X-H Bond Insertion Promoted by Heterogeneous Dirhodium Metal–Organic Cage with Alkynes as Safe Carbene Precursors
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. General
4.2. Preparation of MOC-Rh-1 Catalyst
4.3. General Procedure for the Catalytic Si-H Insertion Reactions
4.4. General Procedure for the Recycling Experiment
4.5. Procedure for Hot Filtration
4.6. Procedure for ICP-OES Experiment
4.7. General Procedure for the Catalytic B-H Insertion Reactions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Boquet, V.; Nasrallah, A.; Dana, A.L.; Brunard, E.; Di Chenna, P.H.; Duran, F.J.; Retailleau, P.; Darses, B.; Sircoglou, M.; Dauban, P. Rhodium(II)-Catalyzed Enantioselective Intermolecular Aziridination of Alkenes. J. Am. Chem. Soc. 2022, 144, 17156–17164. [Google Scholar] [CrossRef] [PubMed]
- Davies, H.M.L.; Liao, K. Dirhodium tetracarboxylates as catalysts for selective intermolecular C-H functionalization. Nat. Rev. Chem. 2019, 3, 347–360. [Google Scholar] [CrossRef] [PubMed]
- Wee, A.G.H. Rhodium(II)-catalyzed reaction of diazocompounds in the service of organic synthesis of natural and non-natural products. Curr. Org. Synth. 2006, 3, 499–555. [Google Scholar] [CrossRef]
- Doyle, M.P.; Duffy, R.; Ratnikov, M.; Zhou, L. Catalytic Carbene Insertion into C-H Bonds. Chem. Rev. 2010, 110, 704–724. [Google Scholar] [CrossRef] [PubMed]
- Etayo, P.; Vidal-Ferran, A. Rhodium-catalysed asymmetric hydrogenation as a valuable synthetic tool for the preparation of chiral drugs. Chem. Soc. Rev. 2013, 42, 728–754. [Google Scholar] [CrossRef]
- Wei, B.; Sharland, J.C.; Lin, P.; Wilkerson-Hill, S.M.; Fullilove, F.A.; McKinnon, S.; Blackmond, D.G.; Davies, H.M.L. In Situ Kinetic Studies of Rh(II)-Catalyzed Asymmetric Cyclopropanation with Low Catalyst Loadings. ACS Catal. 2020, 10, 1161–1170. [Google Scholar] [CrossRef]
- Li, Z.; Boyarskikh, V.; Hansen, J.H.; Autschbach, J.; Musaev, D.G.; Davies, H.M.L. Scope and Mechanistic Analysis of the Enantioselective Synthesis of Allenes by Rhodium-Catalyzed Tandem Ylide Formation/[2,3]-Sigmatropic Rearrangement between Donor/Acceptor Carbenoids and Propargylic Alcohols. J. Am. Chem. Soc. 2012, 134, 15497–15504. [Google Scholar] [CrossRef]
- Smith, D.T.; Njardarson, J.T. A Scalable Rhodium-Catalyzed Intermolecular Aziridination Reaction. Angew. Chem. Int. Ed. 2014, 53, 4278–4280. [Google Scholar] [CrossRef]
- Kataoka, Y.; Yano, N.; Kohara, Y.; Tsuji, T.; Inoue, S.; Kawamoto, T. Experimental and Theoretical Study of Photochemical Hydrogen Evolution Catalyzed by Paddlewheel-Type Dirhodium Complexes with Electron Withdrawing Carboxylate Ligands. ChemCatChem 2019, 11, 6218–6226. [Google Scholar] [CrossRef]
- Ghosh, A.C.; Legrand, A.; Rajapaksha, R.; Craig, G.A.; Sassoye, C.; Balázs, G.; Farrusseng, D.; Furukawa, S.; Canivet, J.; Wisser, F.M. Rhodium-Based Metal–Organic Polyhedra Assemblies for Selective CO2 Photoreduction. J. Am. Chem. Soc. 2022, 144, 3626–3636. [Google Scholar] [CrossRef]
- Chinapang, P.; Iwami, H.; Enomoto, T.; Akai, T.; Kondo, M.; Masaoka, S. Dirhodium-Based Supramolecular Framework Catalyst for Visible-Light-Driven Hydrogen Evolution. Inorg. Chem. 2021, 60, 12634–12643. [Google Scholar] [CrossRef] [PubMed]
- Dikarev, E.V.; Kumar, D.K.; Filatov, A.S.; Anan, A.; Xie, Y.; Asefa, T.; Petrukhina, M.A. Recyclable Dirhodium Catalysts Embedded in Nanoporous Surface-Functionalized Organosilica Hosts for Carbenoid-Mediated Cyclopropanation Reactions. ChemCatChem 2010, 2, 1461–1466. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, H.; Liu, J.; Ning, T.; Phan, N.T.S.; Zhang, F. Self-Adaptive Dirhodium Complexes in a Metal–Organic Framework for Synthesis of N–H Aziridines. ACS Appl. Mater. Interfaces 2022, 14, 30714–30723. [Google Scholar] [CrossRef]
- Chen, L.; Yang, T.; Cui, H.; Cai, T.; Zhang, L.; Su, C.-Y. A porous metal–organic cage constructed from dirhodium paddle-wheels: Synthesis, structure and catalysis. J. Mater. Chem. A 2015, 3, 20201–20209. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, G.; Chen, L.; Qiu, L.; Chen, L.; Zhang, J.; Zhang, L.; Barboiu, M.; Si, R.; Su, C.-Y. Metal–organic aerogels based on dinuclear rhodium paddle-wheel units: Design, synthesis and catalysis. Inorg. Chem. Front. 2016, 3, 702–710. [Google Scholar] [CrossRef]
- Sánchez-González, E.; Tsang, M.Y.; Troyano, J.; Craig, G.A.; Furukawa, S. Assembling metal–organic cages as porous materials. Chem. Soc. Rev. 2022, 51, 4876–4889. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Gupta, A.K.; Steiner, A.; Boomishankar, R. Mapping the Assembly of Metal–Organic Cages into Complex Coordination Networks. Chem.–Eur. J. 2017, 23, 18296–18302. [Google Scholar] [CrossRef]
- Lee, B.; Park, I.-H.; Park, J. Bridging and Fixing Metal–Organic Cages. ACS Mater. Lett. 2022, 4, 2388–2393. [Google Scholar] [CrossRef]
- Oldenhuis, N.J.; Qin, K.P.; Wang, S.; Ye, H.-Z.; Alt, E.A.; Willard, A.P.; Van Voorhis, T.; Craig, S.L.; Johnson, J.A. Photoswitchable Sol–Gel Transitions and Catalysis Mediated by Polymer Networks with Coumarin-Decorated Cu24L24 Metal–Organic Cages as Junctions. Angew. Chem. Int. Ed. 2020, 59, 2784–2792. [Google Scholar] [CrossRef]
- Wu, K.; Li, K.; Chen, S.; Hou, Y.-J.; Lu, Y.-L.; Wang, J.-S.; Wei, M.-J.; Pan, M.; Su, C.-Y. The Redox Coupling Effect in a Photocatalytic RuII-PdII Cage with TTF Guest as Electron Relay Mediator for Visible-Light Hydrogen-Evolving Promotion. Angew. Chem. Int. Ed. 2020, 59, 2639–2643. [Google Scholar] [CrossRef]
- Guo, J.; Fan, Y.-Z.; Lu, Y.-L.; Zheng, S.-P.; Su, C.-Y. Visible-Light Photocatalysis of Asymmetric [2+2] Cycloaddition in Cage-Confined Nanospace Merging Chirality with Triplet-State Photosensitization. Angew. Chem. Int. Ed. 2020, 59, 8661–8669. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-S.; Wu, K.; Yin, C.; Li, K.; Huang, Y.; Ruan, J.; Feng, X.; Hu, P.; Su, C.-Y. Cage-confined photocatalysis for wide-scope unusually selective 2+2 cycloaddition through visible-light triplet sensitization. Nat. Commun. 2020, 11, 4675. [Google Scholar] [CrossRef] [PubMed]
- Trost, B.M.; Ball, Z.T. Intramolecular Endo-Dig Hydrosilylation Catalyzed by Ruthenium: Evidence for a New Mechanistic Pathway. J. Am. Chem. Soc. 2003, 125, 30–31. [Google Scholar] [CrossRef] [PubMed]
- Trost, B.M.; Ball, Z.T. Markovnikov Alkyne Hydrosilylation Catalyzed by Ruthenium Complexes. J. Am. Chem. Soc. 2001, 123, 12726–12727. [Google Scholar] [CrossRef]
- Reid, W.B.; McAtee, J.R.; Watson, D.A. Synthesis of Unsaturated Silyl Heterocycles via an Intramolecular Silyl-Heck Reaction. Organometallics 2019, 38, 3796–3803. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, J.; Guo, Y.; Li, L.; Fu, Z.; Huang, W. Access to Enantioenriched Organosilanes from Enals and β-Silyl Enones: Carbene Organocatalysis. Angew. Chem. Int. Ed. 2018, 57, 4594–4598. [Google Scholar] [CrossRef]
- Mkhalid, I.A.I.; Barnard, J.H.; Marder, T.B.; Murphy, J.M.; Hartwig, J.F. C−H Activation for the Construction of C−B Bonds. Chem. Rev. 2010, 110, 890–931. [Google Scholar] [CrossRef]
- Wang, G.; Xu, L.; Li, P. Double N,B-Type Bidentate Boryl Ligands Enabling a Highly Active Iridium Catalyst for C–H Borylation. J. Am. Chem. Soc. 2015, 137, 8058–8061. [Google Scholar] [CrossRef]
- Kisan, S.; Krishnakumar, V.; Gunanathan, C. Ruthenium-Catalyzed Anti-Markovnikov Selective Hydroboration of Olefins. ACS Catal. 2017, 7, 5950–5954. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, G.; Hashmi, A.S.K. Carbene B−H Insertion Reactions for C−B Bond Formation. ChemCatChem 2021, 13, 4299–4312. [Google Scholar] [CrossRef]
- Jagannathan, J.R.; Fettinger, J.C.; Shaw, J.T.; Franz, A.K. Enantioselective Si–H Insertion Reactions of Diarylcarbenes for the Synthesis of Silicon-Stereogenic Silanes. J. Am. Chem. Soc. 2020, 142, 11674–11679. [Google Scholar] [CrossRef] [PubMed]
- Ru, G.-X.; Zhang, T.-T.; Zhang, M.; Jiang, X.-L.; Wan, Z.-K.; Zhu, X.-H.; Shen, W.-B.; Gao, G.-Q. Recent progress towards the transition-metal-catalyzed Nazarov cyclization of alkynes via metal carbenes. Org. Biomol. Chem. 2021, 19, 5274–5283. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chen, K.; Zhu, S. Transition-Metal-Catalyzed Intramolecular Nucleophilic Addition of Carbonyl Groups to Alkynes. Chem 2018, 4, 1208–1262. [Google Scholar] [CrossRef]
- Huang, M.-Y.; Yang, J.-M.; Zhao, Y.-T.; Zhu, S.-F. Rhodium-Catalyzed Si–H Bond Insertion Reactions Using Functionalized Alkynes as Carbene Precursors. ACS Catal. 2019, 9, 5353–5357. [Google Scholar] [CrossRef]
- Yang, J.-M.; Li, Z.-Q.; Li, M.-L.; He, Q.; Zhu, S.-F.; Zhou, Q.-L. Catalytic B–H Bond Insertion Reactions Using Alkynes as Carbene Precursors. J. Am. Chem. Soc. 2017, 139, 3784–3789. [Google Scholar] [CrossRef]
- Zhu, D.; Ma, J.; Luo, K.; Fu, H.; Zhang, L.; Zhu, S. Enantioselective Intramolecular C−H Insertion of Donor and Donor/Donor Carbenes by a Nondiazo Approach. Angew. Chem. Int. Ed. 2016, 55, 8452–8456. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Chen, L.; Zhang, H.; Ma, Z.; Jiang, H.; Zhu, S. Highly Chemo- and Stereoselective Catalyst-Controlled Allylic C−H Insertion and Cyclopropanation Using Donor/Donor Carbenes. Angew. Chem. Int. Ed. 2018, 57, 12405–12409. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-R.; Yakovenko, A.A.; Lu, W.; Timmons, D.J.; Zhuang, W.; Yuan, D.; Zhou, H.-C. Ligand Bridging-Angle-Driven Assembly of Molecular Architectures Based on Quadruply Bonded Mo−Mo Dimers. J. Am. Chem. Soc. 2010, 132, 17599–17610. [Google Scholar] [CrossRef]
- Luo, H.; Chen, K.; Jiang, H.; Zhu, S. A Route to Polysubstituted Aziridines from Carbenes and Imines through a Nondiazo Approach. Org. Lett. 2016, 18, 5208–5211. [Google Scholar] [CrossRef]
Entry | Catalyst | Solvent | Yield (%) b |
---|---|---|---|
1 | MOC-Rh-1 | Toluene | 84 |
2 | MOC-Rh-1 | CH2Cl2 | 81 |
3 | MOC-Rh-1 | CHCl3 | 85 |
4 | MOC-Rh-1 | 1,4-dioxane | 74 |
5 | MOC-Rh-1 | Acetone | 62 |
6 | MOC-Rh-1 | THF | 38 |
7 | MOC-Rh-1 | DCE | 89 |
8 c | MOC-Rh-1 | DCE | 82 |
9 d | Rh2(CH3COO)4 | DCE | 89 |
10 d | Rh2(OPiv)4 | DCE | 91 |
11 d | Rh2(CF3COO)4 | DCE | 82 |
12 e | Rh2(CH3COO)4 | DCE | 85 |
13 e | MOC-Rh-1 | DCE | 35 |
14 | none | DCE | NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Zhao, C.; Mo, W.; Li, C.; Lin, X. X-H Bond Insertion Promoted by Heterogeneous Dirhodium Metal–Organic Cage with Alkynes as Safe Carbene Precursors. Molecules 2023, 28, 608. https://doi.org/10.3390/molecules28020608
Chen L, Zhao C, Mo W, Li C, Lin X. X-H Bond Insertion Promoted by Heterogeneous Dirhodium Metal–Organic Cage with Alkynes as Safe Carbene Precursors. Molecules. 2023; 28(2):608. https://doi.org/10.3390/molecules28020608
Chicago/Turabian StyleChen, Lianfen, Chaoyi Zhao, Weixian Mo, Chunsheng Li, and Xiaoming Lin. 2023. "X-H Bond Insertion Promoted by Heterogeneous Dirhodium Metal–Organic Cage with Alkynes as Safe Carbene Precursors" Molecules 28, no. 2: 608. https://doi.org/10.3390/molecules28020608
APA StyleChen, L., Zhao, C., Mo, W., Li, C., & Lin, X. (2023). X-H Bond Insertion Promoted by Heterogeneous Dirhodium Metal–Organic Cage with Alkynes as Safe Carbene Precursors. Molecules, 28(2), 608. https://doi.org/10.3390/molecules28020608