Chemistry of Carbon-Substituted Derivatives of Cobalt Bis(dicarbollide)(1−) Ion and Recent Progress in Boron Substitution †
Abstract
:1. Introduction
2. General Properties of the Cobalt Bis(dicarbollide) Ion
3. Carbon-Substituted Derivatives
3.1. Indirect Substitutions via Modified 1,2-Dicarba-closo-dodecaborate
3.2. Direct Modifications
3.3. Stereochemistry of Substitution
3.4. Chirality
3.5. Derivatives and Structural Blocks Prepared through Metalation Reactions
3.5.1. Alkyl Derivatives
3.5.2. Hydroxyalkyl Derivatives and Their Respective Esters
3.5.3. Carboxylic Acids and Esters
3.6. Nitrogen Containing Compounds
3.6.1. Nitriles
3.6.2. Azides
3.6.3. Amines
3.7. Nitrogen-Containing Heterocyclic Compounds
3.7.1. Triazines
3.7.2. Tetrazoles
3.7.3. Isoindolones and Related Species
3.8. Silicon Derivatives
3.9. Phosphorylated Derivatives
3.10. Halogen Derivatives
4. Recent Progress in Boron Substitution
4.1. Cobalt Bis(dicarbollide) as Extraction Agent
4.2. Cobalt Bis(dicarbollide) as Potentiometric Membrane Sensors
5. Recent Medicinal Applications
5.1. Recent Studies on the Parent Cobalt Bis(dicarbollide) Ion
5.2. Application of Carbon-Substituted Compounds
5.2.1. Anticancer Compounds
Inhibitors of Carbonic Anhydrase IX Enzyme
1,8-Naphthalimides Derivatives, Analogues of Mitonafide, and Pinafide
5.2.2. Antiparasitic Activity
5.3. Application of Boron-Substituted Compounds in Medicinal Chemistry
5.3.1. Antimicrobial Active Compounds and Antibiofilm Agents
5.3.2. Anticancer Compounds
Cholesterol-Containing Compounds for Anticancer Therapy
Curcumin-Containing Compounds for Anticancer Therapy
Chlorin-Containing Compounds for Anticancer Therapy
Coumarin-Containing Compounds
Glioblastoma and Neuroblastoma
5.3.3. Nanocomposites for Bioimaging and Drug Delivery
5.4. Electrochemistry
6. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hawthorne, M.F. Chemistry of the polyhedral species derived from transition metals and carboranes. Accounts Chem. Res. 1968, 1, 281–288. [Google Scholar] [CrossRef]
- Hawthorne, M.F.; Andrews, T.D. Carborane analogues of cobalticinium ion. Chem. Commun. 1965, 19, 443–444. [Google Scholar] [CrossRef]
- Francis, J.N.; Hawthorn, M.F.; Jones, C.J. Chemistry of bis(.pi.-7,8-dicarballyl)metalates. Reaction between [(.pi.-7,8-B9C2H11)2Co]- and aryl diazonium salts. J. Am. Chem. Soc. 1972, 94, 4878–4881. [Google Scholar] [CrossRef]
- Viñas, C.; Pedrajas, J.; Bertran, J.; Teixidor, F.; Kivekäs, R.; Sillanpää, R. Synthesis of cobaltabis(dicarbollyl) complexes incorporating exocluster SR substituents and the improved synthesis of [3,3‘-Co(1-R-2-R‘-1,2-C2B9H9)2]- derivatives. Inorg. Chem. 1997, 36, 2482–2486. [Google Scholar] [CrossRef]
- Hawthorne, M.F.; Young, D.C.; Andrews, T.D.; Howe, D.V.; Pilling, R.L.; Pitts, A.D.; Reintjes, M.; Warren, L.F., Jr.; Wegner, P.A. pi.-Dicarbollyl derivatives of the transition metals. Metallocene analogs. J. Am. Chem. Soc. 1968, 90, 879–896. [Google Scholar] [CrossRef]
- Sivaev, I.B.; Bregadze, V.I. Chemistry of cobalt bis(dicarbollides). A review. Collect. Czech. Chem. Commun. 1999, 64, 783–805. [Google Scholar] [CrossRef]
- Dash, B.P.; Satapathy, R.; Swain, B.R.; Mahanta, C.S.; Jena, B.B.; Hosmane, N.S. Cobalt bis(dicarbollide) anion and its derivatives. J. Organomet. Chem. 2017, 849–850, 170–194. [Google Scholar]
- Grimes, R.N. Metallacarboranes of the transition and lanthanide elements. In Carboranes; Elsevier: Amsterdam, The Netherlands, 2016; pp. 711–903. [Google Scholar]
- Rais, J.; Grűner, B. Extraction with Metal bis(Dicarbollide) Anions; Metal bis(dicarbollide) extractants and their applications in separation chemistry. In Ion Exchange, Solvent Extraction, 1st ed.; Marcus, Y., SenGupta, A.K., Eds.; Marcel Dekker: New York, NY, USA, 2004; Volume 17, pp. 243–334. [Google Scholar]
- Grűner, B.; Rais, J.; Selucký, P.; Lucanikova, M. Recent progress in extraction agents based on cobalt bis(dicarbollides) for partitioning of radionuclides from high level nuclear waste. In Chapter 19 in Boron Science, New Technologies and Applications; Hosmane, N.S., Ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Núñez, R.; Tarrés, M.; Ferrer-Ugalde, A.; de Biani, F.F.; Teixidor, F. Electrochemistry and photoluminescence of icosahedral carboranes, boranes, metallacarboranes, and their derivatives. Chem. Rev. 2016, 116, 14307–14378. [Google Scholar]
- Xavier, J.A.M.; Viñas, C.; Lorenzo, E.; García-Mendiola, T.; Teixidor, F. Potential application of metallacarboranes as an internal reference: An electrochemical comparative study to ferrocene. Chem. Commun. 2022, 58, 4196–4199. [Google Scholar] [CrossRef]
- Xavier, J.A.M.; Fuentes, I.; Nuez-Martínez, M.; Kelemen, Z.; Andrio, A.; Viñas, C.; Compañ, V.; Teixidor, F. How to switch from a poor PEDOT:X oxygen evolution reaction (OER) to a good one. A study on dual redox reversible PEDOT:metallacarborane. J. Mater. Chem. 2022, 10, 16182–16192. [Google Scholar] [CrossRef]
- Stoica, A.I.; Viñas, C.; Teixidor, F. History of cobaltabis(dicarbollide) in potentiometry, no need for ionophores to get an excellent selectivity. Molecules 2022, 27, 14. [Google Scholar]
- Teixidor, F.; Viñas, C.; Planas, J.G.; Romero, I.; Núñez, R. Advances in the catalytic and photocatalytic behavior of carborane derived metal complexes. In Advances in the Synthesis and Catalytic Applications of Boron Cluster: A Tribute to the Works of Professor Francesc Teixidor and Professor Clara Viñas, 1st ed.; Dieguez, M., Núñez, R., Eds.; Academic Press: Cambridge, MA, USA, 2022; Volume 71, pp. 1–45. [Google Scholar]
- Guerrero, I.; Viñas, C.; Romero, I.; Teixidor, F. A stand-alone cobalt bis(dicarbollide) photoredox catalyst epoxidates alkenes in water at extremely low catalyst load. Green Chem. 2021, 23, 10123–10131. [Google Scholar] [CrossRef]
- Hardie, M.J.; Raston, C.L. Solid state supramolecular assemblies of charged supermolecules (Na[2.2.2]cryptate) and anionic carboranes with host cyclotriveratrylene. Chem. Commun. 2001, 10, 905–906. [Google Scholar]
- Fox, M.A.; Hughes, A.K. Cage C-H center dot center dot center dot X interactions in solid-state structures of icosahedral carboranes. Coord. Chem. Rev. 2004, 248, 457–476. [Google Scholar] [CrossRef]
- Brusselle, D.; Bauduin, P.; Girard, L.; Zaulet, A.; Viñas, C.; Teixidor, F.; Ly, I.; Diat, O. Lyotropic lamellar phase formed from monolayered theta-shaped carborane-cage amphiphiles. Angew. Chem. Int. Edit. 2013, 52, 12114–12118. [Google Scholar] [CrossRef] [PubMed]
- Tarrés, M.; Viñas, C.; González-Cardoso, P.; Hänninen, M.M.; Sillanpää, R.; Ďorďovič, V.; Uchman, M.; Teixidor, F.; Matejicek, P. Aqueous self-assembly and cation selectivity of cobaltabisdicarbollide dianionic dumbbells. Chem. Eur. J. 2014, 20, 6786–6794. [Google Scholar] [CrossRef]
- Bauduin, P.; Prevost, S.; Farràs, P.; Teixidor, F.; Diat, O.; Zemb, T. A Theta-shaped amphiphilic cobaltabisdicarbollide anion: Transition from monolayer vesicles to micelles. Angew. Chem. Int. Edit. 2011, 50, 5298–5300. [Google Scholar] [CrossRef] [PubMed]
- Viñas, C.; Tarres, M.; González-Cardoso, P.; Farràs, P.; Bauduin, P.; Teixidor, F. Surfactant behaviour of metallacarboranes. A study based on the electrolysis of water. Dalton Trans. 2014, 43, 5062–5068. [Google Scholar] [PubMed]
- Ďorďovič, V.; Tošner, Z.; Uchman, M.; Zhigunov, A.; Reza, M.; Ruokolainen, J.; Pramanik, G.; Cígler, P.; Kalíková, K.; Gradzielski, M.; et al. Stealth amphiphiles: Self-assembly of polyhedral boron clusters. Langmuir 2016, 32, 6713–6722. [Google Scholar] [CrossRef]
- Hao, E.; Sibrian-Vazquez, M.; Serem, W.; Garno, J.C.; Fronczek, F.R.; Vicente, M.G.H. Synthesis, aggregation and cellular investigations of porphyrin–cobaltacarborane conjugates. Chem. Eur. J. 2007, 13, 9035–9042. [Google Scholar]
- Grűner, B.; Brynda, J.; Das, V.; Šícha, V.; Štěpánková, J.; Nekvinda, J.; Holub, J.; Pospíšilová, K.; Fábry, M.; Pachl, P.; et al. Metallacarborane sulfamides: Unconventional, specific, and highly selective inhibitors of carbonic anhydrase IX. J. Med. Chem. 2019, 62, 9560–9575. [Google Scholar] [CrossRef] [PubMed]
- Fink, K.; Cebula, J.; Tošner, Z.; Psurski, M.; Uchman, M.; Goszczyński, T.M. Cobalt bis(dicarbollide) is a DNA-neutral pharmacophore. Dalton Trans. 2023, 52, 10338–10347. [Google Scholar]
- Chen, Y.; Barba-Bon, A.; Grűner, B.; Winterhalter, M.; Aksoyoglu, M.A.; Pangeni, S.; Ashjari, M.; Brix, K.; Salluce, G.; Folgar-Cameán, Y.; et al. Metallacarborane cluster anions of the cobalt bisdicarbollide-type as chaotropic carriers for transmembrane and intracellular delivery of cationic peptides. J. Am. Chem. Soc. 2023, 145, 13089–13098. [Google Scholar] [CrossRef]
- Gan, L.; Nord, M.T.; Lessard, J.M.; Tufts, N.Q.; Chidambaram, A.; Light, M.E.; Huang, H.L.; Solano, E.; Fraile, J.; Suárez-García, F.; et al. Biomimetic photodegradation of glyphosate in carborane-functionalized nanoconfined spaces. J. Am. Chem. Soc. 2023, 145, 13730–13741. [Google Scholar]
- Fuentes, I.; García-Mendiola, T.; Sato, S.; Pita, M.; Nakamura, H.; Lorenzo, E.; Teixidor, F.; Marques, F.; Viñas, C. Metallacarboranes on the road to anticancer therapies: Cellular uptake, DNA interaction, and biological evaluation of cobaltabisdicarbollide COSAN (-). Chem.-Eur. J. 2018, 24, 17239–17254. [Google Scholar]
- Farràs, P.; Juárez-Pérez, E.J.; Lepšík, M.; Luque, R.; Núñez, R.; Teixidor, F. Metallacarboranes and their interactions: Theoretical insights and their applicability. Chem. Soc. Rev. 2012, 41, 3445–3463. [Google Scholar]
- Řezáčová, P.; Cígler, P.; Matějíček, P.; Pokorná, J.; Grűner, B.; Konvalinka, J. Medicinal application of carboranes: Inhibition of HIV protease. In Boron Science- New Technologies and Applications; Hosmane, N.S., Ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 45–63. [Google Scholar]
- Kugler, M.; Nekvinda, J.; Holub, J.; El Anwar, S.; Das, V.; Šícha, V.; Pospíšilová, K.; Fábry, M.; Král, V.; Brynda, J.; et al. Inhibitors of CA IX enzyme based on polyhedral boron compounds. ChemBioChem 2021, 22, 2741–2761. [Google Scholar] [PubMed]
- Kaplánek, R.; Martásek, P.; Grűner, B.; Panda, S.; Rak, J.; Masters, B.S.S.; Král, V.; Roman, L.J. Nitric oxide synthases activation and inhibition by metallacarborane-cluster-based isoform-specific affectors. J. Med. Chem. 2012, 55, 9541–9548. [Google Scholar]
- Couto, M.; Mastandrea, I.; Cabrera, M.; Cabral, P.; Teixidor, F.; Cerecetto, H.; Viñas, C. Small-molecule kinase-inhibitors-loaded boron cluster as hybrid agents for glioma-cell-targeting therapy. Chem. Eur. J. 2017, 23, 9233–9238. [Google Scholar] [CrossRef]
- Fink, K.; Uchman, M. Boron cluster compounds as new chemical leads for antimicrobial therapy. Coord. Chem. Rev. 2021, 431, 213684. [Google Scholar]
- Bennour, I.; Ramos, M.N.; Nuez-Martínez, M.; Xavier, J.A.M.; Buades, A.B.; Sillanpää, R.; Teixidor, F.; Choquesillo-Lazarte, D.; Romero, I.; Martinez-Medina, M.; et al. Water soluble organometallic small molecules as promising antibacterial agents: Synthesis, physical-chemical properties and biological evaluation to tackle bacterial infections. Dalton Trans. 2022, 51, 7188–7209. [Google Scholar] [PubMed]
- Kubiński, K.; Masłyk, M.; Janeczko, M.; Goldeman, W.; Nasulewicz-Goldeman, A.; Psurski, M.; Martyna, A.; Boguszewska-Czubara, A.; Cebula, J.; Goszczyński, T.M. Metallacarborane derivatives as innovative anti-candida albicans agents. J. Med. Chem. 2022, 65, 13935–13945. [Google Scholar] [CrossRef] [PubMed]
- Nuez-Martinez, M.; Pinto, C.I.G.; Guerreiro, J.F.; Mendes, F.; Marques, F.; Muñoz-Juan, A.; Xavier, J.A.M.; Laromaine, A.; Bitonto, V.; Protti, N.; et al. Cobaltabis(dicarbollide) (o-COSAN (-)) as multifunctional chemotherapeutics: A prospective application in boron neutron capture therapy (BNCT) for glioblastoma. Cancers 2021, 13, 22. [Google Scholar]
- Olejniczak, A.B.; Nawrot, B.; Leśnikowski, Z.J. DNA modified with boron-metal cluster complexes M(C2B9H11)(2) synthesis, properties, and applications. Int. J. Mol. Sci. 2018, 19, 13. [Google Scholar]
- Grimes, R.N. Boron clusters come of age. J. Chem. Educ. 2004, 81, 657. [Google Scholar] [CrossRef]
- Masalles, C.; Borrós, S.; Viñas, C.; Teixidor, F. Surface layer formation on polypyrrole films. Adv. Mater. 2002, 14, 449–452. [Google Scholar] [CrossRef]
- Hardie, M.J. The use of carborane anions in coordination polymers and extended solids. J. Chem. Crystallogr. 2007, 37, 69–80. [Google Scholar]
- Stoica, A.I.; Viñas, C.; Teixidor, F. Cobaltabisdicarbollide anion receptor for enantiomer-selective membrane electrodes. Chem. Commun. 2009, 33, 4988–4990. [Google Scholar] [CrossRef]
- Grimes, R.N. Carboranes, 3rd ed.; Academic Press: Cambridge, MA, USA; Elsevier Science Ltd: London, UK, 2016; pp. 1–1041. [Google Scholar]
- Körrbe, S.; Schreiber, P.J.; Michl, J. Chemistry of the carba-closo-dodecaborate(-) anion, CB11H12. Chem. Rev. 2006, 106, 5208–5249. [Google Scholar]
- Chamberlin, R.M.; Scott, B.L.; Melo, M.M.; Abney, K.D. Butyllithium deprotonation vs. alkali metal reduction of cobalt dicarbollide: A new synthetic route to C-substituted derivatives. Inorg. Chem. 1997, 36, 809–817. [Google Scholar]
- Rojo, I.; Teixidor, F.; Viñas, C.; Kivekäs, R.; Sillanpää, R. Synthesis and coordinating ability of an anionic cobaltabisdicarbollide ligand geometrically analogous to BINAP. Chem.-Eur. J. 2004, 10, 5376–5385. [Google Scholar] [CrossRef]
- Juárez-Pérez, E.J.; Viñas, C.; González-Campo, A.; Teixidor, F.; Sillanpää, R.; Kivekäs, R.; Núñez, R. Controlled direct synthesis of C-mono- and C-disubstituted derivatives of 3,3‘-Co(1,2-C(2)B(9)H(11))(2) (-) with organosilane groups: Theoretical calculations compared with experimental results. Chem.-Eur. J. 2008, 14, 4924–4938. [Google Scholar] [CrossRef] [PubMed]
- Farràs, P.; Teixidor, F.; Rojo, I.; Kivekäs, R.; Sillanpää, R.; González-Cardoso, P.; Viñas, C. Relaxed but highly compact diansa metallacyclophanes. J. Am. Chem. Soc. 2011, 133, 16537–16552. [Google Scholar] [CrossRef] [PubMed]
- Junqueira, G.M.A. Remarkable aromaticity of cobalt bis(dicarbollide) derivatives: A NICS study. Theor. Chem. Acc. 2018, 137, 7. [Google Scholar] [CrossRef]
- Poater, J.; Solà, M.; Viñas, C.; Teixidor, F. π aromaticity and three-dimensional aromaticity: Two sides of the same coin? Angew. Chem.-Int. Edit. 2014, 53, 12191–12195. [Google Scholar] [CrossRef]
- Poater, J.; Viñas, C.; Olid, D.; Solà, M.; Teixidor, F. Aromaticity and extrusion of benzenoids linked to o-COSAN (-): Clar has the answer. Angew. Chem. Int. Edit. 2022, 61. [Google Scholar] [CrossRef]
- Poater, J.; Viñas, C.; Solà, M.; Teixidor, F. 3D and 2D aromatic units behave like oil and water in the case of benzocarborane derivatives. Nat. Commun. 2022, 13, 8. [Google Scholar]
- Bühl, M.; Hnyk, D.; Macháček, J. Computational study of structures and properties of metallaboranes: Cobalt bis(dicarbollide). Chem.-Eur. J. 2005, 11, 4109–4120. [Google Scholar]
- Bühl, M.; Holub, J.; Hnyk, D.; Macháček, J. Computational studies of structures and properties of metallaboranes. 2. Transition-metal dicarbollide complexes. Organometallics 2006, 25, 2173–2181. [Google Scholar] [CrossRef]
- Bogucka-Kocka, A.; Kołodziej, P.; Makuch-Kocka, A.; Różycka, D.; Rykowski, S.; Nekvinda, J.; Grűner, B.; Olejniczak, A.B. Nematicidal activity of naphthalimide–boron cluster conjugates. Chem. Commun. 2022, 58, 2528–2531. [Google Scholar]
- Sivaev, I.B.; Kosenko, I.D. Rotational conformation of 8,8’-dihalogenated derivatives of cobalt bis(dicarbollide) in solution. Russ. Chem. Bull. 2021, 70, 753–756. [Google Scholar] [CrossRef]
- Sivaev, I.B. Ferrocene and transition metal bis(dicarbollides) as platform for design of rotatory molecular switches. Molecules 2017, 22, 30. [Google Scholar]
- Juárez-Pérez, E.J.; Núñez, R.; Viñas, C.; Sillanpää, R.; Teixidor, F. The role of C-H center dot center dot center dot H-B interactions in establishing rotamer configurations in metallabis(dicarbollide) systems. Eur. J. Inorg. Chem. 2010, 16, 2385–2392. [Google Scholar]
- Anufriev, S.A.; Timofeev, S.V.; Anisimov, A.A.; Suponitsky, K.Y.; Sivaev, I.B. Bis(dicarbollide) complexes of transition metals as a platform for molecular switches. study of complexation of 8,8‘-bis(methylsulfanyl) derivatives of cobalt and iron bis(dicarbollides). Molecules 2020, 25, 5745. [Google Scholar] [CrossRef] [PubMed]
- Zalkin, A.; Hopkins, T.E.; Templeton, D.H. Crystal structure of Cs(B9C2H11)2CO. Inorg. Chem. 1967, 6, 1911–1915. [Google Scholar] [CrossRef]
- Mortimer, M.D.; Knobler, C.B.; Hawthorne, M.F. Methylation of boron vertices of the cobalt dicarbollide anion. Inorg. Chem. 1996, 35, 5750–5751. [Google Scholar] [CrossRef]
- Fojt, L.; Grűner, B.; Nekvinda, J.; Tüzün, E.Z.; Havran, L.; Fojta, M. Electrochemistry of cobalta bis(dicarbollide) ions substituted at carbon atoms with hydrophilic alkylhydroxy and carboxy groups. Molecules 2022, 27, 1761. [Google Scholar] [CrossRef]
- Geiger, W.E.; Smith, D.E. Electrochemical indications of new oxidation states in transition-metal dicarbollide complexes. J. Chem. Soc. D 1971, 1, 8–9. [Google Scholar] [CrossRef]
- Manning, M.J.; Knobler, C.B.; Hawthorne, M.F.; Do, Y. Dicarbollide complexes of thallium—Structural and B-11 NMR-studies. Inorg. Chem. 1991, 30, 3589–3591. [Google Scholar] [CrossRef]
- Scholz, M.; Hey-Hawkins, E. Carbaboranes as pharmacophores: Properties, synthesis, and application strategies. Chem. Rev. 2011, 111, 7035–7062. [Google Scholar]
- Oliva-Enrich, J.M.; Humbel, S.; Dávalos, J.Z.; Holub, J.; Hnyk, D. Proton affinities of amino group functionalizing 2D and 3D boron compounds. Afinidad 2018, 75, 260–266. [Google Scholar]
- Růžičková, Z.; Litecká, M.; Pazderová, L.; Tüzün, E.; Grűner, B. Cobalt Bis(dicarbollide) Ion with Functional Groups Directly Attached to Carbon Atoms; Correspondence Grűner, B.; Institute of Inorganic Chemistry: Czech Republic, 2023; manuscript in preparation. [Google Scholar]
- Hawthorne, M.F.; Maderna, A. Applications of radiolabeled boron clusters to the diagnosis and treatment of cancer. Chem. Rev. 1999, 99, 3421–3434. [Google Scholar] [CrossRef] [PubMed]
- Gomez, F.A.; Johnson, S.E.; Knobler, C.B.; Hawthorne, M.F. Synthesis and structural characterization of metallacarboranes containing bridged dicarbollide ligands. Inorg. Chem. 1992, 31, 3558–3567. [Google Scholar] [CrossRef]
- Harwell, D.E.; Nabakka, J.; Knobler, C.B.; Hawthorne, M.F. Synthesis and structural characterization of an ether-bridged cobalta-bis(dicarbollide)—a model for venus flytrap cluster reagents. Can. J. Chem. 1995, 73, 1044–1049. [Google Scholar] [CrossRef]
- Nabakka, J.M.; Harwell, D.E.; Knobler, C.; Hawthorne, M.F. The synthesis and characterization of a thioether-bridged cobalta-bis(dicarbollide): A model for Venus flytrap cluster reagents. Abstr. Pap. Am. Chem. Soc. 1996, 211, 186. [Google Scholar]
- Viñas, C.; Bertran, J.; Gomez, S.; Teixidor, F.; Dozol, J.F.; Rouquette, H.; Kivekäs, R.; Sillanpää, R. Aromatic substituted metallacarboranes as extractants of Cs-137 and Sr-90 from nuclear wastes. J. Chem. Soc.-Dalton Trans. 1998, 17, 2849–2853. [Google Scholar] [CrossRef]
- Viñas, C.; Gomez, S.; Bertran, J.; Teixidor, F.; Dozol, J.F.; Rouquette, H. Cobaltabis(dicarbollide) derivatives as extractants for europium from nuclear wastes. Chem. Commun. 1998, 2, 191–192. [Google Scholar] [CrossRef]
- Grűner, B.; Kugler, M.; El Anwar, S.; Holub, J.; Nekvinda, J.; Bavol, D.; Růžičková, Z.; Pospíšilová, K.; Fábry, M.; Král, V.; et al. Cobalt bis(dicarbollide) alkylsulfonamides: Potent and highly selective inhibitors of tumor specific carbonic anhydrase IX. ChemPlusChem 2021, 86, 352–363. [Google Scholar] [CrossRef]
- Schaarschmidt, D.; Lang, H. Selective syntheses of planar-chiral ferrocenes. Organometallics 2013, 32, 5668–5704. [Google Scholar]
- Kitazawa, Y.; Takita, R.; Yoshida, K.; Muranaka, A.; Matsubara, S.; Uchiyama, M. “Naked” lithium cation: Strongly activated metal cations facilitated by carborane anions. J. Org. Chem. 2017, 82, 1931–1935. [Google Scholar]
- Reich, H.J. Role of organolithium aggregates and mixed aggregates in organolithium mechanisms. Chem. Rev. 2013, 113, 7130–7178. [Google Scholar] [PubMed]
- Grűner, B.; Šícha, V.; Hnyk, D.; Londesborough, M.G.S.; Císařová, I. The synthesis and structural characterization of polycyclic derivatives of cobalt bis(dicarbollide)(1(-)). Inorg. Chem. 2015, 54, 3148–3158. [Google Scholar] [CrossRef] [PubMed]
- El Anwar, S.; Růžičková, Z.; Bavol, D.; Fojt, L.; Grűner, B. Tetrazole ring substitution at carbon and boron sites of the cobalt bis(dicarbollide) ion available via dipolar cycloadditions. Inorg. Chem. 2020, 59, 17430–17442. [Google Scholar] [CrossRef]
- Grűner, B.; Švec, P.; Šícha, V.; Padělková, Z. Direct and facile synthesis of carbon substituted alkylhydroxy derivatives of cobalt bis(1,2-dicarbollide), versatile building blocks for synthetic purposes. Dalton Trans. 2012, 41, 7498–7512. [Google Scholar] [CrossRef] [PubMed]
- El Anwar, S.; Pazderová, L.; Bavol, D.; Bakardjiev, M.; Růžičková, Z.; Horáček, O.; Fojt, L.; Kučera, R.; Grűner, B. Structurally rigidified cobalt bis(dicarbollide) derivatives, a chiral platform for labelling of biomolecules and new materials. Chem. Commun. 2022, 58, 2572–2575. [Google Scholar]
- Grűner, B.; Plzák, Z. High-performance liquid chromatographic separations of boron-cluster compounds. J. Chromatogr. A 1997, 789, 497–517. [Google Scholar] [CrossRef]
- Plešek, J. The age of chiral deltahedral borane derivatives. Inorg. Chim. Acta 1999, 289, 45–50. [Google Scholar] [CrossRef]
- Grűner, B.; Císařová, I.; Franken, A.; Plešek, J. Resolution of the 6,6‘-mu-(CH3)(2)P-(1,7-(C2B9H10)(2))-2-Co bridged cobaltacarborane to enantiomers pure by chiral HPLC, circular dichroism spectra and absolute configurations by X-ray diffraction. Tetrahedron-Asymmetry 1998, 9, 79–88. [Google Scholar] [CrossRef]
- Horáková, H.; Grűner, B.; Vespalec, R. Emerging subject for chiral separation science: Cluster boron compounds. Chirality 2011, 23, 307–319. [Google Scholar] [CrossRef]
- Horáček, O.; Papajová-Janetková, M.; Grűner, B.; Lochman, L.; Štěrbová-Kovaříková, P.; Vespalec, R.; Kučera, R. The first chiral HPLC separation of dicarba-nido-undecarborate anions and their chromatographic behavior. Talanta 2021, 222, 9. [Google Scholar]
- Horáček, O.; Marvalová, J.; Stilcová, K.; Holub, J.; Grűner, B.; Kučera, R. Reversed-phase chromatography as an effective tool for the chiral separation of anionic and zwitterionic carboranes using polysaccharide-based chiral selectors. J. Chromatogr. A 2022, 1672, 463051. [Google Scholar] [PubMed]
- Horáček, O.; Nováková, L.; Tüzün, E.; Grűner, B.; Švec, F.; Kučera, R. Advanced tool for chiral separations of anionic and zwitterionic (metalla)carboranes: Supercritical fluid chromatography. Anal. Chem. 2022, 94, 17551–17558. [Google Scholar] [PubMed]
- Horáček, O.; Dhaubhadel, U.; Holub, J.; Grűner, B.; Armstrong, D.W.; Kučera, R. Employment of chiral columns with superficially porous particles in chiral separations of cobalt bis (dicarbollide) and nido-7,8-C2B9H12(1-) derivatives. Chirality 2023, 1–15. [Google Scholar] [CrossRef]
- Nekvinda, J.; Švehla, J.; Císařová, I.; Grűner, B. Chemistry of cobalt bis(1,2-dicarbollide) ion; the synthesis of carbon substituted alkylamino derivatives from hydroxyalkyl derivatives via methylsulfonyl or p-toluenesulfonyl esters. J. Organomet. Chem. 2015, 798, 112–120. [Google Scholar]
- Carey, F.A.; Sundberg, R.J. Advanced Organic Chemistry, Part B: Reaction and Synthesis, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Śmiałkowski, K.; Sardo, C.; Leśnikowski, Z.J. Metallacarborane synthons for molecular constructionoligofunctionalization of cobalt bis(1,2-dicarbollide) on boron and carbon atoms with extendable ligands. Molecules 2023, 28, 4118. [Google Scholar] [CrossRef]
- Fino, S.A.; Benwitz, K.A.; Sullivan, K.M.; LaMar, D.L.; Stroup, K.M.; Giles, S.M.; Balaich, G.J.; Chamberlin, R.M.; Abney, K.D. Condensation polymerization of cobalt dicarbollide dicarboxylic acid. Inorg. Chem. 1997, 36, 4604–4606. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.L.; Pinkerton, A.B.; Hurlburt, P.K.; Abney, K.D. Efficient extraction of Cs and Sr into hydrocarbons using modified cobalt dicarbollide. Abstr. Pap. Am. Chem. S 1995, 209, 146. [Google Scholar]
- Miller, R.L.; Pinkerton, A.B.; Hurlburt, P.K.; Abney, K.D. Extraction of cesium and strontium into hydrocarbon solvents using tetra-C-alkyl cobalt dicarbollide. Solvent Extr. Ion Exc. 1995, 13, 813–827. [Google Scholar] [CrossRef]
- Hurlburt, P.K.; Miller, R.L.; Abney, K.D.; Foreman, T.M.; Butcher, R.J.; Kinkead, S.A. New synthetic routes to B-halogenated derivatives of cobalt dicarbollide. Inorg. Chem. 1995, 34, 5215–5219. [Google Scholar] [CrossRef]
- Steckle, W.P.; Duke, J.R.; Jorgensen, B.S. Cobalt dicarbollide containing polymer resins for cesium and strontium uptake. In Metal-Containing Polymeric Materials; Springer: Boston, MA, USA, 1996; pp. 277–285. [Google Scholar]
- Nekvinda, J.; Šícha, V.; Hnyk, D.; Grűner, B. Synthesis, characterisation and some chemistry of C- and B-substituted carboxylic acids of cobalt bis(dicarbollide). Dalton Trans. 2014, 43, 5106–5120. [Google Scholar] [CrossRef] [PubMed]
- Bredael, K.; Geurs, S.; Clarisse, D.; De Bosscher, K.; D’Hooghe, M. Carboxylic acid bioisosteres in medicinal chemistry: Synthesis and properties. J. Chem. 2022, 2022, 21. [Google Scholar] [CrossRef]
- Wharton, C.J.; Wrigglesworth, R. Synthesis and reactions of 2,3-dihydro-oxazolo 2,3-a isoindol-5(9BH)-ones. J. Chem. Soc. Perkin Trans. 1 1985, 809–813. [Google Scholar] [CrossRef]
- Vyakaranam, K.; Li, S.J.; Zheng, C.; Hosmane, N.S. Substituent effect on the carborane coupling reaction: Synthesis and crystal structure of 1-phenyl-2- 2,3-benzobicyclo(3,3,0)-1-oxo-4-oxa-7-aza-8-yl -1,2-dicarba- closo-dodecaborane(12). Inorg. Chem. Commun. 2001, 4, 180–182. [Google Scholar] [CrossRef]
- Juarez-Perez, E.J.; Viñas, C.; Teixidor, F.; Núñez, R. First example of the formation of a Si-C bond from an intramolecular Si-H center dot center dot center dot H-C diyhydrogen interaction in a metallacarborane: A theoretical study. J. Organomet. Chem. 2009, 694, 1764–1770. [Google Scholar] [CrossRef]
- Selucký, P.; Plešek, J.; Rais, J.; Kyrš, M.; Kadlecová, L. Extraction of fission-products into nitrobenzene with dicobalt tris-dicarbollide and ethyleneoxy-substituted cobalt bis- dicarbollide. J. Radioanal. Nucl. Chem. Artic. 1991, 149, 131–140. [Google Scholar] [CrossRef]
- Plešek, J.; Heřmánek, S.; Franken, A.; Císařová, I.; Nachtigal, C. Dimethyl sulfate induced nucleophilic substitution of the bis(1,2-dicarbollido)-3-cobalt(1-) ate ion. Syntheses, properties and structures of its 8,8’-mu-sulfato, 8-phenyl and 8-dioxane derivatives. Collect. Czech. Chem. Commun. 1997, 62, 47–56. [Google Scholar] [CrossRef]
- Plešek, J.; Grűner, B.; Heřmánek, S.; Báča, J.; Mareček, V.; Jänchenová, J.; Lhotský, A.; Holub, K.; Selucký, P.; Rais, J.; et al. Synthesis of functionalized cobaltacarboranes based on the closo-[(1,2-C2B9H11)2-3,3′-Co]− ion bearing polydentate ligands for separation of M3+ cations from nuclear waste solutions. Electrochemical and liquid–liquid extraction study of selective transfer of M3+ metal cations to an organic phase. Molecular structure of the closo-[(8-(2-CH3O C6H4 O)-(CH2CH2O)2-1,2-C2B9H10)-(1′,2′-C2B9H11)-3,3′-Co]Na determined by X-ray diffraction analysis. Polyhedron 2002, 21, 975–986. [Google Scholar]
- Sivaev, I.B.B.; Bregadze, V.I. Boron Science: New Technologies and Applications; Hosmane, N.S., Ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 624–637. [Google Scholar]
- Druzina, A.A.; Kosenko, I.D.; Zhidkova, O.B.; Ananyev, I.V.; Timofeev, S.V.; Bregadze, V.I. Novel cobalt bis(dicarbollide) based on terminal alkynes and their click-reactions. Eur. J. Inorg. Chem. 2020, 2020, 2658–2665. [Google Scholar] [CrossRef]
- Dezhenkova, L.G.; Druzina, A.A.; Volodina, Y.L.; Dudarova, N.V.; Nekrasova, N.A.; Zhidkova, O.B.; Grin, M.A.; Bregadze, V.I. Synthesis of cobalt bis(dicarbollide)-curcumin conjugates for potential use in boron neutron capture therapy. Molecules 2022, 27, 4658. [Google Scholar] [CrossRef]
- Semioshkin, A.A.; Sivaev, I.B.; Bregadze, V.I. Cyclic oxonium derivatives of polyhedral boron hydrides and their synthetic applications. Dalton Trans. 2008, 2008, 977–992. [Google Scholar] [CrossRef]
- Sivaev, I.B.; Bregadze, V.I. Cyclic Oxonium Derivatives as an Efficient Synthetic Tool for the Modification of Polyhedral Boron Hydrides. Chem. Inform. 2012, 43, 623–637. [Google Scholar] [CrossRef]
- Druzina, A.A.; Shmalko, A.V.; Sivaev, I.B.; Bregadze, V.I. Cyclic oxonium derivatives of cobalt and iron bis(dicarbollides) and their use in organic synthesis. Russ. Chem. Rev. 2021, 90, 785–830. [Google Scholar]
- Shmal’ko, A.V.; Stogniy, M.Y.; Kazakov, G.S.; Anufriev, S.A.; Sivaev, I.B.; Kovalenko, L.V.; Bregadze, V.I. Cyanide free contraction of disclosed 1,4-dioxane ring as a route to cobalt bis(dicarbollide) derivatives with short spacer between the boron cage and terminal functional group. Dalton Trans. 2015, 44, 9860–9871. [Google Scholar] [CrossRef]
- Plešek, J.; Grűner, B.; Šícha, V.; Böhmer, V.; Císařová, I. The zwitterion [(8,8’-μ-CH2O(CH3)-(1,2-C2B9H10)2-3,3’-Co]0 as a versatile building block for introduction of the cobalt bis(dicarbollide) ion into organic molecules. Organometallics 2012, 31, 1703–1715. [Google Scholar] [CrossRef]
- Druzina, A.A.; Kosenko, I.D.; Zhidkova, O.B. Synthesis of novel conjugates of closo-dodecaborate derivatives with cholesterol. INEOS OPEN 2020, 3, 70–74. [Google Scholar] [CrossRef]
- Plešek, J.; Štíbr, B.; Heřmánek, S. A 8,8’-mu-I-3-CO(1,2-C2B9H10)2 metallacarborane complex with a iodonium bridge—evidence for a bromonium analog. Collect. Czech. Chem. Commun. 1984, 49, 1492–1496. [Google Scholar] [CrossRef]
- Kosenko, I.D.; Lobanova, I.A.; Starikova, Z.A.; Bregadze, V.I. Synthesis of new charge-compensated cobalt bis(1,2-dicarbollide) derivatives. Russ. Chem. Bull. 2013, 62, 1914–1918. [Google Scholar] [CrossRef]
- Kosenko, I.D.; Lobanova, I.A.; Godovikov, I.A.; Starikova, Z.A.; Sivaev, I.B.; Bregadze, V.I. Mild C-H activation of activated aromatics with 8,8 ‘-mu-I-3,3 ‘-Co(1,2-C2B9H10)(2): Just mix them. J. Organomet. Chem. 2012, 721, 70–77. [Google Scholar] [CrossRef]
- Safronov, A.V.; Sevryugina, Y.V.; Jalisatgi, S.S.; Kennedy, R.D.; Barnes, C.L.; Hawthorne, M.F. Unfairly forgotten member of the iodocarborane family: Synthesis and structural characterization of 8-iodo-1,2-dicarba-closo-dodecaborane, its precursors, and derivatives. Inorg. Chem. 2012, 51, 2629–2637. [Google Scholar] [CrossRef] [PubMed]
- Pichaandi, K.R.; Safronov, A.V.; Sevryugina, Y.V.; Everett, T.A.; Jalisatgi, S.S.; Hawthorne, M.F. Rodlike polymers containing nickel and cobalt metal bis(dicarbollide) anions: Synthesis and characterization. Organometallics 2017, 36, 3823–3829. [Google Scholar] [CrossRef]
- Pichaandi, K.R.; Nilakantan, L.; Safronov, A.V.; Sevryugina, Y.V.; Jalisatgi, S.S.; Hawthorne, M.F. Electronic interactions between ferrocenyl units facilitated by the cobalt bis(dicarbollide) anion linker: An experimental and DFT study. Eur. J. Inorg. Chem. 2018, 2018, 666–670. [Google Scholar] [CrossRef]
- Shmaľko, A.V.; Anufriev, S.A.; Anisimov, A.A.; Stogniy, M.Y.; Sivaev, I.B.; Bregadze, V.I. Synthesis of cobalt and nickel 6,6-diphenylbis(dicarbollides). Russ. Chem. Bull. 2019, 68, 1239–1247. [Google Scholar] [CrossRef]
- Anufriev, S.A.; Sivaev, I.B.; Bregadze, V.I. Synthesis of 9,9’,12,12’-substituted cobalt bis(dicarbollide) derivatives. Russ. Chem. Bull. 2015, 64, 712–717. [Google Scholar] [CrossRef]
- Nar, I.; Atsay, A.; Gümrükçü, S.; Karazehir, T.; Hamuryudan, E. Low-symmetry phthalocyanine cobalt bis(dicarbollide) conjugate for hydrogen reduction. Eur. J. Inorg. Chem. 2018, 2018, 3878–3882. [Google Scholar] [CrossRef]
- Kosenko, I.D.; Lobanova, I.A.; Ananyev, I.V.; Godovikov, I.A.; Chekulaeva, L.A.; Starikova, Z.A.; Qi, S.; Bregadze, V.I. Novel alkoxy derivatives of cobalt bis(1,2-dicarbollide). J. Organomet. Chem. 2014, 769, 72–79. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Suponitsky, K.Y.; Chizhov, A.O.; Sivaev, I.B.; Bregadze, V.I. Synthesis of 8-alkoxy and 8,8’-dialkoxy derivatives of cobalt bis(dicarbollide). J. Organomet. Chem. 2018, 865, 138–144. [Google Scholar] [CrossRef]
- Plešek, J.; Grűner, B.; Báča, J.; Fusek, J.; Císařová, I. Syntheses of the B(8)-hydroxy- and B(8,8′)-dihydroxy-derivatives of the bis(1,2-dicarbollido)-3-cobalt(1-)ate ion by its reductive acetoxylation and hydroxylation: Molecular structure of [8,8′-μ-CH3C(O)2 (1,2-C2B9H10)2-3-Co]0 zwitterion determined by X-ray diffraction analysis. J. Organomet. Chem. 2002, 649, 181–190. [Google Scholar]
- Sardo, C.; Janczak, S.; Leśnikowski, Z.J. Unusual resistance of cobalt bis dicarbollide phosphate and phosphorothioate bridged esters towards alkaline hydrolysis: The “metallacarborane effect”. J. Organomet. Chem. 2019, 896, 70–76. [Google Scholar] [CrossRef]
- Anufriev, S.A.; Erokhina, S.A.; Suponitsky, K.Y.; Godovikov, I.A.; Filippov, O.A.; Fabrizi de Biani, F.; Corsini, M.; Chizhov, A.O.; Sivaev, I.B. Methylsulfanyl-stabilized rotamers of cobalt bis(dicarbollide). Eur. J. Inorg. Chem. 2017, 2017, 4444–4451. [Google Scholar] [CrossRef]
- Churchill, M.R.; Gold, K.; Francis, J.N.; Hawthorne, M.F. Preparation and crystallographic characterization of a bridged metallo-carborane complex containing a carbonium ion center: (B9C2H10)2CoS2CH. J. Am. Chem. Soc. 1969, 91, 1222–1223. [Google Scholar] [CrossRef]
- Francis, J.N.; Hawthorn, M.F. Synthesis and reactions of novel bridged dicarbollide complexes having electron-deficient carbon atoms. Inorg. Chem. 1971, 10, 594. [Google Scholar]
- Frank, R.; Ahrens, V.M.; Boehnke, S.; Beck-Sickinger, A.G.; Hey-Hawkins, E. Charge-compensated metallacarborane building blocks for conjugation with peptides. ChemBioChem 2016, 17, 308–317. [Google Scholar] [CrossRef]
- Sivaev, I.B.; Stogniy, M.Y.; Anufriev, S.A.; Zakharova, M.V.; Bregadze, V.I. New sulfur derivatives of carboranes and metallacarboranes. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 192–196. [Google Scholar] [CrossRef]
- Anufriev, S.A.; Sivaev, I.B.; Suponitsky, K.Y.; Bregadze, V.I. Practical synthesis of 9-methylthio-7,8-nido-carborane [9-MeS-7,8-C2B9H11]-. Some evidences of BH···X hydride-halogen bonds in 9- XCH2(Me)S-7,8-C2B9H11 (X = Cl, Br, I). J. Organomet. Chem. 2017, 849, 315–323. [Google Scholar]
- Timofeev, S.V.; Zakharova, M.V.; Mosolova, E.M.; Godovikov, I.A.; Ananyev, I.V.; Sivaev, I.B.; Bregadze, V.I. Tungsten carbonyl σ-complexes of nido-carborane thioethers. J. Organomet. Chem. 2012, 721, 92–96. [Google Scholar] [CrossRef]
- Timofeev, S.V.; Zhidkova, O.B.; Mosolova, E.M.; Sivaev, I.B.; Godovikov, I.A.; Suponitsky, K.Y.; Starikova, Z.A.; Bregadze, V.I. Tungsten carbonyl σ-complexes with charge-compensated nido-carboranyl thioether ligands. Dalton Trans. 2015, 44, 6449–6456. [Google Scholar] [CrossRef] [PubMed]
- Timofeev, S.V.; Anufriev, S.A.; Sivaev, I.B.; Bregadze, V.I. Synthesis of cobalt bis(8-methylthio-1,2-dicarbollide)- pentacarbonyltungsten complexes. Russ. Chem. Bull. 2018, 67, 570–572. [Google Scholar] [CrossRef]
- Bogdanova, E.V.; Stogniy, M.Y.; Suponitsky, K.Y.; Sivaev, I.B.; Bregadze, V.I. Synthesis of boronated amidines by addition of amines to nitrilium derivative of cobalt bis(dicarbollide). Molecules 2021, 26, 16. [Google Scholar]
- Leoncini, A.; Huskens, J.; Verboom, W. Ligands for f-element extraction used in the nuclear fuel cycle. Chem. Soc. Rev. 2017, 46, 7229–7273. [Google Scholar]
- Logunov, M.V.; Voroshilov, Y.A.; Babain, V.A.; Skobtsov, A.S. Experience of mastering, industrial exploitation, and optimization of the integrated extraction–precipitation technology for fractionation of liquid high-activity wastes at mayak production association. Radiochemistry 2020, 62, 700–722. [Google Scholar] [CrossRef]
- Herbst, R.S.; Law, J.D.; Todd, T.A.; Romanovskii, V.N.; Babain, V.A.; Esimantovski, V.M.; Zaitsev, B.N.; Smirnov, I.V. Development and testing of a cobalt dicarbollide based solvent extraction process for the separation of cesium and strontium from acidic tank waste. Sep. Sci. Technol. 2002, 37, 1807–1831. [Google Scholar] [CrossRef]
- Grűner, B.; Kvíčalová, M.; Plešek, J.; Šícha, V.; Císařová, I.; Lučaníková, M.; Selucký, P. Cobalt bis(dicarbollide) ions functionalized by CMPO-like groups attached to boron by short bonds; efficient extraction agents for separation of trivalent f-block elements from highly acidic nuclear waste. J. Organomet. Chem. 2009, 694, 1678–1689. [Google Scholar]
- Shishkin, D.N.; Petrova, N.K.; Goletskii, N.D. On the possibility of extractive fractionation of REEs and TPUs from weakly acid raffinate produced of irradiated fuel elements with a mixture of ChCD and D2EHPA in polar solvent. Radiochemistry 2020, 62, 31–36. [Google Scholar] [CrossRef]
- Shishkin, D.N.; Petrova, N.K.; Goletskii, N.D.; Mamchich, M.V.; Ushanov, A.D.; Bizin, A.V. Study of the possibility of deep partitioning of the spent nuclear fuel reprocessing raffinate according to the scheme of a pilot demonstration center by extraction with a mixture of CCD, PEO, and HDEHP in a polar solvent. Radiochemistry 2022, 64, 294–299. [Google Scholar] [CrossRef]
- Kumar, S.; Rao, R.V.S. Mass transfer studies in a micromixer-settler: Extraction of Cs and Sr with CCD-PEG-400 solvent from simulated acidic radwaste solutions. J. Radioanal. Nucl. Chem. 2021, 329, 351–357. [Google Scholar] [CrossRef]
- Khaydukova, M.; Militsyn, D.; Karnaukh, M.; Grűner, B.; Selucký, P.; Babain, V.; Wilden, A.; Kirsanov, D.; Legin, A. Modified diamide and phosphine oxide extracting compounds as membrane components for cross-sensitive chemical sensors. Chemosensors 2019, 7, 41. [Google Scholar] [CrossRef]
- Chaudhury, S.; Bhattacharyya, A.; Goswami, A. Electrodriven selective transport of cs+ using chlorinated cobalt dicarbollide in polymer inclusion membrane: A novel approach for cesium removal from simulated nuclear waste solution. Environ. Sci. Technol. 2014, 48, 12994–13000. [Google Scholar] [CrossRef]
- Chaudhury, S.; Bhattacharyya, A.; Ansari, S.A.; Goswami, A. A new approach for selective Cs+ separation from simulated nuclear waste solution using electrodriven cation transport through hollow fiber supported liquid membranes. J. Membr. Sci. 2018, 545, 75–80. [Google Scholar] [CrossRef]
- Issa, F.; Kassiou, M.; Rendina, L.M. Boron in Drug Discovery: Carboranes as unique pharmacophores in biologically active compounds. Chem. Rev. 2011, 111, 5701–5722. [Google Scholar]
- Teixidor, F.; Núñez, R.; Viñas, C. Towards the application of purely inorganic icosahedral boron clusters in emerging nanomedicine. Molecules 2023, 28, 24. [Google Scholar]
- Pinheiro, T.; Alves, L.C.; Corregidor, V.; Teixidor, F.; Viñas, C.; Marques, F. Metallacarboranes for proton therapy using research accelerators: A pilot study. EPJ Tech. Instrum. 2023, 10, 5. [Google Scholar] [CrossRef]
- Messner, K.; Vuong, B.; Tranmer, G.K. The boron advantage: The evolution and diversification of boron’s applications in medicinal chemistry. Pharmaceuticals 2022, 15, 264. [Google Scholar] [CrossRef] [PubMed]
- Zaulet, A.; Nuez, M.; Sillanpää, R.; Teixidor, F.; Viñas, C. Towards purely inorganic clusters in medicine: Biocompatible divalent cations as counterions of cobaltabis(dicarbollide) and its iodinated derivatives. J. Organomet. Chem. 2021, 950, 121997. [Google Scholar] [CrossRef]
- Leśnikowski, Z.J. Challenges and opportunities for the application of boron clusters in drug design. J. Med. Chem. 2016, 59, 7738–7758. [Google Scholar] [CrossRef]
- Leśnikowski, Z.J. What are the current challenges with the application of boron clusters to drug design. Expert Opin. Drug Discov. 2021, 16, 481–483. [Google Scholar] [CrossRef]
- Gabel, D. Boron clusters in medicinal chemistry: Perspectives and problems. Pure Appl. Chem. 2015, 87, 173–179. [Google Scholar] [CrossRef]
- Gozzi, M.; Schwarze, B.; Hey-Hawkins, E. Preparing (metalla)carboranes for nanomedicine. ChemMedChem 2021, 16, 1533–1565. [Google Scholar]
- Marfavi, A.; Kavianpour, P.; Rendina, L.M. Carboranes in drug discovery, chemical biology and molecular imaging. Nat. Rev. Chem. 2022, 6, 486–504. [Google Scholar]
- Kožíšek, M.; Cígler, P.; Lepšík, M.; Fanfrlík, J.; Řezáčová, P.; Brynda, J.; Pokorná, J.; Plešek, J.; Grűner, B.; Grantz-Šašková, K.; et al. Inorganic polyhedral metallacarborane inhibitors of HIV protease: A new approach to overcoming antiviral resistance. J. Med. Chem. 2008, 51, 4839–4843. [Google Scholar] [CrossRef]
- Murphy, N.; McCarthy, E.; Dwyer, R.; Farràs, P. Boron clusters as breast cancer therapeutics. J. Inorg. Biochem. 2021, 218, 11. [Google Scholar]
- Bednarska-Szczepaniak, K.; Przelazły, E.; Kania, K.D.; Szwed, M.; Litecká, M.; Grűner, B.; Leśnikowski, Z.J. Interaction of adenosine, modified using carborane clusters, with ovarian cancer cells: A new anticancer approach against chemoresistance. Cancers 2021, 13, 48. [Google Scholar] [CrossRef] [PubMed]
- Nekvinda, J.; Różycka, D.; Rykowski, S.; Wyszko, E.; Fedoruk-Wyszomirska, A.; Gurda, D.; Orlicka-Płocka, M.; Giel-Pietraszuk, M.; Kiliszek, A.; Rypniewski, W.; et al. Synthesis of naphthalimide-carborane and metallacarborane conjugates: Anticancer activity, DNA binding ability. Bioorganic Chem. 2020, 94, 16. [Google Scholar] [CrossRef]
- Beck-Sickinger, A.G.; Becker, D.P.; Chepurna, O.; Das, B.; Flieger, S.; Hey-Hawkins, E.; Hosmane, N.; Jalisatgi, S.S.; Nakamura, H.; Patil, R.; et al. New boron delivery agents. Cancer. Biother. Radiopharm. 2023, 38, 160–172. [Google Scholar] [CrossRef]
- Druzina, A.A.; Dudarova, N.V.; Zhidkova, O.B.; Razumov, I.A.; Solovieva, O.I.; Kanygin, V.V.; Bregadze, V.I. Synthesis and cytotoxicity of novel cholesterol-cobalt bis(dicarbollide) conjugates. Mendeleev Commun. 2022, 32, 354–356. [Google Scholar] [CrossRef]
- Gozzi, M.; Schwarze, B.; Hey-Hawkins, E. Half- and mixed-sandwich metallacarboranes for potential applications in medicine. Pure Appl. Chem. 2019, 91, 563–573. [Google Scholar]
- Sivaev, I.B.; Bregadze, V.V. Polyhedral boranes for medical applications: Current status and perspectives. Eur. J. Inorg. Chem. 2009, 11, 1433–1450. [Google Scholar]
- Wojtczak, B.A.; Andrysiak, A.; Grűner, B.; Leśnikowski, Z.J. “Chemical Ligation”: A versatile method for nucleoside modification with boron clusters. Chem. Eur. J. 2008, 14, 10675–10682. [Google Scholar] [CrossRef] [PubMed]
- Assaf, K.I.; Nau, W.M. The chaotropic effect as an assembly motif in chemistry. Angew. Chem.-Int. Edit. 2018, 57, 13968–13981. [Google Scholar] [CrossRef]
- Assaf, K.I.; Wilińska, J.; Gabel, D. Ionic boron clusters as superchaotropic anions: Implications for drug design. Boron-Based Compd. Potential Emerg. Appl. Med. 2018, 109–125. [Google Scholar]
- Cebula, J.; Fink, K.; Boratyński, J.; Goszczyński, T.M. Supramolecular chemistry of anionic boron clusters and its applications in biology. Coord. Chem. Rev. 2023, 477, 19. [Google Scholar]
- Matějíček, P.; Cígler, P.; Procházka, K.; Král, V. Molecular assembly of metallacarboranes in water: Light scattering and microscopy study. Langmuir 2006, 22, 575–581. [Google Scholar]
- Medoš, Z.; Bešter-Rogač, M. Two-step micellization model: The case of long-chain carboxylates in water. Langmuir 2017, 33, 7722–7731. [Google Scholar] [CrossRef]
- Medoš, Z.; Friesen, S.; Buchner, R.; Bešter-Rogač, M. Interplay between aggregation number, micelle charge and hydration of catanionic surfactants. Phys. Chem. Chem. Phys. 2020, 22, 9998–10009. [Google Scholar] [CrossRef]
- Woolley, E.M.; Burchfield, T.E. Model for thermodynamics of ionic surfactant solutions. 2. Enthalpies, heat capacities, and volumes. J. Phys. Chem. 1984, 88, 2155–2163. [Google Scholar] [CrossRef]
- Medoš, Z.; Hleli, B.; Tošner, Z.; Ogrin, P.; Urbič, T.; Kogej, K.; Bešter-Rogač, M.; Matějíček, P. Counterion-induced aggregation of metallacarboranes. J. Phys. Chem. C 2022, 126, 5735–5742. [Google Scholar] [CrossRef]
- Merhi, T.; Jonchère, A.; Girard, L.; Diat, O.; Nuez, M.; Viñas, C.; Bauduin, P. Highlights on the binding of cobalta-bis-(dicarbollide) with glucose units. Chem. Eur. J. 2020, 26, 13935–13947. [Google Scholar] [CrossRef] [PubMed]
- Zaulet, A.; Teixidor, F.; Bauduin, P.; Diat, O.; Hirva, P.; Ofori, A.; Viñas, C. Deciphering the role of the cation in anionic cobaltabisdicarbollide clusters. J. Organomet. Chem. 2018, 865, 214–225. [Google Scholar]
- Fernandez-Alvarez, R.; Nová, L.; Uhlík, F.; Kereïche, S.; Uchman, M.; Košovan, P.; Matějíček, P. Interactions of star-like polyelectrolyte micelles with hydrophobic counterions. J. Colloid Interface Sci. 2019, 546, 371–380. [Google Scholar]
- Rak, J.; Kaplánek, R.; Král, V. Solubilization and deaggregation of cobalt bis(dicarbollide) derivatives in water by biocompatible excipients. Bioorg. Med. Chem. Lett. 2010, 20, 1045–1048. [Google Scholar] [CrossRef] [PubMed]
- Goszczyński, T.M.; Fink, K.; Kowalski, K.; Leśnikowski, Z.J.; Boratyński, J. Interactions of boron clusters and their derivatives with serum albumin. Sci. Rep. 2017, 7, 12. [Google Scholar]
- Assaf, K.I.; Begaj, B.; Frank, A.; Nilam, M.; Mougharbel, A.S.; Kortz, U.; Nekvinda, J.; Grűner, B.; Gabel, D.; Nau, W.M. High-affinity binding of metallacarborane cobalt bis(dicarbollide) anions to cyclodextrins and application to membrane translocation. J. Org. Chem. 2019, 84, 11790–11798. [Google Scholar] [CrossRef]
- Abdelgawwad, A.M.A.; Xavier, J.A.M.; Roca-Sanjuán, D.; Viñas, C.; Teixidor, F.; Francés-Monerris, A. Light-induced on/off switching of the surfactant character of the o-cobaltabis(dicarbollide) anion with no covalent bond alteration. Angew. Chem. Int. Edit. 2021, 60, 25753–25757. [Google Scholar]
- Chazapi, I.; Diat, O.; Bauduin, P. Aqueous solubilization of hydrophobic compounds by inorganic nano-ions: An unconventional mechanism. J. Colloid Interface Sci. 2023, 638, 561–568. [Google Scholar] [CrossRef]
- Rokitskaya, T.I.; Kosenko, I.D.; Sivaev, I.B.; Antonenko, Y.N.; Bregadze, V.I. Fast flip-flop of halogenated cobalt bis(dicarbollide) anion in a lipid bilayer membrane. Phys. Chem. Chem. Phys. 2017, 19, 25122–25128. [Google Scholar] [CrossRef]
- Barba-Bon, A.; Salluce, G.; Lostalé-Seijo, I.; Assaf, K.I.; Hennig, A.; Montenegro, J.; Nau, W.M. Boron clusters as broadband membrane carriers. Nature 2022, 603, 637–642. [Google Scholar] [CrossRef]
- Langella, E.; Esposito, D.; Monti, S.M.; Supuran, C.T.; De Simone, G.; Alterio, V. A combined in silico and structural study opens new perspectives on aliphatic sulfonamides, a still poorly investigated class of ca inhibitors. Biology 2023, 12, 281. [Google Scholar] [CrossRef]
- Chen, Y.; Du, F.K.; Tang, L.Y.; Xu, J.R.; Zhao, Y.S.; Wu, X.; Li, M.X.; Shen, J.; Wen, Q.L.; Cho, C.H.; et al. Carboranes as unique pharmacophores in antitumor medicinal chemistry. Mol. Ther. Oncolytics. 2022, 24, 400–416. [Google Scholar] [PubMed]
- Das, B.C.; Nandwana, N.K.; Das, S.; Nandwana, V.; Shareef, M.A.; Das, Y.; Saito, M.; Weiss, L.M.; Almaguel, F.; Hosmane, N.S.; et al. Boron chemicals in drug discovery and development: Synthesis and medicinal perspective. Molecules 2022, 27, 2615. [Google Scholar] [CrossRef] [PubMed]
- Plešek, J. Potential Applications of the Boron Cluster Compounds. Chem. Rev. 1992, 92, 269–278. [Google Scholar] [CrossRef]
- Zheng, Y.K.; Liu, W.W.; Chen, Y.; Jiang, H.; Yan, H.; Kosenko, I.; Chekulaeva, L.; Sivaev, I.; Bregadze, V.; Wang, X.M. A highly potent antibacterial agent targeting methicillin-resistant staphylococcus aureus based on cobalt bis(1,2-dicarbollide) alkoxy derivative. Organometallics 2017, 36, 3484–3490. [Google Scholar]
- Jefferson, K.K. What drives bacteria to produce a biofilm? FEMS Microbiol. Lett. 2004, 236, 163–173. [Google Scholar] [CrossRef]
- Archer, G.L. Staphylococcus aureus: A Well-Armed Pathogen. Clin. Infect. Dis. 1998, 26, 1179–1181. [Google Scholar] [CrossRef]
- Campodónico, V.L.; Gadjeva, M.; Paradis-Bleau, C.; Uluer, A.; Pier, G.B. Airway epithelial control of pseudomonas aeruginosa infection in cystic fibrosis. Trends. Mol. Med. 2008, 14, 120–133. [Google Scholar] [PubMed]
- Thebault, P.; Lequeux, I.; Jouenne, T. Antibiofilm strategies. J. Wound. Tech. 2013, 21, 36–39. [Google Scholar]
- Vaňková, E.; Lokočová, K.; Maťátková, O.; Křížová, I.; Masák, J.; Grűner, B.; Kaule, P.; Čermák, J.; Šícha, V. Cobalt bis-dicarbollide and its ammonium derivatives are effective antimicrobial and antibiofilm agents. J. Organomet. Chem. 2019, 899, 8. [Google Scholar] [CrossRef]
- Kvasničková, E.; Masák, J.; Čejka, J.; Maťátková, O.; Šícha, V. Preparation, characterization, and the selective antimicrobial activity of N-alkylammonium 8-diethyleneglycol cobalt bis-dicarbollide derivatives. J. Organomet. Chem. 2017, 827, 23–31. [Google Scholar] [CrossRef]
- Popova, T.; Zaulet, A.; Teixidor, F.; Alexandrova, R.; Viñas, C. Investigations on antimicrobial activity of cobaltabisdicarbollides. J. Organomet. Chem. 2013, 747, 229–234. [Google Scholar] [CrossRef]
- Totani, T.; Aono, K.; Yamamoto, K.; Tawara, K. Synthesis and in vitro antimicrobial property of o-carborane derivatives. J. Med. Chem. 1981, 24, 1492–1499. [Google Scholar] [CrossRef]
- Vaňková, E.; Lokočová, K.; Kašparová, P.; Hadravová, R.; Křížová, I.; Mat’átková, O.; Masák, J.; Šícha, V. Cobalt bis-dicarbollide enhances antibiotics action towards staphylococcus epidermidis planktonic growth due to cell envelopes disruption. Pharmaceuticals 2022, 15, 534. [Google Scholar] [CrossRef]
- Druzina, A.A.; Grammatikova, N.E.; Zhidkova, O.B.; Nekrasova, N.A.; Dudarova, N.V.; Kosenko, I.D.; Grin, M.A.; Bregadze, V.I. Synthesis and antibacterial activity studies of the conjugates of curcumin with closo-dodecaborate and cobalt bis(dicarbollide) boron clusters. Molecules 2022, 27, 2920. [Google Scholar] [CrossRef]
- Romero, I.; Martinez-Medina, M.; Camprubí-Font, C.; Bennour, I.; Moreno, D.; Martínez-Martínez, L.; Teixidor, F.; Fox, M.A.; Viñas, C. Metallacarborane assemblies as effective antimicrobial agents, including a highly potent anti-MRSA agent. Organometallics 2020, 39, 4253–4264. [Google Scholar] [CrossRef]
- Swietnicki, W.; Goldeman, W.; Psurski, M.; Nasulewicz-Goldeman, A.; Boguszewska-Czubara, A.; Drab, M.; Sycz, J.; Goszczyński, T.M. Metallacarborane derivatives effective against pseudomonas aeruginosa and yersinia enterocolitica. Int. J. Mol. Sci. 2021, 22, 6762. [Google Scholar] [CrossRef] [PubMed]
- Kosenko, I.; Ananyev, I.; Druzina, A.; Godovikov, I.; Laskova, J.; Bregadze, V.; Studzinska, M.; Paradowska, E.; Leśnikowski, Z.J.; Semioshkin, A. Disubstituted cobalt bis(1,2-dicarbollide)(-I) terminal alkynes: Synthesis, reactivity in the Sonogashira reaction and application in the synthesis of cobalt bis(1,2-dicarbollide)(-I) nucleoside conjugates. J. Organomet. Chem. 2017, 849, 142–149. [Google Scholar] [CrossRef]
- Olusanya, T.O.B.; Haj Ahmad, R.R.; Ibegbu, D.M.; Smith, J.R.; Elkordy, A.A. Liposomal drug delivery systems and anticancer drugs. Molecules 2018, 23, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.T.; Wang, Y.P.; Chen, Y.H.; Lin, C.T.; Li, W.S.; Wu, H.C. Liposomal paclitaxel induces fewer hematopoietic and cardiovascular complications than bioequivalent doses of Taxol. Int. J. Oncol. 2018, 53, 1105–1117. [Google Scholar] [CrossRef] [PubMed]
- Erdelyi, K.E.; Antonets, A.A.; Zhidkova, O.B.; Druzina, A.A.; Nazarov, A.A.; Timofeev, S.V.; Sivaev, I.B.; Bregadze, V.I. Cobalt and iron bis(dicarbollide) conjugates with cholesterol: Synthesis and evaluation of antiproliferative activity. Russ. Chem. Bull. 2023, 72, 1059–1065. [Google Scholar] [CrossRef]
- Dubey, R.D.; Sarkar, A.; Shen, Z.Y.; Bregadze, V.I.; Sivaev, I.B.; Druzina, A.A.; Zhidkova, O.B.; Shmal’ko, A.V.; Kosenko, I.D.; Sreejyothi, P.; et al. Effects of linkers on the development of liposomal formulation of cholesterol conjugated cobalt bis(dicarbollides). J. Pharm. Sci. 2021, 110, 1365–1373. [Google Scholar] [CrossRef]
- Probst, T.U.; Berryman, N.G.; Lemmen, P.; Weissfloch, L.; Auberger, T.; Gabel, D.; Carlsson, J.; Larsson, B. Comparison of inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry with quantitative neutron capture radiography for the determination of boron in biological samples from cancer therapy. J. Anal. At. Spectrom. 1997, 12, 1115–1122. [Google Scholar] [CrossRef]
- Laakso, J.; Kulvik, M.; Ruokonen, I.; Vähätalo, J.; Zilliacus, R.; Färkkilä, M.; Kallio, M. Atomic emission method for total boron in blood during neutron-capture therapy. Clin. Chem. 2001, 47, 1796–1803. [Google Scholar] [CrossRef] [PubMed]
- Linko, S.; Revitzer, H.; Zilliacus, R.; Kortesniemi, M.; Kouri, M.; Savolainen, S. Boron detection from blood samples by ICP-AES and ICP-MS during boron neutron capture therapy. Scand. J. Clin. Lab. Investig. 2008, 68, 696–702. [Google Scholar] [CrossRef]
- Kobayashi, T.; Kanda, K. Microanalysis system of ppm-order 10B concentrations in tissue for neutron capture therapy by prompt gamma-ray spectrometry. Nucl. Instrum. Methods Phys. Res. 1983, 204, 525–531. [Google Scholar] [CrossRef]
- Matsumoto, T.; Aoki, M.; Aizawa, O. Phantom experiment and calculation for in vivo 10boron analysis by prompt gamma ray spectroscopy. Phys. Med. Biol. 1991, 36, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Mukai, K.; Nakagawa, Y.; Matsumoto, K. Prompt gamma ray spectrometry for in vivo measurement of boron-10 concentration in rabbit brain tissue. Neurol. Med. Chir. 1995, 35, 855–860. [Google Scholar] [CrossRef]
- Kashino, G.; Fukutani, S.; Suzuki, M.; Liu, Y.; Nagata, K.; Masunaga, S.I.; Maruhashi, A.; Tanaka, H.; Sakurai, Y.; Kinashi, Y.; et al. A simple and rapid method for measurement of b-10-para-boronophenylalanine in the blood for boron neutron capture therapy using fluorescence spectrophotometry. J. Radiat. Res. 2009, 50, 377–382. [Google Scholar] [CrossRef]
- Efremenko, A.V.; Ignatova, A.A.; Grin, M.A.; Sivaev, I.B.; Mironov, A.F.; Bregadze, V.I.; Feofanov, A.V. Chlorin e(6) fused with a cobalt-bis(dicarbollide) nanoparticle provides efficient boron delivery and photoinduced cytotoxicity in cancer cells. Photochem. Photobiol. Sci. 2014, 13, 92–102. [Google Scholar] [CrossRef]
- Efremenko, A.V.; Ignatova, A.A.; Borsheva, A.A.; Grin, M.A.; Bregadze, V.I.; Sivaev, I.B.; Mironov, A.F.; Feofanov, A.V. Cobalt bis(dicarbollide) versus closo-dodecaborate in boronated chlorin e(6) conjugates: Implications for photodynamic and boron-neutron capture therapy. Photochem. Photobiol. Sci. 2012, 11, 645–652. [Google Scholar]
- Volovetsky, A.; Sukhov, V.; Balalaeva, I.; Dudenkova, V.; Shilyagina, N.; Feofanov, A.; Efremenko, A.; Grin, M.; Mironov, A.; Sivaev, I.; et al. Pharmacokinetics of chlorin e(6)-cobalt bis(dicarbollide) conjugate in balb/c mice with engrafted carcinoma. Int. J. Mol. Sci. 2017, 18, 2556. [Google Scholar] [CrossRef] [PubMed]
- Fedotova, M.K.; Usachev, M.N.; Bogdanova, E.V.; Diachkova, E.; Vasil’ev, Y.; Bregadze, V.I.; Mironov, A.F.; Grin, M.A. Highly purified conjugates of natural chlorin with cobalt bis(dicarbollide) nanoclusters for PDT and BNCT therapy of cancer. Bioengineering 2022, 9, 5. [Google Scholar] [CrossRef]
- Barth, R.F.; Vicente, M.H.; Harling, O.K.; Kiger, W.; Riley, K.J.; Binns, P.J.; Wagner, F.M.; Suzuki, M.; Aihara, T.; Kato, I.; et al. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat. Oncol. 2012, 7, 21. [Google Scholar]
- Grin, M.A.; Titeev, R.A.; Brittal, D.I.; Ulybina, O.V.; Tsiprovskiy, A.G.; Berzina, M.Y.; Lobanova, I.A.; Sivaev, I.B.; Bregadze, V.I.; Mironov, A.F. New conjugates of cobalt bis(dicarbollide) with chlorophyll a derivatives. Mendeleev Commun. 2011, 21, 84–86. [Google Scholar]
- Al-Warhi, T.; Sabt, A.; Elkaeed, E.B.; Eldehna, W.M. Recent advancements of coumarin-based anticancer agents: An up-to-date review. Bioorganic Chem. 2020, 103, 15. [Google Scholar]
- Kosenko, I.; Laskova, J.; Kozlova, A.; Semioshkin, A.; Bregadze, V.I. Synthesis of coumarins modified with cobalt bis (1,2-dicarbolide) and closo-dodecaborate boron clusters. J. Organomet. Chem. 2020, 921, 9. [Google Scholar] [CrossRef]
- Serdyukov, A.; Kosenko, I.; Druzina, A.; Grin, M.; Mironov, A.F.; Bregadze, V.I.; Laskova, J. Anionic polyhedral boron clusters conjugates with 7-diethylamino-4-hydroxycoumarin. Synthesis and lipophilicity determination. J. Organomet. Chem. 2021, 946–947, 121905. [Google Scholar]
- Nuez-Martínez, M.; Pedrosa, L.; Martinez-Rovira, I.; Yousef, I.; Diao, D.; Teixidor, F.; Stanzani, E.; Martínez-Soler, F.; Tortosa, A.; Sierra, À.; et al. Synchrotron-based fourier-transform infrared micro-spectroscopy (SR-FTIRM) fingerprint of the small anionic molecule cobaltabis(dicarbollide) uptake in glioma stem cells. Int. J. Mol. Sci. 2021, 22, 9937. [Google Scholar] [CrossRef] [PubMed]
- Coghi, P.; Li, J.; Hosmane, N.S.; Zhu, Y. Next generation of boron neutron capture therapy (BNCT) agents for cancer treatment. Med. Res. Rev. 2023, 43, 1809–1830. [Google Scholar] [CrossRef]
- Seneviratne, D.S.; Saifi, O.; Mackeyev, Y.; Malouff, T.; Krishnan, S. Next-generation boron drugs and rational translational studies driving the revival of BNCT. Cells 2023, 12, 1398. [Google Scholar]
- Malouff, T.D.; Seneviratne, D.S.; Ebner, D.K.; Stross, W.C.; Waddle, M.R.; Trifiletti, D.M.; Krishnan, S. Boron neutron capture therapy: A review of clinical applications. Front. Oncol. 2021, 11, 351. [Google Scholar]
- Dymova, M.A.; Taskaev, S.Y.; Richter, V.A.; Kuligina, E.V. Boron neutron capture therapy: Current status and future perspectives. Cancer Commun. 2020, 40, 406–421. [Google Scholar] [CrossRef] [PubMed]
- Ishola, T.A.; Chung, D.H. Neuroblastoma. Surg. Oncol. 2007, 16, 149–156. [Google Scholar] [CrossRef]
- Ross, J.A.; Davies, S.M. Screening for neuroblastoma: Progress and pitfalls. Cancer Epidemiol. Biomarkers Prev. 1999, 8, 189–194. [Google Scholar] [PubMed]
- Maris, J.M. Recent advances in neuroblastoma. N. Engl. J. Med. 2010, 362, 2202–2211. [Google Scholar] [CrossRef]
- Peaston, R.T.; Weinkove, C. Measurement of catecholamines and their metabolites. Ann. Clin. Biochem. 2004, 41, 17–38. [Google Scholar] [CrossRef]
- Verly, I.R.N.; van Kuilenburg, A.B.P.; Abeling, N.G.G.M.; Goorden, S.M.I.; Fiocco, M.; Vaz, F.M.; van Noesel, M.M.; Zwaan, C.M.; Kaspers, G.L.; Merks, J.H.M.; et al. Catecholamines profiles at diagnosis: Increased diagnostic sensitivity and correlation with biological and clinical features in neuroblastoma patients. Eur. J. Cancer 2017, 72, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.R.; Gambhir, S.S. Nanomaterials for in vivo imaging. Chem. Rev. 2017, 117, 901–986. [Google Scholar]
- Hong, G.S.; Diao, S.O.; Antaris, A.L.; Dai, H.J. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 2015, 115, 10816–10906. [Google Scholar] [PubMed]
- Ji, D.K.; Ménard-Moyon, C.; Bianco, A. Physically-triggered nanosystems based on two-dimensional materials for cancer theranostics. Adv. Drug Deliv. Rev. 2019, 138, 211–232. [Google Scholar] [PubMed]
- Wang, J.T.W.; Klippstein, R.; Martincic, M.; Pach, E.; Feldman, R.; Šefl, M.; Michel, Y.; Asker, D.; Sosabowski, J.K.; Kalbac, M.; et al. Neutron activated Sm-153 sealed in carbon nanocapsules for in vivo imaging and tumor radiotherapy. ACS Nano 2020, 14, 129–141. [Google Scholar] [CrossRef]
- Ferrer-Ugalde, A.; Sandoval, S.; Pulagam, K.R.; Muñoz-Juan, A.; Laromaine, A.; Llop, J.; Tobias, G.; Núñez, R. Radiolabeled cobaltabis(dicarbollide) anion-graphene oxide nanocomposites for in vivo bioimaging and boron delivery. ACS Appl. Nano Mater. 2021, 4, 1613–1625. [Google Scholar] [CrossRef]
- Pulagam, K.R.; Henriksen-Lacey, M.; Uribe, K.B.; Renero-Lecuna, C.; Kumar, J.; Charalampopoulou, A.; Facoetti, A.; Protti, N.; Gómez-Vallejo, V.; Baz, Z.; et al. In vivo evaluation of multifunctional gold nanorods for boron neutron capture and photothermal therapies. ACS Appl. Mater. Interfaces 2021, 13, 49589–49601. [Google Scholar] [CrossRef]
- Morris, J.H.; Gysling, H.J.; Reed, D. Electrochemistry of boron compounds. Chem. Rev. 1985, 85, 51–76. [Google Scholar] [CrossRef]
- Hao, E.; Zhang, M.; Wenbo, E.; Kadish, K.M.; Fronczek, F.R.; Courtney, B.H.; Vicente, M.G.H. Synthesis and spectroelectrochemistry of N-cobaltacarborane porphyrin conjugates. Bioconjugate Chem. 2008, 19, 2171–2181. [Google Scholar] [CrossRef] [PubMed]
- Nar, I.; Gül, A.; Sivaev, I.B.; Hamuryudan, E. Cobaltacarborane functionalized phthalocyanines: Synthesis, photophysical, electrochemical and spectroelectrochemical properties. Synth. Met. 2015, 210, 376–385. [Google Scholar] [CrossRef]
- Núñez, R.; Tutusaus, O.; Teixidor, F.; Viñas, C.; Sillanpää, R.; Kivekäs, R. Highly stable neutral and positively charged dicarbollide sandwich complexes. Chem. Eur. J. 2005, 11, 5637–5647. [Google Scholar] [CrossRef] [PubMed]
- Fojt, L.; Grűner, B.; Šícha, V.; Nekvinda, J.; Vespalec, R.; Fojta, M. Electrochemistry of icosahedral cobalt bis(dicarbollide) ions and their carbon and boron substituted derivatives in aqueous phosphate buffers. Electrochim. Acta 2020, 342, 136112. [Google Scholar] [CrossRef]
- Shishkanova, T.V.; Sinica, A. Electrochemically deposited cobalt bis(dicarbollide) derivative and the detection of neuroblastoma markers on the electrode surface. J. Electroanal. Chem. 2022, 921, 7. [Google Scholar] [CrossRef]
Compound | Linker, Stereochemistry or Substitution | Ki (CA-II) [nM] | Ki (CA-IX) [nM] | Selectivity Index [a] |
---|---|---|---|---|
95−1 | Mono, C2 | 133.10 ± 15.35 | 0.92 ± 0.28 | 144.2 |
91a− | Mono, C2, Cl2 | 29.85 ± 4.46 | 0.89 ± 0.15 | 33.5 |
91b− | Mono, C3, Cl2 | 8.10 ± 0.86 | 0.10 ± 0.02 | 82.7 |
93a− | C1, rac- | 41.09 ± 6.09 | 0.86 ± 0.12 | 47.6 |
93b− | C2, rac- | 164.90 ± 19.86 | 0.86 ± 0.15 | 191.5 |
94a− | C2, meso- | 74.17 ± 12.67 | 0.37 ± 0.05 | 199.9 |
93c− | C3, rac- | 11.36 ± 1.25 | 0.02 ± 0.003 | 668.2 |
94b− | C3, meso- | 26.76 ± 2.45 | 0.60 ± 0.12 | 44.5 |
93d− | C4, rac- | 10.07 ± 0.61 | 0.29 ± 0.01 | 35.2 |
94c− | C4, meso- | 31.57 ± 3.69 | 0.06 ± 0.01 | 574.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pazderová, L.; Tüzün, E.Z.; Bavol, D.; Litecká, M.; Fojt, L.; Grűner, B. Chemistry of Carbon-Substituted Derivatives of Cobalt Bis(dicarbollide)(1−) Ion and Recent Progress in Boron Substitution. Molecules 2023, 28, 6971. https://doi.org/10.3390/molecules28196971
Pazderová L, Tüzün EZ, Bavol D, Litecká M, Fojt L, Grűner B. Chemistry of Carbon-Substituted Derivatives of Cobalt Bis(dicarbollide)(1−) Ion and Recent Progress in Boron Substitution. Molecules. 2023; 28(19):6971. https://doi.org/10.3390/molecules28196971
Chicago/Turabian StylePazderová, Lucia, Ece Zeynep Tüzün, Dmytro Bavol, Miroslava Litecká, Lukáš Fojt, and Bohumír Grűner. 2023. "Chemistry of Carbon-Substituted Derivatives of Cobalt Bis(dicarbollide)(1−) Ion and Recent Progress in Boron Substitution" Molecules 28, no. 19: 6971. https://doi.org/10.3390/molecules28196971
APA StylePazderová, L., Tüzün, E. Z., Bavol, D., Litecká, M., Fojt, L., & Grűner, B. (2023). Chemistry of Carbon-Substituted Derivatives of Cobalt Bis(dicarbollide)(1−) Ion and Recent Progress in Boron Substitution. Molecules, 28(19), 6971. https://doi.org/10.3390/molecules28196971