Efficient Synthesis and In Vitro Hypoglycemic Activity of Rare Apigenin Glycosylation Derivatives
Abstract
:1. Introduction
2. Results
2.1. Biotransformation and Characterization of Apigenin
2.2. Molecular Docking
2.3. Water Solubility and Anti-α-Glucosidase Assay of Apigenin and Derivatives
2.4. Cell Viability Assay of Apigenin and Derivatives
2.5. Glucose Consumption Assay of Apigenin and Derivatives
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Biotransformation of Apigenin in Aqueous Hydrophilic Media
4.3. Quantitative Analysis and Characterization of Compounds
4.4. Water Solubility
4.5. Molecular Docking
4.6. Anti-α-Glucosidase Assay
4.7. Assay of Cell Viability
4.8. Assay of Glucose Consumption
4.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Patel, D.; Shukla, S.; Gupta, S. Apigenin and Cancer Chemoprevention: Progress, Potential and Promise (Review). Int. J. Oncol. 2007, 30, 233–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, L.; Li, X.; He, L.; Zheng, Y.; Lu, H.; Li, J.; Zhong, L.; Tong, R.; Jiang, Z.; Shi, J.; et al. Antidiabetic Potential of Flavonoids from Traditional Chinese Medicine: A Review. Am. J. Chin. Med. 2019, 47, 933–957. [Google Scholar] [CrossRef]
- Havsteen, B.H. The Biochemistry and Medical Significance of the Flavonoids. Pharmacol. Ther. 2002, 96, 67–202. [Google Scholar] [CrossRef]
- Zhao, L.; Han, J.; Liu, J.; Fan, K.; Yuan, T.; Han, J.; Chen, L.; Zhang, S.; Zhao, M.; Duan, J. A Novel Formononetin Derivative Promotes Anti-Ischemic Effects on Acute Ischemic Injury in Mice. Front. Microbiol. 2021, 12, 786464. [Google Scholar] [CrossRef]
- Hasan, A.; Jannat, K.; Bondhon, T.A.; Jahan, R.; Hossan, M.S.; de Lourdes Pereira, M.; Nissapatorn, V.; Wiart, C.; Rahmatullah, M. Can Antimalarial Phytochemicals Be a Possible Cure for COVID-19? Molecular Docking Studies of Some Phytochemicals to SARS-CoV-2 3C-like Protease. Infect Disord. Drug Targets 2022, 22, e290721195143. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Z.; Huang, Y.; Wen, X.; Wu, Y.; Zhao, Y.; Ni, Y. Extraction, Purification, and Hydrolysis Behavior of Apigenin-7-O-Glucoside from Chrysanthemum Morifolium Tea. Molecules 2018, 23, 2933. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.; Li, B.; Qiao, M.; Li, J.; Xu, H.; Zhang, L.; Zhang, X. Advances on the in Vivo and in Vitro Glycosylations of Flavonoids. Appl. Microbiol. Biotechnol. 2020, 104, 6587–6600. [Google Scholar] [CrossRef]
- Crich, D. Mechanism of a Chemical Glycosylation Reaction. Acc. Chem. Res. 2010, 43, 1144–1153. [Google Scholar] [CrossRef]
- Zou, D.; Cui, Y.; Li, S.; Sang, D.; Liu, W.; Zhao, T.; Gu, X.; Chen, T.; Li, Y. The Applicability of High-Speed Counter-Current Chromatography for Preparative Separation of Biosynthesis Products: Glycosylation Products as Example. J. Sep. Sci. 2021, 44, 4368–4375. [Google Scholar] [CrossRef]
- Chu, L.L.; Pandey, R.P.; Lim, H.N.; Jung, H.J.; Thuan, N.H.; Kim, T.-S.; Sohng, J.K. Synthesis of Umbelliferone Derivatives in Escherichia Coli and Their Biological Activities. J. Biol. Eng. 2017, 11, 15. [Google Scholar] [CrossRef]
- Lentzen, G.; Schwarz, T. Extremolytes: Natural Compounds from Extremophiles for Versatile Applications. Appl. Microbiol. Biotechnol. 2006, 72, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Raddadi, N.; Cherif, A.; Daffonchio, D.; Neifar, M.; Fava, F. Biotechnological Applications of Extremophiles, Extremozymes and Extremolytes. Appl. Microbiol. Biotechnol. 2015, 99, 7907–7913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Chen, G.; Chu, J.; Wu, B.; He, B. High Production of Succinyl Isoflavone Glycosides by Bacillus Licheniformis ZSP01 Resting Cells in Aqueous Miscible Organic Medium. Biotechnol. Appl. Biochem. 2015, 62, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Hagen, A.; Poust, S.; de Rond, T.; Fortman, J.L.; Katz, L.; Petzold, C.J.; Keasling, J.D. Engineering a Polyketide Synthase for In Vitro Production of Adipic Acid. ACS Synth. Biol. 2016, 5, 21–27. [Google Scholar] [CrossRef]
- Dhameja, M.; Gupta, P. Synthetic Heterocyclic Candidates as Promising α-Glucosidase Inhibitors: An Overview. Eur. J. Med. Chem. 2019, 176, 343–377. [Google Scholar] [CrossRef]
- Chen, C.; You, L.-J.; Abbasi, A.M.; Fu, X.; Liu, R.H.; Li, C. Characterization of Polysaccharide Fractions in Mulberry Fruit and Assessment of Their Antioxidant and Hypoglycemic Activities in Vitro. Food Funct. 2016, 7, 530–539. [Google Scholar] [CrossRef]
- Jia, Y.; Ma, Y.; Cheng, G.; Zhang, Y.; Cai, S. Comparative Study of Dietary Flavonoids with Different Structures as α-Glucosidase Inhibitors and Insulin Sensitizers. J. Agric. Food Chem. 2019, 67, 10521–10533. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, S.; Duan, H.; Zhu, Z.; Duan, J. A Novel, Highly-Water-Soluble Apigenin Derivative Provides Neuroprotection Following Ischemia in Male Rats by Regulating the ERK/Nrf2/HO-1 Pathway. Eur. J. Pharmacol. 2019, 855, 208–215. [Google Scholar] [CrossRef]
- Xie, H.; Zhao, Q.; Zhang, X.; Kang, Q.; Bai, L. Comparative Functional Genomics of the Acarbose Producers Reveals Potential Targets for Metabolic Engineering. Synth. Syst. Biotechnol. 2019, 4, 49–56. [Google Scholar] [CrossRef]
- Balaich, J.; Estrella, M.; Wu, G.; Jeffrey, P.D.; Biswas, A.; Zhao, L.; Korennykh, A.; Donia, M.S. The Human Microbiome Encodes Resistance to the Antidiabetic Drug Acarbose. Nature 2021, 600, 110–115. [Google Scholar] [CrossRef]
- Lv, J.; Yao, L.; Li, D.; Jia, C.; Zhang, J.; Wang, L.; Li, C.; Li, Y. Novel Hypoglycemic Compounds from Wild Mushroom Paxillus Involutus. Bioorg. Chem. 2021, 112, 104984. [Google Scholar] [CrossRef]
- Li, K.; Yao, F.; Xue, Q.; Fan, H.; Yang, L.; Li, X.; Sun, L.; Liu, Y. Inhibitory Effects against α-Glucosidase and α-Amylase of the Flavonoids-Rich Extract from Scutellaria Baicalensis Shoots and Interpretation of Structure-Activity Relationship of Its Eight Flavonoids by a Refined Assign-Score Method. Chem. Cent. J. 2018, 12, 82. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Chen, Y.; Tishkoff, D.X.; Peng, C.; Tan, M.; Dai, L.; Xie, Z.; Zhang, Y.; Zwaans, B.M.M.; Skinner, M.E.; et al. SIRT5-Mediated Lysine Desuccinylation Impacts Diverse Metabolic Pathways. Mol. Cell 2013, 50, 919–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Sna, B.; Khan, T.; Chitti, R.; Gubbiyappa, K.S. Apigenin-Loaded Solid Lipid Nanoparticle Attenuates Diabetic Nephropathy Induced by Streptozotocin Nicotinamide Through Nrf2/HO-1/NF-KB Signalling Pathway. Int. J. Nanomed. 2020, 15, 9115. [Google Scholar] [CrossRef] [PubMed]
- Vo Van, L.; Pham, E.C.; Nguyen, C.V.; Duong, N.T.N.; Vi Le Thi, T.; Truong, T.N. In vitro and in vivo antidiabetic activity, isolation of flavonoids, and in silico molecular docking of stem extract of Merremia tridentata (L.). Biomed. Pharm. 2022, 146, 112611. [Google Scholar] [CrossRef]
- Braemer, R.; Tsoutsias, Y.; Hurabielle, M.; Paris, M. Biotransformations of Quercetin and Apigenin by a Cell Suspension Culture of Cannabis Sativa. Planta Med. 1987, 53, 225–226. [Google Scholar] [CrossRef]
- Cassemiro, N.S.; Sanches, L.B.; Kato, N.N.; Ruller, R.; Carollo, C.A.; de Mello, J.C.P.; dos Santos dos Anjos, E.; Silva, D.B. New Derivatives of the Iridoid Specioside from Fungal Biotransformation. Appl. Microbiol. Biotechnol. 2021, 105, 7731–7741. [Google Scholar] [CrossRef]
- Pan, C.; Yang, W.; Barona, J.P.; Wang, Y.; Niggli, M.; Mohideen, P.; Wang, Y.; Foley, J.E. Comparison of Vildagliptin and Acarbose Monotherapy in Patients with Type 2 Diabetes: A 24-Week, Double-Blind, Randomized Trial. Diabet Med. 2008, 25, 435–441. [Google Scholar] [CrossRef]
- Chai, T.-T.; Kwek, M.-T.; Ong, H.-C.; Wong, F.-C. Water Fraction of Edible Medicinal Fern Stenochlaena Palustris Is a Potent α-Glucosidase Inhibitor with Concurrent Antioxidant Activity. Food Chem. 2015, 186, 26–31. [Google Scholar] [CrossRef]
- Kawser Hossain, M.; Abdal Dayem, A.; Han, J.; Yin, Y.; Kim, K.; Kumar Saha, S.; Yang, G.-M.; Choi, H.Y.; Cho, S.-G. Molecular Mechanisms of the Anti-Obesity and Anti-Diabetic Properties of Flavonoids. Int. J. Mol. Sci. 2016, 17, 569. [Google Scholar] [CrossRef]
- Zhang, B.-W.; Li, X.; Sun, W.-L.; Xing, Y.; Xiu, Z.-L.; Zhuang, C.-L.; Dong, Y.-S. Dietary Flavonoids and Acarbose Synergistically Inhibit α-Glucosidase and Lower Postprandial Blood Glucose. J. Agric. Food Chem. 2017, 65, 8319–8330. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Zhang, G.; Lin, S.; Gong, D. Inhibitory Mechanism of Apigenin on α-Glucosidase and Synergy Analysis of Flavonoids. J. Agric. Food Chem. 2016, 64, 6939–6949. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, P.; Liu, H.; Sun, X.; Liang, J.; Sun, L.; Chen, Y. Hypoglycemic Activity of Origanum vulgare L. and Its Main Chemical Constituents Identified with HPLC-ESI-QTOF-MS. Food Funct. 2021, 12, 2580–2590. [Google Scholar] [CrossRef] [PubMed]
- Farhat, A.; Ben Hlima, H.; Khemakhem, B.; Ben Halima, Y.; Michaud, P.; Abdelkafi, S.; Fendri, I. Apigenin Analogues as SARS-CoV-2 Main Protease Inhibitors: In-Silico Screening Approach. Bioengineered 2022, 13, 3350–3361. [Google Scholar] [CrossRef]
- Zeng, F.; Zhang, H.; Xu, M.; Huang, K.; Zhang, T.; Duan, J. Immobilized Lipase Catalytic Synthesis of Phenolamides and Their Potential against α-Glucosidase. J. Biotechnol. 2021, 334, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Lan, H.-Y.; An, P.; Liu, Q.-P.; Chen, Y.-Y.; Yu, Y.-Y.; Luan, X.; Tang, J.-Y.; Zhang, H. Aidi Injection Induces Apoptosis of Hepatocellular Carcinoma Cells through the Mitochondrial Pathway. J. Ethnopharmacol. 2021, 274, 114073. [Google Scholar] [CrossRef]
Position | δ13C | δ1H (J in Hz) |
---|---|---|
2 | 164.3 | |
3 | 103.1 | 6.87 (1H, s) |
4 | 182.0 | |
5 | 161.3 | |
6 | 99.6 | 6.46 (1H, d,2) |
7 | 162.6 | |
8 | 94.7 | 6.83 (1H, d,2) |
9 | 156.9 | |
10 | 105.4 | |
1′ | 121.0 | |
2′ | 128.5 | 7.96 (2H, d,8.8) |
3′ | 115.9 | 6.95 (2 H, d,8.8) |
4′ | 161.1 | |
5′ | 115.9 | 6.95 (2 H, d,8.8) |
6′ | 128.5 | 7.96 (2H, d,8.8) |
1″ | 99.6 | 5.12 (1H, d,7.2) |
2″ | 73.0 | 3.30–3.45 (2H, m) |
3″ | 76.2 | 3.30–3.45 (2H, m) |
4″ | 69.8 | 3.15–3.30 (1H, m) |
5″ | 74.0 | 3.70–3.85 (1H, m) |
6″ | 63.6 | 4.43 (1H, d,10.4) 4.04–4.15 (1H, m) |
1‴ | 172.0 | |
2‴ | 28.6 | 2.50–2.65 (2H, m) |
3‴ | 28.6 | 2.35–2.0 (2H, m) |
4‴ | 173.2 |
Compound | Binding Energy (kcal/mol) |
---|---|
Apigenin | −9.0 |
AG | −8.9 |
SAG | −9.4 |
Acarbose | −8.0 |
Compounds | Inhibition, % | IC50, mM | ||
---|---|---|---|---|
0.1 mM | 0.5 mM | 1 mM | ||
Apigenin | 11.11 ± 0.70 | 58.33 ± 0.95 | 86.11 ± 0.07 | 0.525 |
AG | 10.59 ± 0.08 | 56.65 ± 0.51 | 84.11 ± 0.10 | 0.532 |
SAG | 16.67 ± 0.55 | 55.56 ± 0.35 | 88.89 ± 0.90 | 0.485 |
Acarbose | 10.56 ± 0.11 | 41.67 ± 0.26 | 89.96 ± 0.24 | 0.554 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Pei, Y.; Zhang, G.; Li, J.; Zhu, Y.; Xia, M.; Yan, K.; Mu, W.; Han, J.; Zhang, S.; et al. Efficient Synthesis and In Vitro Hypoglycemic Activity of Rare Apigenin Glycosylation Derivatives. Molecules 2023, 28, 533. https://doi.org/10.3390/molecules28020533
Zhao L, Pei Y, Zhang G, Li J, Zhu Y, Xia M, Yan K, Mu W, Han J, Zhang S, et al. Efficient Synthesis and In Vitro Hypoglycemic Activity of Rare Apigenin Glycosylation Derivatives. Molecules. 2023; 28(2):533. https://doi.org/10.3390/molecules28020533
Chicago/Turabian StyleZhao, Lin, Yuqiong Pei, Guoxin Zhang, Jiayao Li, Yujie Zhu, Mingjun Xia, Ke Yan, Wen Mu, Jing Han, Sen Zhang, and et al. 2023. "Efficient Synthesis and In Vitro Hypoglycemic Activity of Rare Apigenin Glycosylation Derivatives" Molecules 28, no. 2: 533. https://doi.org/10.3390/molecules28020533
APA StyleZhao, L., Pei, Y., Zhang, G., Li, J., Zhu, Y., Xia, M., Yan, K., Mu, W., Han, J., Zhang, S., & Duan, J. (2023). Efficient Synthesis and In Vitro Hypoglycemic Activity of Rare Apigenin Glycosylation Derivatives. Molecules, 28(2), 533. https://doi.org/10.3390/molecules28020533