Exploring the Efficacy of Benzimidazolone Derivative as Corrosion Inhibitors for Copper in a 3.5 wt.% NaCl Solution: A Comprehensive Experimental and Theoretical Investigation
Abstract
:1. Introduction
2. Result and Discussion
2.1. Chemicals and Synthesis Procedure
2.2. X-ray Structure Description and Optimized Geometry
2.3. Electrochemical Measurement
2.3.1. Potentiodynamic Polarization
2.3.2. Electrochemical Impedance Spectroscopy
2.3.3. Adsorption Isotherm
2.3.4. Temperature Influence
2.3.5. Morphological Study by SEM-EDS
2.4. Results of Density Functional Theory and Molecular Dynamics Simulations
2.4.1. Analysis of Conceptual DFT Indices
2.4.2. MEP Surface
2.4.3. Condensed Fukui Functions
2.5. In Silico Approaches for Environmental Toxicity
2.6. Molecular Dynamics Results
3. Materials and Methods
3.1. Chemistry
Synthesis of CHBI
3.2. X-ray Analysis
3.3. Corrosion Methods
3.3.1. Preparation of Materials
3.3.2. Electrochemical Measurements
3.4. Theoretical Study Computational Details
DFT Study
3.5. Toxicity Approach
3.6. Molecular Dynamic Simulation Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sarkar, T.K.; Saraswat, V.; Mitra, R.K.; Obot, I.B.; Yadav, M. Mitigation of Corrosion in Petroleum Oil Well/Tubing Steel Using Pyrimidines as Efficient Corrosion Inhibitor: Experimental and Theoretical Investigation. Mater. Today Commun. 2021, 26, 101862. [Google Scholar] [CrossRef]
- Sarkar, T.K.; Yadav, M.; Obot, I.B. Mechanistic Evaluation of Adsorption and Corrosion Inhibition Capabilities of Novel Indoline Compounds for Oil Well/Tubing Steel in 15% HCl. Chem. Eng. J. 2022, 431, 133481. [Google Scholar] [CrossRef]
- Hussien, H.; Shahen, S.; Abdel-karim, A.; El-Shamy, O.; Ghayad, I.; Mostfa, N.; Ahmed, N.E.-D. Experimental and Theoretical Evaluations: Green Synthesis of New Organic Compound Bis Ethanethioyl Oxalamide as Corrosion Inhibitor for Copper in 3.5% NaCl. Egypt. J. Chem. 2023, 66, 189–196. [Google Scholar] [CrossRef]
- Verma, C.; Abdellattif, M.H.; Alfantazi, A.; Quraishi, M.A. N-Heterocycle Compounds as Aqueous Phase Corrosion Inhibitors: A Robust, Effective and Economic Substitute. J. Mol. Liq. 2021, 340, 117211. [Google Scholar] [CrossRef]
- Akbay, A.; Ören, İ.; Temiz-Arpacı, Ö.; Akı-Sener, E.; Yalcçın, I. Synthesis and HIV-1 Reverse Transcriptase Inhibitor Activity of Some 2,5,6-Substituted Benzoxazole, Benzimidazole, Benzothiazole and Oxazolo(4,5-b)Pyridine Derivatives. Arzneimittelforschung 2011, 53, 266–271. [Google Scholar] [CrossRef]
- Qiu, J.; Zou, Y.; Li, S.; Yang, L.; Qiu, Z.; Kong, F.; Gu, X. Discovery of Benzimidazole Substituted 1, 2, 4-Oxadiazole Compounds as Novel Anti-HBV Agents with TLR8-Agonistic Activities. Eur. J. Med. Chem. 2022, 244, 114833. [Google Scholar] [CrossRef]
- Sahoo, B.M.; Banik, B.K.; Mazaharunnisa; Rao, N.S.; Raju, B. Microwave Assisted Green Synthesis of Benzimidazole Derivatives and Evaluation of Their Anticonvulsant Activity. CMIC 2019, 6, 23–29. [Google Scholar] [CrossRef]
- Ersan, R.H.; Yuksel, A.; Ertan-Bolelli, T.; Dogen, A.; Burmaoglu, S.; Algul, O. One-pot Synthesis of Novel Benzimidazoles with a Naphthalene Moiety as Antimicrobial Agents and Molecular Docking Studies. J Chin Chem Soc 2021, 68, 374–383. [Google Scholar] [CrossRef]
- Rashid, M.; Husain, A.; Mishra, R. Synthesis of Benzimidazoles Bearing Oxadiazole Nucleus as Anticancer Agents. Eur. J. Med. Chem. 2012, 54, 855–866. [Google Scholar] [CrossRef]
- Karadayi, F.Z.; Yaman, M.; Kisla, M.M.; Keskus, A.G.; Konu, O.; Ates-Alagoz, Z. Design, Synthesis and Anticancer/Antiestrogenic Activities of Novel Indole-Benzimidazoles. Bioorganic Chem. 2020, 100, 103929. [Google Scholar] [CrossRef]
- Tecuapa-Flores, D.; Guadalupe Hernández, J.; Alejandro Reyes Domínguez, I.; Turcio-Ortega, D.; Cruz-Borbolla, J.; Thangarasu, P. Understanding of Benzimidazole Based Ionic Liquid as an Efficient Corrosion Inhibitor for Carbon Steel: Experimental and Theoretical Studies. J. Mol. Liq. 2022, 358, 119204. [Google Scholar] [CrossRef]
- Toukal, L.; Foudia, M.; Haffar, D.; Aliouane, N.; Al-Noaimi, M.; Bellal, Y.; Elmsellem, H.; Abdel-Rahman, I. Monte Carlo Simulation and Electrochemical Performance Corrosion Inhibition Whid Benzimidazole Derivative for XC48 Steel in 0.5 M H2SO4 and 1.0 M HCl Solutions. J. Indian Chem. Soc. 2022, 99, 100634. [Google Scholar] [CrossRef]
- Salcı, A.; Yüksel, H.; Solmaz, R. Experimental Studies on the Corrosion Inhibition Performance of 2-(2-Aminophenyl)Benzimidazole for Mild Steel Protection in HCl Solution. J. Taiwan Inst. Chem. Eng. 2022, 134, 104349. [Google Scholar] [CrossRef]
- Nale, D.B.; Bhanage, B.M. Copper-Catalyzed Efficient Synthesis of a 2-Benzimidazolone Scaffold from 2-Nitroaniline and Dimethyl Carbonate via a Hydrosilylation Reaction. Green Chem. 2015, 17, 2480–2486. [Google Scholar] [CrossRef]
- Rodembusch, F.S.; Buckup, T.; Segala, M.; Tavares, L.; Correia, R.R.B.; Stefani, V. First Hyperpolarizability in a New Benzimidazole Derivative. Chem. Phys. 2004, 305, 115–121. [Google Scholar] [CrossRef]
- Xu, X.; Qu, J.; Huang, H. Synthesis of a Dibenzimidazole Compound and Its Corrosion Inhibition Behavior on AZ91D Mg Alloy in 3.5 Wt.% NaCl Solution. J. Mol. Struct. 2023, 1291, 136065. [Google Scholar] [CrossRef]
- Shi, N.; Li, H.; Li, X.; Luo, H.; Jin, J.; Wang, J.; Li, S. ZIF-8 and Benzimidazole Co-Modified h-BN for Enhancing Anti-Corrosion Performance of Epoxy Coatings. Prog. Org. Coat. 2023, 183, 107808. [Google Scholar] [CrossRef]
- Wang, P.; Xiong, L.; He, Z.; Xu, X.; Hu, J.; Chen, Q.; Zhang, R.; Pu, J.; Guo, L. Synergistic Effect of Imidazoline Derivative and Benzimidazole as Corrosion Inhibitors for Q235 Steel: An Electrochemical, XPS, FT-IR and MD Study. Arab J Sci Eng 2022, 47, 7123–7134. [Google Scholar] [CrossRef]
- Marinescu, M. Recent Advances in the Use of Benzimidazoles as Corrosion Inhibitors. BMC Chem. 2019, 13, 136. [Google Scholar] [CrossRef]
- Eldebss, T.M.A.; Farag, A.M.; Shamy, A.Y.M. Synthesis of Some Benzimidazole-based Heterocycles and Their Application as Copper Corrosion Inhibitors. J. Heterocycl. Chem 2019, 56, 371–390. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Tan, B.; Wang, F.; Du, H.; Liu, R.; Han, X.; Zhang, S. Corrosion Inhibition Effect of Benzimidazole and Two Derivatives on Copper in Alkaline Environments: Experimental and Theoretical Analyses. J. Mol. Liq. 2023, 390, 122985. [Google Scholar] [CrossRef]
- Lgaz, H.; Masroor, S.; Chafiq, M.; Damej, M.; Brahmia, A.; Salghi, R.; Benmessaoud, M.; Ali, I.H.; Alghamdi, M.M.; Chaouiki, A.; et al. Evaluation of 2-Mercaptobenzimidazole Derivatives as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid. Metals 2020, 10, 357. [Google Scholar] [CrossRef]
- Ech-chihbi, E.; Nahlé, A.; Salim, R.; Benhiba, F.; Moussaif, A.; El-Hajjaji, F.; Oudda, H.; Guenbour, A.; Taleb, M.; Warad, I.; et al. Computational, MD Simulation, SEM/EDX and Experimental Studies for Understanding Adsorption of Benzimidazole Derivatives as Corrosion Inhibitors in 1.0 M HCl Solution. J. Alloys Compd. 2020, 844, 155842. [Google Scholar] [CrossRef]
- Fergachi, O.; Benhiba, F.; Rbaa, M.; Ouakki, M.; Galai, M.; Touir, R.; Lakhrissi, B.; Oudda, H.; Touhami, M.E. Corrosion Inhibition of Ordinary Steel in 5.0 M HCl Medium by Benzimidazole Derivatives: Electrochemical, UV–Visible Spectrometry, and DFT Calculations. J Bio Tribo Corros 2019, 5, 21. [Google Scholar] [CrossRef]
- Damej, M.; Benmessaoud, M.; Zehra, S.; Kaya, S.; Lgaz, H.; Molhi, A.; Labjar, N.; El Hajjaji, S.; Alrashdi, A.A.; Lee, H.-S. Experimental and Theoretical Explorations of S-Alkylated Mercaptobenzimidazole Derivatives for Use as Corrosion Inhibitors for Carbon Steel in HCl. J. Mol. Liq. 2021, 331, 115708. [Google Scholar] [CrossRef]
- Sabet Bokati, K.; Dehghanian, C. Adsorption Behavior of 1H-Benzotriazole Corrosion Inhibitor on Aluminum Alloy 1050, Mild Steel and Copper in Artificial Seawater. J. Environ. Chem. Eng. 2018, 6, 1613–1624. [Google Scholar] [CrossRef]
- Singh, A.; Ansari, K.; Quraishi, M.; Lgaz, H. Effect of Electron Donating Functional Groups on Corrosion Inhibition of J55 Steel in a Sweet Corrosive Environment: Experimental, Density Functional Theory, and Molecular Dynamic Simulation. Materials 2018, 12, 17. [Google Scholar] [CrossRef]
- Lgaz, H.; Saha, S.K.; Lee, H.; Kang, N.; Thari, F.Z.; Karrouchi, K.; Salghi, R.; Bougrin, K.; Ali, I.H. Corrosion Inhibition Properties of Thiazolidinedione Derivatives for Copper in 3.5 Wt.% NaCl Medium. Metals 2021, 11, 1861. [Google Scholar] [CrossRef]
- Appa Rao, B.V.; Iqbal, M.Y.; Sreedhar, B. Electrochemical and Surface Analytical Studies of the Self-Assembled Monolayer of 5-Methoxy-2-(Octadecylthio)Benzimidazole in Corrosion Protection of Copper. Electrochim. Acta 2010, 55, 620–631. [Google Scholar] [CrossRef]
- Pareek, S.; Jain, D.; Hussain, S.; Biswas, A.; Shrivastava, R.; Parida, S.K.; Kisan, H.K.; Lgaz, H.; Chung, I.-M.; Behera, D. A New Insight into Corrosion Inhibition Mechanism of Copper in Aerated 3.5 Wt.% NaCl Solution by Eco-Friendly Imidazopyrimidine Dye: Experimental and Theoretical Approach. Chem. Eng. J. 2019, 358, 725–742. [Google Scholar] [CrossRef]
- Khaled, K.F. The Inhibition of Benzimidazole Derivatives on Corrosion of Iron in 1 M HCl Solutions. Electrochim. Acta 2003, 48, 2493–2503. [Google Scholar] [CrossRef]
- Aljourani, J.; Raeissi, K.; Golozar, M.A. Benzimidazole and Its Derivatives as Corrosion Inhibitors for Mild Steel in 1M HCl Solution. Corros. Sci. 2009, 51, 1836–1843. [Google Scholar] [CrossRef]
- Chaouiki, A.; Chafiq, M.; Rbaa, M.; Salghi, R.; Lakhrissi, B.; Ali, I.H.; Bashir, S.; Chung, I.-M. Comprehensive Assessment of Corrosion Inhibition Mechanisms of Novel Benzimidazole Compounds for Mild Steel in HCl: An Experimental and Theoretical Investigation. J. Mol. Liq. 2020, 320, 114383. [Google Scholar] [CrossRef]
- Ech-chihbi, E.; Adardour, M.; Ettahiri, W.; Salim, R.; Ouakki, M.; Galai, M.; Baouid, A.; Taleb, M. Surface Interactions and Improved Corrosion Resistance of Mild Steel by Addition of New Triazolyl-Benzimidazolone Derivatives in Acidic Environment. J. Mol. Liq. 2023, 387, 122652. [Google Scholar] [CrossRef]
- Rossi, A.; Hunger, A.; Kebrle, J.; Hoffmann, K. Benzimidazol-Derivate und verwandte Heterocyclen V. Die Kondensation von o-Phenylendiamin mit aliphatischen und alicyclischen ?-Ketoestern. Helv. Chim. Acta 1960, 43, 1298–1313. [Google Scholar] [CrossRef]
- Ibrahim, S.; Haouas, A.; Al-Ghulikah, H.; Mtiraoui, H.; Jeanneau, E.; Msaddek, M.; Hajji, M. Synthesis and Structure of Polycyclic 1,2,3-Triazolylmethyl-Benzimidazole Derivatives—Experimental and Computational Quantum Chemical Studies. J. Mol. Struct. 2022, 1270, 133978. [Google Scholar] [CrossRef]
- Adardour, M.; Zaballos-García, E.; Loughzail, M.; Dahaoui, S.; Baouid, A. Synthesis, Characterization and X-Ray Structure of Heterocyclic Systems Prepared via 1,3-Dipolar Cycloaddition of Nitrile Oxides with Benzimidazolone. J. Mol. Struct. 2018, 1165, 153–161. [Google Scholar] [CrossRef]
- Antonijević, M.M.; Milić, S.M.; Petrović, M.B. Films Formed on Copper Surface in Chloride Media in the Presence of Azoles. Corros. Sci. 2009, 51, 1228–1237. [Google Scholar] [CrossRef]
- Huang, H.; Wang, Z.; Gong, Y.; Gao, F.; Luo, Z.; Zhang, S.; Li, H. Water Soluble Corrosion Inhibitors for Copper in 3.5 Wt% Sodium Chloride Solution. Corros. Sci. 2017, 123, 339–350. [Google Scholar] [CrossRef]
- Hsissou, R.; Benhiba, F.; Echihi, S.; Benzidia, B.; Cherrouf, S.; Haldhar, R.; Ahmad Alvi, P.; Kaya, S.; Serdaroğlu, G.; Zarrouk, A. Performance of Curing Epoxy Resin as Potential Anticorrosive Coating for Carbon Steel in 3.5% NaCl Medium: Combining Experimental and Computational Approaches. Chem. Phys. Lett. 2021, 783, 139081. [Google Scholar] [CrossRef]
- Hsissou, R.; Benhiba, F.; El Aboubi, M.; Abbout, S.; Benzekri, Z.; Safi, Z.; Rafik, M.; Bahaj, H.; Kaba, M.; Galai, M.; et al. Synthesis and Performance of Two Ecofriendly Epoxy Resins as a Highly Efficient Corrosion Inhibition for Carbon Steel in 1 M HCl Solution: DFT, RDF, FFV and MD Approaches. Chem. Phys. Lett. 2022, 806, 139995. [Google Scholar] [CrossRef]
- Kear, G.; Barker, B.D.; Walsh, F.C. Electrochemical Corrosion of Unalloyed Copper in Chloride Media––a Critical Review. Corros. Sci. 2004, 46, 109–135. [Google Scholar] [CrossRef]
- Ismail, K.M. Evaluation of Cysteine as Environmentally Friendly Corrosion Inhibitor for Copper in Neutral and Acidic Chloride Solutions. Electrochim. Acta 2007, 52, 7811–7819. [Google Scholar] [CrossRef]
- Ansari, K.R.; Quraishi, M.A.; Singh, A. Schiff’s Base of Pyridyl Substituted Triazoles as New and Effective Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solution. Corros. Sci. 2014, 79, 5–15. [Google Scholar] [CrossRef]
- Chauhan, D.S.; Ansari, K.R.; Sorour, A.A.; Quraishi, M.A.; Lgaz, H.; Salghi, R. Thiosemicarbazide and Thiocarbohydrazide Functionalized Chitosan as Ecofriendly Corrosion Inhibitors for Carbon Steel in Hydrochloric Acid Solution. Int. J. Biol. Macromol. 2018, 107, 1747–1757. [Google Scholar] [CrossRef] [PubMed]
- Haque, J.; Srivastava, V.; Chauhan, D.S.; Lgaz, H.; Quraishi, M.A. Microwave-Induced Synthesis of Chitosan Schiff Bases and Their Application as Novel and Green Corrosion Inhibitors: Experimental and Theoretical Approach. ACS Omega 2018, 3, 5654–5668. [Google Scholar] [CrossRef] [PubMed]
- Popova, A.; Raicheva, S.; Sokolova, E.; Christov, M. Frequency Dispersion of the Interfacial Impedance at Mild Steel Corrosion in Acid Media in the Presence of Benzimidazole Derivatives. Langmuir 1996, 12, 2083–2089. [Google Scholar] [CrossRef]
- Popova, A.; Christov, M.; Raicheva, S.; Sokolova, E. Adsorption and Inhibitive Properties of Benzimidazole Derivatives in Acid Mild Steel Corrosion. Corros. Sci. 2004, 46, 1333–1350. [Google Scholar] [CrossRef]
- Jing, C.; Wang, Z.; Gong, Y.; Huang, H.; Ma, Y.; Xie, H.; Li, H.; Zhang, S.; Gao, F. Photo and Thermally Stable Branched Corrosion Inhibitors Containing Two Benzotriazole Groups for Copper in 3.5 Wt% Sodium Chloride Solution. Corros. Sci. 2018, 138, 353–371. [Google Scholar] [CrossRef]
- Solmaz, R.; Kardaş, G.; Çulha, M.; Yazıcı, B.; Erbil, M. Investigation of Adsorption and Inhibitive Effect of 2-Mercaptothiazoline on Corrosion of Mild Steel in Hydrochloric Acid Media. Electrochim. Acta 2008, 53, 5941–5952. [Google Scholar] [CrossRef]
- Idouhli, R.; N’Ait Ousidi, A.; Khadiri, M.E.; Abouelfida, A.; Ait Itto, M.Y.; Auhmani, A.; Benyaich, A. Electrochemical and Theoretical Studies of Some Monoterpenic Thiazolidinones as Corrosion Inhibitors for Steel in Acidic Media. J. Adhes. Sci. Technol. 2021, 35, 1404–1425. [Google Scholar] [CrossRef]
- Yadav, D.; Mishra, S.; Shanker, V.; Haranath, D. Design and Development of Low-Power Driven Hybrid Electroluminescent Lamp from Carbon Nanotube Embedded Phosphor Material. J. Alloys Compd. 2013, 581, 632–635. [Google Scholar] [CrossRef]
- Idouhli, R.; Oukhrib, A.; Koumya, Y.; Abouelfida, A.; Benyaich, A.; Benharref, A. Inhibitory Effect of Atlas Cedar Essential Oil on the Corrosion of Steel in 1 m HCl. Corros. Rev. 2018, 36, 373–384. [Google Scholar] [CrossRef]
- Yoo, S.-H.; Kim, Y.-W.; Chung, K.; Kim, N.-K.; Kim, J.-S. Corrosion Inhibition Properties of Triazine Derivatives Containing Carboxylic Acid and Amine Groups in 1.0 M HCl Solution. Ind. Eng. Chem. Res. 2013, 52, 10880–10889. [Google Scholar] [CrossRef]
- Corrales Luna, M.; Le Manh, T.; Cabrera Sierra, R.; Medina Flores, J.V.; Lartundo Rojas, L.; Arce Estrada, E.M. Study of Corrosion Behavior of API 5L X52 Steel in Sulfuric Acid in the Presence of Ionic Liquid 1-Ethyl 3-Methylimidazolium Thiocyanate as Corrosion Inhibitor. J. Mol. Liq. 2019, 289, 111106. [Google Scholar] [CrossRef]
- Kannan, P.; Jithinraj, P.; Natesan, M. Multiphasic Inhibition of Mild Steel Corrosion in H 2 S Gas Environment. Arab. J. Chem. 2018, 11, 388–404. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, Z.; Zuo, Y.; Chen, Y.; Yang, W.; Xu, B. Ionic Liquids with Two Typical Hydrophobic Anions as Acidic Corrosion Inhibitors. J. Mol. Liq. 2018, 269, 886–895. [Google Scholar] [CrossRef]
- James, A.O.; Iroha, N.B. New Green Inhibitor of Olax Subscorpioidea Root for J55 Carbon Steel Corrosion in 15% HCl: Theoretical, Electrochemical, and Surface Morphological Investigation. Emergent Mater. 2022, 5, 1119–1131. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Tao, G. A Novel and High-Efficiency Inhibitor of 5-(4-Methoxyphenyl)-3h-1,2-Dithiole-3-Thione for Copper Corrosion Inhibition in Sulfuric Acid at Different Temperatures. J. Mol. Liq. 2018, 272, 369–379. [Google Scholar] [CrossRef]
- da Rocha, J.C.; da Cunha Ponciano Gomes, J.A.; D’Elia, E. Corrosion Inhibition of Carbon Steel in Hydrochloric Acid Solution by Fruit Peel Aqueous Extracts. Corros. Sci. 2010, 52, 2341–2348. [Google Scholar] [CrossRef]
- Khadiri, M.; Idouhli, R.; Bennouna, M.A.; Aityoub, A.; Abouelfida, A.; Benyaïch, A. Contribution to Understanding Synergistic Effect of Punica Granatum Extract and Potassium Iodide as Corrosion Inhibitor of S355 Steel. Corros. Rev. 2021, 39, 137–148. [Google Scholar] [CrossRef]
- Idouhli, R.; Koumya, Y.; Khadiri, M.; Aityoub, A.; Abouelfida, A.; Benyaich, A. Inhibitory effect of Senecio anteuphorbium as green corrosion inhibitor for S300 steel. Int. J. Ind. Chem. 2019, 10, 133–143. [Google Scholar] [CrossRef]
- Stanton, J.F. A Chemist’s Guide to Density Functional Theory by Wolfram Koch (German Chemical Society, Frankfurt Am Main) and Max C. Holthausen (Humbolt University Berlin). Wiley-VCH: Weinheim. 2000. Xiv + 294 Pp. $79.95. ISBN 3-527-29918-1. J. Am. Chem. Soc. 2001, 123, 2701. [Google Scholar] [CrossRef]
- SAINT a Program for Integration of Raw X-ray Diffraction Intensities; Bruker AXS: Madison, WI, USA, 2021.
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. SADABS Program for Absorption Correction and Merging of Equivalent Reflections. J. Appl. Cryst. 2015, 48, 3–10. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT, a Dual Space Structure Solution, Program. Acta Crystallographica. 2015, 3–8. [Google Scholar]
- Sheldrick, G.M. SHELXL, a Full-Matrix, Least-Squares Structure Refinement Program. Acta Crystallographica. 2015, 3–8. [Google Scholar]
- Aslam, R. Potentiodynamic Polarization Methods for Corrosion Measurement. In Electrochemical and Analytical Techniques for Sustainable Corrosion Monitoring; Elsevier: Amsterdam, The Netherlands, 2023; pp. 25–37. ISBN 978-0-443-15783-7. [Google Scholar]
- Zhang, M.; Liu, Y.; Li, D.; Cui, X.; Wang, L.; Li, L.; Wang, K. Electrochemical Impedance Spectroscopy: A New Chapter in the Fast and Accurate Estimation of the State of Health for Lithium-Ion Batteries. Energies 2023, 16, 1599. [Google Scholar] [CrossRef]
- Xiong, R.; Tian, J.; Shen, W.; Lu, J.; Sun, F. Semi-Supervised Estimation of Capacity Degradation for Lithium Ion Batteries with Electrochemical Impedance Spectroscopy. J. Energy Chem. 2023, 76, 404–413. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Hada GAUSSIAN 09 R’evision; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Becke, A.D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic-Behavior. Phys. Rev. A 1988, 38, 3098e100. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.H.; Hou, B.S.; Zhang, G.A. Inhibitive and Adsorption Behavior of Thiadiazole Derivatives on Carbon Steel Corrosion in CO2-Saturated Oilfield Produced Water: Effect of Substituent Group on Efficiency. J. Colloid Interface Sci. 2020, 572, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.; Zhang, S.; Qiang, Y.; Li, W.; Li, H.; Feng, L.; Guo, L.; Xu, C.; Chen, S.; Zhang, G. Experimental and Theoretical Studies on the Inhibition Properties of Three Diphenyl Disulfide Derivatives on Copper Corrosion in Acid Medium. J. Mol. Liq. 2020, 298, 111975. [Google Scholar] [CrossRef]
- Oubaaqa, M.; Ouakki, M.; Rbaa, M.; Benhiba, F.; Galai, M.; Idouhli, R.; Maatallah, M.; Jarid, A.; Warad, I.; Lakhrissi, B.; et al. Experimental and Theoretical Investigation of Corrosion Inhibition Effect of Two 8-Hydroxyquinoline Carbonitrile Derivatives on Mild Steel in 1 M HCl Solution. J. Phys. Chem. Solids 2022, 169, 110866. [Google Scholar] [CrossRef]
- Vorberg, S.; Tetko, I.V. Modeling the Biodegradability of Chemical Compounds Using the Online CHEmical Modeling Environment (OCHEM). Mol. Inf. 2014, 33, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, Y.; Li, H.; Zhao, Y. Modeling of the hERG K+ Channel Blockage Using Online Chemical Database and Modeling Environment (OCHEM). Mol. Inf. 2017, 36, 1700074. [Google Scholar] [CrossRef]
Empirical formula | C13H14N2O |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 150 |
a, b, c (Å) | 12.6343(4), 6.4043(2), 13.5951(4) |
α, β, γ (°) | 90, 103.7730(10), 90 |
V (Å3) | 1068.40(6) |
Z Density (g/cm3) | 4 1.332 |
Absorption coefficient | 0.684 mm−1 |
Crystal size (mm) | 0.218 × 0.244 × 0.316 |
F(000) | 456 |
Independent reflections | 2051 [R(int) = 0.0181] |
Data/restraints/parameters | 2051/7/162 |
Goodness-of-fit on F2 | 1.066 |
R indices (all data) | R1 = 0.0338, wR2 = 0.0842 |
Largest diff. peak and hole | 0.210 and −0.155 |
D—H···A | D—H | H···A | D···A | Angle |
---|---|---|---|---|
N2—H2O···O1 i | 0.925(15) | 1.872(15) | 2.7946(11) | 176.1(13) |
C13–H13B···O1 | 0.99 | 2.43 | 3.097(8) | 124 |
Concentration (mol/L) | (mV/SCE) | (mA/cm2) | βa mV/dec | βc mV/dec | % |
---|---|---|---|---|---|
Blank | −146 ± 4 | 0.265 ± 0.007 | 76 ±7 | −435 ± 3 | - |
10−5 | −170 ± 3 | 0.156 ± 0.005 | 69 ± 4 | −403 ± 6 | 41.10 |
5 × 10−5 | −164 ± 5 | 0.135 ± 0.008 | 72 ± 6 | −261 ± 8 | 49.01 |
10−4 | −202 ± 4 | 0.067 ± 0.004 | 67 ± 5 | −358 ± 4 | 74.51 |
10−3 | −195 ± 2 | 0.035 ± 0.003 | 51 ± 8 | −370 ± 9 | 86.47 |
Conc. (mol/L) | (Ω cm2) | (Ω cm2) | (Ω cm2) | (μS em−2) | (μS cm−2) | (Ω cm2) | W (mS cm−2) | % | |
---|---|---|---|---|---|---|---|---|---|
Blank | 3.03 | 402.90 | 516.83 | 0.75 | 137.8 | 521.2 | 926.73 | 455.9 | - |
10−5 | 3.48 | 217.17 | 851.71 | 0.52 | 128.5 | 131.0 | 1068.88 | 279.8 | 13.29 |
5 × 10−5 | 2.72 | 228.64 | 2092 | 0.38 | 76.0 | 71.93 | 2320.64 | 148.9 | 60.06 |
10−4 | 3.73 | 239.77 | 3584 | 0.90 | 21.48 | 97.38 | 3823.77 | 226.3 | 75.76 |
10−3 | 3.12 | 518.14 | 6339 | 0.96 | 14.56 | 28.82 | 6857.14 | 118.6 | 86.49 |
PDP Measurement | EIS Measurement | |||||
---|---|---|---|---|---|---|
R2 | (kJ/mol) | R2 | (kJ/mol) | |||
CHBI | 0.99934 | 37.750 × 103 | −36.044 | 0.99869 | 26.329 × 103 | −35.151 |
Temperature (K) | (mV/SCE) | mA/cm2 | βa mV/dec | βc mV/dec | (%) | |
---|---|---|---|---|---|---|
Blank | 298 | −146 ± 4 | 0.265 ± 0.007 | 76 ± 7 | −435 ± 3 | - |
303 | −165 ± 2 | 0.297 ± 0.006 | 80 ± 4 | −535 ± 6 | - | |
313 | −154 ± 5 | 0.326 ± 0.008 | 62 ± 5 | −695 ± 9 | - | |
323 | −189 ± 2 | 0.381 ± 0.009 | 76 ± 2 | −845 ± 6 | - | |
10−4 M | 298 | −202 ± 4 | 0.067 ± 0.004 | 67 ± 5 | −358 ± 4 | 74.51 |
303 | −169 ± 3 | 0.138 ± 0.003 | 65 ± 6 | −291 ± 3 | 53.31 | |
313 | −180 ± 2 | 0.171 ± 0.006 | 56 ± 3 | −464 ± 1 | 47.48 | |
323 | −165 ± 4 | 0.233 ± 0.001 | 58 ± 1 | −373 ± 5 | 38.88 |
Milieu | (KJ/mol) | (KJ/mol) | (J/mol) |
---|---|---|---|
Blank | 11.00 | 8.43 | −201.05 |
CHBI | 34.95 | 32.39 | −192.54 |
HOMO Energy | −5.736 | |
LUMO Energy | −0.412 | |
HOMO-LUMO Gap energy | 5.325 | |
Ionization Potential | I | 5.736 |
Electron Affinity | A | 0.412 |
Chemical hardness | 2.662 | |
Softness | 0.376 | |
Electronegativity | 3.074 | |
Fraction of electron transfer | ∆N | 0.737 |
Electrophilicity index | 1.775 | |
Electrodonating power | 3.644 | |
Electroaccepting power | ω+ | −1.959 |
Net electrophilicity | ∆ω | 1.686 |
Back-donation | −0.666 |
Atoms | Fukui Indices | Fukui Indices |
---|---|---|
f+ | f− | |
O1 | 0.075 | 0.134 |
N2 | −0.005 | 0.022 |
N3 | 0.014 | 0.029 |
H4 | 0.031 | 0.039 |
C5 | 0.025 | 0.052 |
C6 | 0.122 | 0.028 |
H7 | 0.079 | 0.058 |
C8 | 0.048 | 0.069 |
H9 | 0.068 | 0.068 |
C10 | 0.029 | 0.051 |
H11 | 0.067 | 0.065 |
C12 | 0.133 | 0.028 |
H13 | 0.070 | 0.054 |
C14 | 0.025 | 0.038 |
C15 | 0.033 | 0.045 |
C16 | 0.005 | 0.007 |
C17 | 0.027 | 0.029 |
H18 | 0.027 | 0.030 |
C19 | −0.018 | −0.015 |
H20 | 0.033 | 0.034 |
H21 | 0.025 | 0.033 |
C22 | −0.014 | −0.013 |
H23 | 0.021 | 0.019 |
H24 | 0.030 | 0.032 |
C25 | −0.015 | −0.014 |
H26 | 0.017 | 0.024 |
H27 | 0.019 | 0.018 |
C28 | −0.012 | −0.013 |
H29 | 0.031 | 0.033 |
H30 | 0.011 | 0.016 |
Compound | Log (IGC50) in Log(mmol/L) |
---|---|
CHBI | 0.98 |
Structure | Vacuum | |
---|---|---|
CHBI | Protonated CHBI | |
Total energy | −96.62661 | −146.19694 |
Adsorption energy | −77.08851 | −98.97804 |
Rigid adsorption energy | −69.30039 | −67.35659 |
Deformation energy | −7.78811 | −31.62145 |
CHBI: | −77.08851 | −98.97804 |
Structure | Medium (H2O + NaCl) | |
---|---|---|
CHBI | Protonated CHBI | |
Total energy | −2170.694 | −2372.227 |
Adsorption energy | −2255.320 | −2405.338 |
Rigid adsorption energy | −2255.320 | −2405.338 |
Deformation energy | −7.109143 × | −3.629109 × |
H2O: | 10.83717513 | 6.85686319 |
Na: | −110.930651 | −119.469374 |
Cl: | −111.212166 | −88.177719 |
CHBI: | −65.9181022 | −61.2905344 |
Medium (H2O + NaCl) | ||
---|---|---|
CHBI | Protonated CHBI | |
Einteraction (Kj/mol) | −2081.85161 | −1951.98325 |
Ebinding (Kj/mol) | 2081.85161 | 1951.98325 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adardour, M.; Lasri, M.; Ait Lahcen, M.; Maatallah, M.; Idouhli, R.; Alanazi, M.M.; Lahmidi, S.; Abouelfida, A.; Mague, J.T.; Baouid, A. Exploring the Efficacy of Benzimidazolone Derivative as Corrosion Inhibitors for Copper in a 3.5 wt.% NaCl Solution: A Comprehensive Experimental and Theoretical Investigation. Molecules 2023, 28, 6948. https://doi.org/10.3390/molecules28196948
Adardour M, Lasri M, Ait Lahcen M, Maatallah M, Idouhli R, Alanazi MM, Lahmidi S, Abouelfida A, Mague JT, Baouid A. Exploring the Efficacy of Benzimidazolone Derivative as Corrosion Inhibitors for Copper in a 3.5 wt.% NaCl Solution: A Comprehensive Experimental and Theoretical Investigation. Molecules. 2023; 28(19):6948. https://doi.org/10.3390/molecules28196948
Chicago/Turabian StyleAdardour, Mohamed, Mohammed Lasri, Marouane Ait Lahcen, Mohamed Maatallah, Rachid Idouhli, Mohamed M. Alanazi, Sanae Lahmidi, Abdesselam Abouelfida, Joel T. Mague, and Abdesselam Baouid. 2023. "Exploring the Efficacy of Benzimidazolone Derivative as Corrosion Inhibitors for Copper in a 3.5 wt.% NaCl Solution: A Comprehensive Experimental and Theoretical Investigation" Molecules 28, no. 19: 6948. https://doi.org/10.3390/molecules28196948