nature 1963, 20, 575. [Google Scholar] [CrossRef]
- Mandava, N.; Orellana, R.; Warthen, D.; Worley, J.; Dutky, S.; Finegold, H.; Weathington, B. Phytotoxins in Rhizoctonia solani:isolation and biological activity of m-hydroxy and methoxyphenyl acetic acids. J. Agric. Food Chem. 1980, 28, 71–75. [Google Scholar] [CrossRef]
- Kankam, F.; Long, H.; He, J.; Zhang, C.; Zhang, H.; Pu, L.; Qiu, H. 3-methylthiopropionic acid of Rhizoctonia solani AG-3 and Its role in the pathogenicity of the fungus. Plant Pathol. J. 2016, 32, 85–94. [Google Scholar] [CrossRef]
- Zhao, Y.; Fu, Y.; Zhao, X.; Chen, J.; Sun, H.; Wu, Y. Biological activity and physicochemical properties of crude toxin from tobacco target spot pathogen (Rhizoctonia solani). Tob. Sci. Technol. Chin. 2013, 4, 81–84. [Google Scholar]
- Goodman, R.; Király, Z.; Wood, K. The biochemistry and physiology of plant disease. Bioscience 1986, 18, 418–419. [Google Scholar]
- Tsuge, T.; Kobayashi, H.; Nishimura, S. Organization of ribosomal RNA genes in Alternaria alternate, Japanese pear pathotype, a host-selective AK-toxin-producing fungus. Curr. Genet. 1989, 16, 267–272. [Google Scholar] [CrossRef]
- Adachi, T.; Inagaki, K. Phytotoxin produced by Rhizoctonia oryzae Ryker et Gooch. Agric. Biol. Chem. 1988, 52, 2625. [Google Scholar]
- Bartz, F.; Glassbrook, N.; Danehower, D.; Cubeta, M. Modulation of the phenylacetic acid metabolic complex by quinic acid alters the disease-causing activity of Rhizoctonia solani on tomato. Phytochemistry 2013, 89, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Milborrow, B.; Purse, J.; Wightman, F. On the auxin activity of phenylacetic acid. Ann. Bot. Fenn. 1975, 39, 1143–1146. [Google Scholar]
- Schneider, E.; Kazakoff, C.; Wightman, F. Gas chromatography-mass spectrometry evidence for several endogenous auxins in pea seedling organs. Planta 1985, 165, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Wightman, F.; Schneider, E.; Thimann, K. Hormonal factors controlling the initiation and development of lateral roots II. effects of exogenous growth factors on lateral root formation in pea roots. Physiol. Plantarum 1980, 49, 304–314. [Google Scholar] [CrossRef]
- Wightman, F.; Lighty, D. Identification of phenylacetic acid as a natural auxin in the shoots of higher plants. Physiol. Plantarum 1982, 55, 17–24. [Google Scholar] [CrossRef]
- Burkhead, K.; Slininger, P.; Schisler, D. Biological control bacterium enterobacter cloacae S11: T: 07 (NRRL B-21050) produces the antifungal compound phenylacetic acid in Sabouraud maltose broth culture. Soil Biol. Biochem. 1998, 30, 665–667. [Google Scholar] [CrossRef]
- Musthafa, K.; Sivamaruthi, B.; Pandian, S.; Ravi, A. Quorum sensing inhibition in Pseudomonas aeruginosa PAO1 by antagonistic compound phenylacetic acid. Curr. Microbiol. 2012, 65, 475–480. [Google Scholar] [CrossRef]
- Kim, Y.; Cho, J.; Kuk, J.; Moon, J.; Cho, J.; Kim, Y.; Park, K. Identification and antimicrobial activity of phenylacetic acid produced by Eacillus licheniformis isolated from fermented soybean, chungkook-jang. Curr. Microbiol. 2004, 48, 312–317. [Google Scholar] [CrossRef]
- Moore, K.; Subba Rao, P.; Towers, G. Degradation of phenylalanine and tyrosine by Sporobolomyces roseus. Biochem. J. 1968, 106, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Wat, C.; Towers, G. Metabolism of the aromatic amino acids by Fungi. Biochem. Plant Phenolics 1979, 4, 371–432. [Google Scholar]
- Yamamoto, N.; Wang, Y.; Lin, R.; Liang, Y.; Liu, Y.; Zhu, J.; Wang, L.; Wang, S.; Liu, H.; Deng, Q. Integrative transcriptome analysis discloses the molecular basis of a heterogeneous fungal phytopathogen complex, Rhizoctonia solani AG-1 subgroups. Sci. Rep. 2019, 9, 19626. [Google Scholar] [CrossRef] [Green Version]
- Zheng, A.; Lin, R.; Zhang, D.; Chen, Y.; Li, P. The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nat. Commun. 2013, 4, 1424. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; An, M.; Xu, C.; Jaing, L.; Yan, F.; Yang, Y.; Zhang, C.; Wu, Y. Integrative transcriptome analysis revealed the pathogenic molecular basis of Rhizoctonia solani AG-3 TB at three progressive stages of infection. Front. Microbiol. 2022, 13, 1–14. [Google Scholar] [CrossRef]
- Siddiqui, I.; Shaukat, S. Phenylacetic Acid-Producing Rhizoctonia solani represses the biosynthesis of nematicidal compounds in vitro and influences biocontrol of meloidogyne incognita in tomato by Pseudomonas fluorescens strain CHA0 and its GM derivatives. J. App. Microbiol. 2005, 98, 43–55. [Google Scholar] [CrossRef] [Green Version]
- Keller, N. Fungal secondary metabolism: Regulation, function and drug discovery. Nat. Rev. Microbiol. 2018, 17, 167–180. [Google Scholar] [CrossRef]
- Haslam, E. The Shikimate Pathway: Biosynthesis of Natural Products Series; Elsevier: Amsterdam, The Netherlands, 2014; Volume 4, pp. 186–241. [Google Scholar]
- Vidhyasekaran, P.; Ponmalar, T.; Samiyappan, R.; Velazhahan, R.; Muthukrishnan, S. Host-Specific toxin production by Rhizoctonia solani, the rice sheath blight pathogen. Phytopathology 1997, 87, 1258–1263. [Google Scholar] [CrossRef]
Hours Post Inoculation (hpi) | 24 hpi | 48 hpi | 72 hpi |
---|---|---|---|
Lesion diameter (cm) | 0.126 ± 0.087 | 0.340 ± 0.196 | 0.606 ± 0.266 |
Wave Number of Absorption Peak (cm−1) | Vibration Type | Group | Absorption Peak Intensity |
---|---|---|---|
3400~2500 | O-H Telescopic vibration | Carboxylic acid (− COOH) | br |
3017 | =C-H Telescopic vibration | =C−H | m |
2968, 2921, 2841 | − C-H Telescopic vibration | Saturated − C-H | s, m, m |
1698 | C=O Telescopic vibration | Carboxylic acid (− COOH) | s |
1601, 1494 | Benzene ring skeleton C=C Telescopic vibration | Benzene ring | s, s |
1469 | C-H Bending vibration | − CH2 − | s |
1435 | C-H Bending vibration | − OCH3 | s |
1410 | C-O Telescopic vibration | Carboxylic acid (− COOH) | s |
1267, 900, 757 | C-O-C Telescopic vibration | Aromatic ether (ArOR) | s, s, s |
1234 | O-H Bending vibration | Carboxylic acid (− COOH) | s |
881, 793, 704 | =C-H Out of plane bending vibration | 1,3- disubstituted benzene | s, s, s |
Compound Treatment | 1 mg/mL | 2 mg/mL | 4 mg/mL | CK |
---|---|---|---|---|
Lesion diameter (cm) | 0.383 ± 0.0894 | 0.550 ± 0.171 | 0.654 ± 0.213 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Hou, H.; Liu, H.; Wang, H.; Cai, L.; An, M.; Zhang, C.; Wu, Y. Identification of 3-Methoxyphenylacetic Acid as a Phytotoxin, Produced by Rhizoctonia solani AG-3 TB. Molecules 2023, 28, 790. https://doi.org/10.3390/molecules28020790
Li X, Hou H, Liu H, Wang H, Cai L, An M, Zhang C, Wu Y. Identification of 3-Methoxyphenylacetic Acid as a Phytotoxin, Produced by Rhizoctonia solani AG-3 TB. Molecules. 2023; 28(2):790. https://doi.org/10.3390/molecules28020790
Chicago/Turabian StyleLi, Xinchun, HuiHui Hou, He Liu, Hancheng Wang, Liuti Cai, Mengnan An, Chong Zhang, and Yuanhua Wu. 2023. "Identification of 3-Methoxyphenylacetic Acid as a Phytotoxin, Produced by Rhizoctonia solani AG-3 TB" Molecules 28, no. 2: 790. https://doi.org/10.3390/molecules28020790
APA StyleLi, X., Hou, H., Liu, H., Wang, H., Cai, L., An, M., Zhang, C., & Wu, Y. (2023). Identification of 3-Methoxyphenylacetic Acid as a Phytotoxin, Produced by Rhizoctonia solani AG-3 TB. Molecules, 28(2), 790. https://doi.org/10.3390/molecules28020790