Analysis of Spatial-Temporal Variation in Floral Volatiles Emitted from Lagerstroemia caudata by Headspace Solid-Phase Microextraction and GC–MS
Abstract
:1. Introduction
2. Results
2.1. Optimization of SPME Parameters
2.2. Phenotypic Space of VOCs in Three Flowering Stages
2.3. Daily Emission Patterns of Major Volatile Compounds
2.4. Among-Organ Differences of VOC Emission
2.5. Difference Analysis of VOCs in Different Flower Parts and Flowering Stages Based on Bray−Curtis Dissimilarity Analysis and Principal Component Analysis
3. Discussion
3.1. Establishment and Optimization of SPME Method for L. caudata
3.2. Differential Characteristic Aroma Components of L. caudata
3.3. Release Dynamics of the Floral Scent of L. caudata
3.4. Tissue Specificity of Aroma Release
4. Materials and Methods
4.1. Plant Materials
4.2. HS-SPME-GC-MS Procedures
4.3. Qualitative and Quantitative Analysis of VOCs
4.4. Cluster Analysis and PCA
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Levin, R.A.; Raguso, R.A.; Mcdade, L.A. Fragrance chemistry and pollinator affinities in Nyctaginaceae. Phytochemistry 2001, 58, 429–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knudsen, J.T.; Gershenzon, J. The chemical diversity of floral scent. In Biology of Floral Scent; CRC Press: Boca Raton, FL, USA, 2006; pp. 55–78. [Google Scholar] [CrossRef]
- Knudsen, J.T.; Tollsten, L.; Bergström, L.G. Floral scents—A checklist of volatile compounds isolated by head-space techniques. Phytochemistry 1993, 33, 253–280. [Google Scholar] [CrossRef]
- Knudsen, J.T.; Eriksson, R.; Gershenzon, J.; Ståhl, B. Diversity and Distribution of Floral Scent. Bot. Rev. 2006, 72, 1–120. [Google Scholar] [CrossRef]
- Verdonk, J.C.; Vos, C.H.R.D.; Verhoeven, H.A.; Haring, M.A.; Tunen, A.J.V.; Schuurink, R.C. Regulation of floral scent production in petunia revealed by targeted metabolomics. Phytochemistry 2003, 62, 997. [Google Scholar] [CrossRef] [PubMed]
- Flamini, G.; And, P.L.C.; Morelli, I. Differences in the Fragrances of Pollen and Different Floral Parts of Male and Female Flowers of Laurus nobilis. J. Agric. Food Chem. 2002, 50, 4647–4652. [Google Scholar] [CrossRef]
- Effmert, U.; Grosse, J.; Usr, R.; Ehrig, F.; Kagi, R.; Piechulla, B. Volatile composition, emission pattern, and localization of floral scent emission in Mirabilis jalapa (Nyctaginaceae). Am. J. Bot. 2005, 92, 2. [Google Scholar] [CrossRef] [Green Version]
- Pooler, M. Crapemyrtle Lagerstroemia spp.; Springer: Berlin, Germany, 2006; pp. 439–457. [Google Scholar]
- Pichersky, E.; Dudareva, N. Scent engineering: Toward the goal of controlling how flowers smell. Trends Biotechnol. 2007, 25, 105. [Google Scholar] [CrossRef] [Green Version]
- Wan, X.; Shi, J.; Cai, M.; Pan, H.T.; Zhang, Q.X. Flower Fragrance Components of the Hybrids between Lagerstroemia caudata and L.indica. Acta Bot. Boreal-Occident. Sin. 2014, 34, 387–394. [Google Scholar] [CrossRef]
- Cai, M.; Wang, X.Y.; Zhang, Q.X.; Pan, H.T.; Wang, X.F. Compatibility of Interspecific Crosses between Lagerstroemia indica Cultivars and Lagerstroemia caudata. Acta Bot. Boreal-Occident. Sin. 2010, 30, 697–701. [Google Scholar]
- Zhang, J.J.; Kang, W. Volatiles from Flowers of Lagerstroemia caudata by HS-SPME-GC-MS. Chem. Nat. Compd. 2014, 50, 933–934. [Google Scholar] [CrossRef]
- Ozel, M.Z.; Gogus, F.; Lewis, A.C. Comparison of direct thermal desorption with water distillation and superheated water extraction for the analysis of volatile components of Rosa damascena Mill. using GCxGC-TOF/MS. Anal. Chim. Acta 2006, 566, 172–177. [Google Scholar] [CrossRef]
- Lord, H.; Pawliszyn, J. Evolution of solid-phase microextraction technology. J. Chromatogr. A 2000, 885, 153–193. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Pawliszyn, J. Headspace solid-phase microextraction. Anal. Chem. 1993, 65, 1843–1852. [Google Scholar] [CrossRef]
- Kataoka, H.; Lord, H.L.; Pawliszyn, J. Applications of solid-phase microextraction in food analysis. J. Chromatogr. A 2000, 880, 35–62. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.X.; Wei, H.L.; Jiang, Z.H.; Cao, F.L.; Tang, G.G. Studies on flowering phenological characteristics of ornamental crabapple cultivar group. Acta Hortic. Sin. 2014, 41, 713–725. [Google Scholar] [CrossRef]
- Yoshioka, P.M. Misidentification of the Bray-Curtis similarity index. Mar. Ecol. Prog. Ser. 2008, 368, 309–310. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.J.; Zhang, W.X.; Zhang, D.L.; Wang, G.B.; Cao, F.L. Flowering Stage and Daytime Affect Scent Emission of Malusioensis “Prairie Rose”. Molecules 2019, 24, 2356. [Google Scholar] [CrossRef] [Green Version]
- Guillot, S.; Kelly, M.; Fenet, H.; Larroquea, M. Evaluation of solid-phase microextraction as an alternative to the official method for the analysis of organic micro-pollutants in drinking water. J. Chromatogr. A 2006, 1101, 46–52. [Google Scholar] [CrossRef]
- Silva, B.; Lanças, F.; Queiroz, M. Determination of fluoxetine and norfluoxetine enantiomers in human plasma by polypyrrole-coated capillary in-tube solid-phase microextraction coupled with liquid chromatography-fluorescence detection. J. Chromatogr. A 2009, 1216, 8590–8597. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, L.L.; Chen, C.B.; Zhu, S.H. Study on the selectivity of SPME fiber for the determination of volatile in apple. J. Fruit Sci. 2011, 28, 503–507. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, J.W.; Wu, L.S.; Liu, J.J.; Si, J.P.; Zhang, X.F. Determination of Volatile Components from Chimonanthus Flowers by HS-SPME-GC-MS. Sci. Silvae Sin. 2016, 58–65. [Google Scholar]
- Li, M.P.; Li, R.; Ding, P.X.; Zhang, S.W.; Guo, C.X. Optimization of HS–SPME Condition and Analysis of Volatile Compounds in Fresh and Different Drying Coriander by GC–MS. Sci. Technol. Food Ind. 2019, 228–236+247. [Google Scholar] [CrossRef]
- Yue, Y.; Liu, J.; Zhang, C.Z. Optimization of extraction conditions ofvolatile compounds from Muscat by HS-SPME-GC-MS. China Brew. 2018, 37, 171–176. [Google Scholar]
- Engel, K.H.; Flath, R.A.; Buttery, R.G.; Mon, T.R.; Ramming, D.W.; Teranishi, R. Investigation of volatile constituents in nectarines. 1. Analytical and sensory characterization of aroma components in some nectarine cultivar. J. Agric. Food Chem. 1988, 36, 549–553. [Google Scholar] [CrossRef]
- Welsh, F.W.; Murray, W.D.; Williams, R.E.; Katz, I. Microbiological and enzymatic production of flavor and fragrance chemicals. Crit. Rev. Biotechnol. 1989, 9, 105–169. [Google Scholar] [CrossRef]
- Waelti, M.O.; Muhlemann, J.K.; Widmer, A.; Schiestl, F.P. Floral odour and reproductive isolation in two species of Silene. J. Evol. Biol. 2010, 21, 111–121. [Google Scholar] [CrossRef]
- Jiao, R.; Gao, P.; Gao, X. Deeper Insight into the Volatile Profile of Rosa willmottiae with Headspace Solid-Phase Microextraction and GC–MS Analysis. Molecules 2022, 27, 1240. [Google Scholar] [CrossRef]
- Kolosova, N.; Gorenstein, N.; Kish, C.M.; Dudareva, N. Regulation of circadian methyl benzoate emission in diurnally and nocturnally emitting plants. Plant Cell 2001, 13, 2333–2347. [Google Scholar] [CrossRef] [Green Version]
- Oyama-Okubo, N.; Ando, T.; Watanabe, N.; Marchesi, E.; Uchida, K.; Nakayama, M. Emission Mechanism of Floral Scent in Petunia axillaris. J. Agric. Chem. Soc. Jpn. 2005, 69, 773–777. [Google Scholar] [CrossRef] [Green Version]
- Burger, H.; Dötterl, S.; Ayasse, M. Host-plant finding and recognition by visual and olfactory floral cues in an oligolectic bee. Funct. Ecol. 2015, 24, 1234–1240. [Google Scholar] [CrossRef]
- Muhlemann, J.K.; Klempien, A.; Dudareva, N. Floral volatiles: From biosynthesis to function. Plant Cell Environ. 2014, 37, 1936–1949. [Google Scholar] [CrossRef] [PubMed]
- Theis, N.; Lerdau, M.; Raguso, R.A. The Challenge of Attracting Pollinators While Evading Floral Herbivores: Patterns of Fragrance Emission in Cirsium arvense and Cirsium repandum (Asteraceae). Int. J. Plant Sci. 2007, 168, 587–601. [Google Scholar] [CrossRef]
- Dobson, H.; Bergström, G.; Groth, I. Differences in fragrance chemistry between flower parts of Rosa rugosa Thunb. Isr. J. Bot. 1990, 39, 143–156. [Google Scholar]
- Bergström, G.; Dobson, H.; Groth, I. Spatial fragrance patterns within the flowers of Ranunculus acris. Plant Syst. Evol. 1995, 195, 221–242. [Google Scholar] [CrossRef]
- Dudareva, N.; Pichersky, E.; Gershenzon, J. Biochemistry of plant volatiles. Plant Physiol. 2004, 135, 1893–1902. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.Q.; Pan, H.T.; Zhang, Q.X.; Pan, C.B.; Cai, M. Dynamics of fragrant compounds from Prunus mume flowers. J. Beijing For. Univ. 2010, 32, 201–206. [Google Scholar]
- Farré-Armengol, G.; Filella, I.; Llusia, J.; Peñuelas, J. Floral volatile organic compounds: Between attraction and deterrence of visitors under global change. Perspect. Plant Ecol. Evol. Syst. 2013, 15, 56–67. [Google Scholar] [CrossRef]
Level | Factors | ||||
---|---|---|---|---|---|
Fiber (A) | Extraction Temperature (B °C−1) | Extraction Time (C min−1) | Sample Amounts (D g−1) | Desorption Time (E min−1) | |
1 | 65 µm PDMS/DVB | 30 | 30 | 0.1 | 2 |
2 | 100 µm CAR/PDMS | 40 | 40 | 0.2 | 3 |
3 | 50/30 µm DVB/CAR/PDMS | 50 | 50 | 0.3 | 4 |
4 | 50/30 µm DVB/CAR/PDMS-2 cm | 60 | 60 | 0.4 | 5 |
Code | Fibers (A) | Adsorption Temperature (B) | Adsorption Time (C) | Sample Weight (D) | Desorption Time (E) | Peak Area |
---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 3.97 × 106 |
2 | 1 | 2 | 2 | 2 | 2 | 6.70 × 106 |
3 | 1 | 3 | 3 | 3 | 3 | 9.70 × 106 |
4 | 1 | 4 | 4 | 4 | 4 | 1.08 × 107 |
5 | 2 | 1 | 2 | 3 | 4 | 4.96 × 105 |
6 | 2 | 2 | 1 | 4 | 3 | 1.04 × 106 |
7 | 2 | 3 | 4 | 1 | 2 | 1.74 × 106 |
8 | 2 | 4 | 3 | 2 | 1 | 7.05 × 105 |
9 | 3 | 1 | 3 | 4 | 2 | 3.95 × 106 |
10 | 3 | 2 | 4 | 3 | 1 | 6.06 × 106 |
11 | 3 | 3 | 1 | 2 | 4 | 1.05 × 107 |
12 | 3 | 4 | 2 | 1 | 3 | 7.80 × 106 |
13 | 4 | 1 | 4 | 2 | 3 | 2.35 × 107 |
14 | 4 | 2 | 3 | 1 | 4 | 1.77 × 107 |
15 | 4 | 3 | 2 | 4 | 1 | 9.51 × 107 |
16 | 4 | 4 | 1 | 3 | 2 | 6.19 × 107 |
1 | 7.80 × 106 | 7.99 × 106 | 1.94 × 107 | 7.81 × 106 | 2.65 × 107 | |
2 | 9.94 × 105 | 7.88 × 106 | 2.75 × 107 | 1.04 × 107 | 1.86 × 107 | |
3 | 7.08 × 106 | 2.93 × 107 | 8.02 × 106 | 1.95 × 107 | 1.05 × 107 | |
4 | 4.96 × 107 | 2.03 × 107 | 4.66 × 106 | 2.77 × 107 | 9.89 × 106 | |
R | 4.86 × 107 | 2.14 × 107 | 2.29 × 107 | 1.99 × 107 | 1.66 × 107 | |
Optimization level | A4B3C2D4E1 |
Flowering Stage | T1 | T2 | T3 |
---|---|---|---|
T1 | 0 | ||
T2 | 0.8611 | 0 | |
T3 | 0.6333 | 0.7271 | 0 |
Organs | P1 | P2 | P3 | P4 | P5 |
---|---|---|---|---|---|
P1 | 0 | ||||
P2 | 0.8827 | 0 | |||
P3 | 0.9943 | 0.9676 | 0 | ||
P4 | 0.9843 | 0.9561 | 0.7764 | 0 | |
P5 | 0.9889 | 0.9719 | 0.7608 | 0.4084 | 0 |
ID | PC1 (42.9%) | PC2 (23.5%) | PC3 (12.4%) |
---|---|---|---|
Hexanal | −0.106 | −0.232 | −0.165 |
trans-2-Hexenal | −0.069 | −0.010 | −0.369 |
(Z)-2-methylbutanal oxime | 0.107 | −0.258 | 0.052 |
Leaf alcohol | −0.090 | −0.010 | −0.410 |
trans-2-Hexen-1-ol | −0.070 | −0.010 | −0.370 |
2-Heptanol | 0.244 | 0.000 | −0.045 |
D-Limonene | 0.245 | 0.002 | −0.050 |
Benzeneacetaldehyde | −0.048 | −0.293 | 0.176 |
2-Nonanone | 0.245 | 0.000 | −0.054 |
1-Nonen-4-ol | −0.051 | −0.271 | 0.167 |
2-Nonanol | 0.245 | 0.000 | −0.052 |
Citronellal | −0.048 | −0.296 | 0.175 |
Isopulegol | 0.244 | −0.002 | −0.052 |
Lavandulol | 0.246 | −0.022 | −0.040 |
1,7-Octadien-3-ol, 2,6-dimethyl- | 0.246 | −0.013 | −0.041 |
r-Cyclogeraniol | 0.245 | −0.001 | −0.053 |
Nerol | 0.246 | 0.003 | −0.047 |
Geraniol | 0.246 | −0.004 | −0.043 |
p-Anisaldehyde | −0.051 | −0.294 | 0.179 |
(E)-Citral | 0.114 | −0.256 | 0.121 |
2-Undecanol | 0.236 | −0.003 | −0.064 |
Methylgeranate | 0.245 | −0.014 | −0.040 |
Hexadecane | 0.033 | 0.197 | 0.274 |
Diethyl phthalate | 0.019 | 0.238 | 0.258 |
Octadecane | 0.078 | 0.215 | 0.247 |
Eicosane | −0.049 | −0.295 | 0.178 |
Dibutyl phthalate | 0.106 | 0.275 | 0.097 |
GC | |
Column | DB-5MS column (30 mm × 0.25 mm × 0.25 µm) |
Injector | T = 200 °C; 2 min |
Flow | constant flow rate (1.375 mL min−1); helium (99.99%) carrier gas |
Temperature program | 40 °C for 2 min; 5 °C min −1 up to 200 °C; hold at 200 °C for 6 min |
Transfer line temperature | 250 °C |
MS | |
Ion source temperature | 200 °C |
Ionization energy | 70 eV |
Mass scan range | 30–500 amu |
Ion mode | electron ionization |
Compounds | CAS Number | Formula | Regression Equation a | r2 (n = 3) |
---|---|---|---|---|
2-Nonanol | 628-99-9 | C9H20O | y = 2.41 × 107x | 1.000 |
Nerol | 106-25-2 | C10H18O | y = 1.41 × 107x | 1.000 |
β-Citral b | 106-26-3 | C10H16O | y = 5.26 × 106x | 1.000 |
(E)-Citral b | 141-27-5 | C10H16O | y = 8.44 × 106x | 1.000 |
Linalool | 78-70-6 | C10H18O | y = 6.70 × 106x | 1.000 |
Citronellal | 106-23-0 | C10H18O | y = 6.29 × 106x | 1.000 |
Citronellol | 106-22-9 | C10H20O | y = 6.15 × 106x | 0.999 |
Geraniol | 106-24-1 | C10H18O | y = 1.36 × 107x | 1.000 |
2-Heptanol | 543-49-7 | C7H16O | y = 2.56 × 107x | 1.000 |
2-Nonanone | 821-55-6 | C9H18O | y = 1.81 × 107x | 0.998 |
Phenylethyl alcohol | 60-12-8 | C8H10O | y = 2.84 × 107x | 0.999 |
p-Anisaldehyde | 123-11-5 | C8H8O2 | y = 2.37 × 107x | 0.998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, M.; Xu, W.; Xu, Y.; Pan, H.; Zhang, Q. Analysis of Spatial-Temporal Variation in Floral Volatiles Emitted from Lagerstroemia caudata by Headspace Solid-Phase Microextraction and GC–MS. Molecules 2023, 28, 478. https://doi.org/10.3390/molecules28020478
Cai M, Xu W, Xu Y, Pan H, Zhang Q. Analysis of Spatial-Temporal Variation in Floral Volatiles Emitted from Lagerstroemia caudata by Headspace Solid-Phase Microextraction and GC–MS. Molecules. 2023; 28(2):478. https://doi.org/10.3390/molecules28020478
Chicago/Turabian StyleCai, Ming, Wan Xu, Yan Xu, Huitang Pan, and Qixiang Zhang. 2023. "Analysis of Spatial-Temporal Variation in Floral Volatiles Emitted from Lagerstroemia caudata by Headspace Solid-Phase Microextraction and GC–MS" Molecules 28, no. 2: 478. https://doi.org/10.3390/molecules28020478
APA StyleCai, M., Xu, W., Xu, Y., Pan, H., & Zhang, Q. (2023). Analysis of Spatial-Temporal Variation in Floral Volatiles Emitted from Lagerstroemia caudata by Headspace Solid-Phase Microextraction and GC–MS. Molecules, 28(2), 478. https://doi.org/10.3390/molecules28020478