Essential Components from Plant Source Oils: A Review on Extraction, Detection, Identification, and Quantification
Abstract
:1. Overview
2. Different Plant Seeds
2.1. Chia Seeds
2.2. Flaxseed
2.3. Pumpkin Seed
2.4. Coriander Seed
2.5. Sunflower Seed
2.6. Safflower Seed
2.7. Clove
2.8. Basil Seed
2.9. Coconut
2.10. Canola Seed
2.11. Rice Bran
2.12. Peanut
2.13. Soybean
2.14. Sesame
2.15. Corn
2.16. Palm
2.17. Berry
2.18. Olive Oil
2.19. Melon Seeds
2.20. Pomegranate
2.21. Mustard Seeds
2.22. Wheat Germ
2.23. Okra Seeds
2.24. Avocado Seed
2.25. Nigella Seeds
2.26. Cotton Seed
2.27. Sea Buckthorn Seeds
2.28. Chaenomeles ssp. Seeds
2.29. Hazelnut Oils
3. Extraction Techniques
3.1. Microwave-Assisted Extraction (MAE)
3.2. Pressurized Liquid Extraction (PLE)
3.3. Cold-Pressed Extraction (CPE)
3.4. Ultrasound-Assisted Extraction (UAE)
3.5. Supercritical Fluid Extraction (SFE)
3.6. Enzyme-Assisted Extraction (EAE)
3.7. Pulsed Electric Field-Assisted Extraction (PEA)
Seed Name | Scientific Name | Oil Content | Extraction Method | Conditions | Efficiency and Yield (%) | Advantages | Disadvantages | References |
---|---|---|---|---|---|---|---|---|
Flax seed | Linum usitatissimum | 35–45% | Microwave-assisted extraction (MAE) | 50% power level heating time 10 s, temperature ranging from 55 to 60 °C | 75% | Higher yield, shorter extraction time, high purity of final product, green technology | High maintenance cost | [190] |
Chia Seed | Salvia hispanica | 25–40% | Pressurized liquid extraction (PLE) | --- | 83% | Highly effective, authenticity, high accuracy | Expensive It needs experienced operator | [191] |
Tomato seed | Solanum lycopersicum | 25% | Cold-pressed extraction (CPE) | The cold pressing set by a 10-mm exit die, and 40 rpm of screw presses at 40 °C | 12.80–9.66% | Simpler, lower operation cost, natural compounds are preserved in cold pressed oils | Oil yield is not high | [192] |
Clove seed | Syzygium aromaticum | 15–20% | Microwave-assisted extraction (MAE) | Extraction tim10 min, power 150 W and temperature 50 to 60 °C | up to 41.8% | Less solvent use, higher extraction yield | Higher cost of instrument | [75] |
Soya been seed | Glycine max | 18–22% | Ultrasound-assisted extraction (UAE) | Power (60, 80, and 100%), sonication time (20, 40, and 60 min), and solvent volume (75, 100, and 125 mL) | 48–84% | Fast, high extraction yield, less solvent use, environmentally friendly | Costly method | [193] |
Avocado | Persea americana | Up to 30% oil | Cold-pressed extraction (CPE) | screw presses at low temperatures (<50 °C) | 60–80% | Fast, less heat and solvent use | Lower productivity | [194] |
Pomegranate seeds | Punica granatum | 7.6–16.2% | Ultrasound-assisted extraction (UAE) | extraction temperature, 20 C; solvent/solid ratio, 20/1; amplitude level, 60%; pulse duration/pulse interval ratio, 5/15. | 59.8% | Shorter extraction times, low energy demands and high extraction rate | Expensive | [195] |
Okra seed | Abelmoschus esculentus | 15.9–20.7% | Cold-pressed extraction (CPE) | --- | 15.92–17% | Less energy requirement, environmentally friendly | Oil yield is not high | [196] |
Coconut | Cocos nucifera | 63–70% | Supercritical-fluid extraction (SFE) | Pressure and temperature ranges of 20.7–34.5 MPa and 40–80 °C | 80–85% | Less solvent use, greater extraction rate, low temperature | Very expensive and complex equipment | [197] |
Melon seed | Psenopsis anomala | 19.4–33.0% | Supercritical carbon dioxide (CO2) extraction | Pressure 44 MPa, temperature (40–50 °C), and extraction time (60–120 min) | 48% | Higher extraction rate, lower environmental impact | Expensive | [198] |
Tea seed | Camellia sinensis | 30–32% | Microwave-assisted extraction (MAE) | Microwave power 440 W at 70 °C for 38 min | 31.52% | Greater extraction rate within a short time, high quality oil, small amounts of solvent use | Higher capital cost | [199] |
Black seed | Nigella sativa L. | 43% | Ultrasound-assisted extraction (UAE) | ultrasound power (150, 200, 250 W), treatment time (15, 30, 45 min) | 39.93% | Very efficient, fast, green techniques | Expensive method of extraction | [200] |
Pumpkin seed | Cucurbita maxima | 10.9–30.9% | Enzymatic-assisted extraction | --- | 36.0% | Less solvent use, shorter extraction times, and greater extraction yield | Higher cost | [201] |
Berry seed | Pericarpium | 11–23% | Supercritical CO2 extraction | Extraction pressure 350 bar, and the extraction temperature 50 °C or 80 °C and extraction time 60 min. | 15% | Green extraction techniques, very fast and efficient, maintains the quality of the final product | Very expensive and complex equipment operating at elevated pressures, high power consumption | [202] |
Cotton seed | Gossypium herbaceum | 15–20% | Ultrasound-assisted extraction | Extraction time 1 h and temperature 45 °C | 38.25% | Fast, efficient, and use of less solvent volumes, few instrumental requirements and less environmental impacts | Low capacity per batch, high power consumption | [203] |
Coriander seed | Coriandrum sativum | 0.1–0.36% | Ultrasound-assisted solvent extraction | sample solvent ratio of 1:13 g/mL, amplitude level of 82%, temperature of 45 °C, and extraction time of 9 min. | 30.75% | Higher extraction rate, shorter extraction time, reduce process costs, more efficient heat flow, lower solvent, | Higher capital cost | [204] |
Sesame seed | Sesamum indicum | 50–60% | Pulsed electric fields-assisted extraction | pulsed electric field strength 13.3 kV/cm and duration time 10 μs | 30–40% | Non-thermal equipment, fast, very efficient, high extraction rate | High capital cost | [205,206] |
Sunflowers seed | Helianthus annuus | 35–42% | Cold-pressed extraction | --- | 33–39% | No impurities, saves energy, fast, and completely preserves the physiologically active substances in the oil | Oil yield is not high, expensive | [207,208] |
Poppy seed | Papaver somniferum | 34.56–44.76% | Cold-pressed Extraction | --- | 40–45% | Reduction of processing time, low temperature | High capital cost | [28] |
Mustard seed | Brassica juncea | 30% | Cold-pressed extraction | diameter of 0.47 mm time 1 min | 64.3% | Higher extraction efficient, time saver | Expensive | [209] |
Olive | Olea europaea | 20–30% | Ultrasound-assisted Extraction | Frequency 60.0 kHz, power 280 W, time 60 min | 7–11% | Less extraction time and more yield at low temperatures | Expensive, lack of uniformity in ultrasound energy | [210] |
Wheat Germ | Triticum aestivum | 7–9% | Supercritical CO2 extraction | Pressure 300 bar, temperature 40 °C, and 8 h time | 9% | Fast, efficient, environmentally friendly method, time saver | Requirement of high pressure, costly method | [211] |
Rice bran | Oryza sativa | 10–23% | Supercritical CO2 extraction | Extraction time 30 min, temperature 40–60 °C, pressure 30 and 40 MPa | 9.2–10.2% | Green extraction, less solvent use and pure extract, low temperature use | Very expensive and complex equipment | [212] |
Rape seed | Brassica napus | 30.6–48.3% | Ultrasound-assisted extraction | Ultrasound power of 400 W, frequency 12 kHz, time 10, 20 or 30 min | 80% | Higher extraction rate, shorter time, less heat and very fast extraction of bioactive compounds | Higher capital cost | [213] |
Moringa seed | Moringa oleifera | 35–45% | Microwave-assisted extraction | Microwave power ranging from 300 to 900 W microwave, time ranging from 5 to 13 min. | 91–94% | Use of low solvent volumes, fast, environmentally friend less time required, more efficient | Expensive | [214] |
Papaya Seed Oil | Carica papaya L. | 29.16% | Enzyme-assisted extraction (EAE) | --- | 78% | Lower solvent consumption, shorter extraction times, and milder condition | Enzymes are relatively expensive and enzyme cannot break down the plant cell walls completely | [215] |
Peanut Seeds | Arachis hypogaea | 50% | Enzyme-assisted extraction (EAE) | Enzyme concentration 2.5%, temperature 40 °C, and time 18 h | 80–90% | Green techniques, low solvent, fast | Costly method | [216] |
Perilla seed | Perilla frutescens L. | 35–45% | Ultrasound-assisted extraction (UAE) | 250 W of ultrasonic power, 30 min of ultrasonic time, and 50 °C of ultrasonic temperature | 81.74% | Higher extraction efficiency, lesser time, and effective for heat sensitive compounds | Decline of power with time, expensive method | [217] |
Corn seed | Zea mays | 3–4% | Enzyme-assisted extraction (EAE) | --- | 80% | Higher extraction yield, higher quality of extract, green extraction, less use of solvent | Expensive, not feasible for some materials | [218] |
4. Methods for Quantification and Detection
4.1. High-Performance Liquid Chromatography (HPLC)
4.2. Gas Chromatography–Mass Spectrometry (GC-MS)
4.3. Fourier Transform Infrared Spectroscopy (FTIR)
4.4. Gas Chromatography-Infrared Spectroscopy (GC-FTIR)
4.5. Atomic Fluorescence Spectroscopy (AFS)
4.6. Electron Microscopy (EM)
5. Essential Components in Oils
5.1. Papaya Seed Oil
5.2. Flaxseed Oil
5.3. Eucalyptus Oil
5.4. Olive Oil
5.5. Camelina Oil
5.6. Grape Oil
5.7. Safflower Oil
5.8. Sunflower Oil
5.9. Sour and Sweet Cheery Oil
5.10. Pumpkin Oil
5.11. Pomegranate Oil
5.12. Palm Oil
5.13. Avocado Oil
5.14. Chia Oil
5.15. Kangar Oil
5.16. Sacha Inchi Oil
5.17. Pistachio Oil
5.18. Cotton Oil
Plant Oil | Fatty Acid Profile | Bioactive Compounds | Vitamin Contents | Health Benefits | References |
---|---|---|---|---|---|
Chia oil | 61% α- Linolenic acid, Oleic acid, palmitic and stearic acids, linoleic acid, | Caffeic acid, chlorogenic acid, querencetin, rosmarinic acid, gallic, cinnamic, myricetin, kaemferol, isoflavones, such as daidzein, glycitein, and genistein, | Vitamin B1 (0.6 mg/100 g), vitamin B2 (0.2 mg/100 g), and niacin (8.8 mg/100 g) | Anti-inflammatory effect, improves cardiovascular disease, decreases cancer risk | [284] |
Palm oil | Oleic acid, linoleic acid, and Palmitic acid in a ratio of 43%, 11%, and 40% also lauric 22%, myristic 10%, and stearic acid 3% | The highest amount of catechin, vanillic acid, luteolin, tyrosol, anthocyanins, and carotenoids | Vitamin E in the form of tocotrienols and tocopherols | Cardiovascular and inflammatory diseases, obesity, and some cancers | [285] |
Sesame oil | 82% unsaturated fatty acids along with a balanced amount of linoleic and oleic acid in sesame seed oil | Sesame seeds contain the lignans sesamolin, sesamin, pinoresinol, and lariciresinol | Sesame oil is full of antioxidants. Along with vitamin E and phytosterols | Lower blood cholesterol and lipid levels, provide anti-inflammatory properties, increase hepatic mitochondrial and neuroprotective effects on brain damage or hypoxia | [286] |
Olive oil | 7.5 to 20.0% palmitic acid, 0.5 to 5.0% stearic acid, 55.0 to 83.0% oleic acid, 3.5 to 21.0% linoleic acid | Contains small quantities of free fatty acids (FFA), glycerol, phosphatides, pigments, flavor compounds, sterols, and microscopic bits of olive | Contains a modest amount of vitamins E and K | Anticancer, anti-angiogenic, and anti-inflammatory properties | [287] |
Eucalyptus oil | 6% α-phellandrene, 12% aromadendrene, 6% α-pinene, 5% globulol, ledene, P-cymen, and β-pinene | Eucalyptol, citronellal, citronellol, citronellyl acetate, p-cymene, eucamalol, limonene, linalool, α-pinene, γ-terpinene | Significant amounts of vitamin B1 with appreciable amounts of vitamins B2, B9, and C | Antibacterial, antiseptic, antioxidant, anti-inflammatory, and anticancer activities | [22,229,231] |
Sunflower oil | Polyunsaturated fatty acids, particularly linoleic acid, monounsaturated fatty acids, especially oleic acid, 15% saturated fatty acids, particularly stearic acid and palmitic acid | Sterol is found in a concentration of 0.24 to 0.26% | Excellent source of vitamin E, providing about 7.4 mg or just under 50% of the daily value set by the FDA | Control cholesterol level, anticancer effect, antifungal action, antidiabetic properties | [69] |
Safflower oil | 6–8% palmitic, 2–3% stearic, 16–20% oleic, and 71–75% linoleic acids | Pinoresinol, vanillin, rutin, trans-chalcone, naringin, and tyrosol | Safflower seed oil had α-tocopherol at 376.6 mg/kg, as the main component also contains fat-soluble vitamins (A, D, E, and K) | Controlling blood parameters and cholesterol levels, preventing bone loss in osteoporosis, safflower oil handled skin issues and acne vulgaris | [82] |
Linseed oils | 57 to 76% of polyunsaturated fatty acids, especially 52% to 60% α-linolenic acid (ALA), 5–6% palmitic acid, 4–5% stearic acid, and 15–20% oleic acid | Manganese, magnesium, phosphorus, and copper | Vitamin B1 (thiamine) | Prevent cardiovascular diseases, antidiabetic, treatment of immune disorders | [82] |
Grape oil | 85–90% polyunsaturated fatty acids, 60 to 70% of linoleic acid, oleic acid also present in lesser amount | Catechins, epicatechins, trans-resveratrol, and procyanidin B1 | Tocopherols and antioxidants | Anticancer activity, antioxidant activity, the role of grape seed oil in cell cycle control, antimicrobial and anti-inflammatory activity | [288,289] |
Camelina oil | 60% of polyunsaturated fatty acids along with 35 to 40% α-linolenic acid, 16.1% of oleic acid, 1.4% saturated fatty acids | Protocatechuic acid, catechin, sinapine, ellagic acid, sinapic acid, rutin, quercetin-3-O-glucoside, glucosinolates, phytic acid, and condensed tannins | Good source of vitamin E and a-tocopherol | Anticancer activity, prevention from cardiovascular diseases, hypertension, and diabetes | [290,291] |
Flax oil | 9–10% of saturated fatty acids (palmitic and stearic), about 20% monounsaturated fatty acids (mainly oleic acid), and more than 70% α-linolenic fatty acids | Ferulic acid, Chlorogenic acid, Gallic acid, Secoisolariciresinol, Limamarin, Laricinesol, Linustatin, Pinoresinol, Neolinustatin, and flavonoids | Niacin, riboflavin, folate, vitamin B6, B12, and vitamin C | Prevention from chronic, cardiovascular, and obesity disorders, and cancer | [292,293] |
Avocado oil | 42% oleic acid, 8% plamitoleic acid, 18% linoleic acid, and 34%, palmitic acid | Condensed tannins (procyanidins type-A and procyanidins type-B), phenolic acids, and flavonoids | 150.6–265.75 mg ascorbic acid and 1.92 mg antioxidant | Inhibit the synthesis of fatty acids and triglycerides in the liver, also inhibit apolipoprotein B in VLDL, control the cholesterol level (in animals) and prevent coronary heart disease (both in animals and humans) | [159,162] |
Papaya oil | Oleic 74.2%, palmitic 14.9%, stearic 5.2%, and linoleic acid 3.5% | Benzyl isothiocyanate (BITC) | Vitamins A, C, and E | Anticarcinogenic activity, decrease cholesterol concentrations, and prevent coronary heart disease | [215] |
Pomegranate oil | 36.0% Punicic acid, 43.9%, oleic, 6.2% linoleic 5.5%, stearic acids, and palmitic 2.4% | 363.6 to 552.7 mg/100 g Sterols and antioxidants | Vitamin E | Anticancer activity (in vitro) | [294,295] |
Pumpkin oil | 73.7% unsaturated fatty acids and 25.0% saturated fatty acids (Linoleic 47.5%, palmitic 17.6%, oleic 25.5%, stearic 7.6%, and linolenic acid 0.7%) | Phytosterols, mainly 24 S ethyl 5 alphacholesta 7, 22E-dien-3 betaol (α spinasterol) | Vitamins tocopherol, carotenoid, vitamins A, D, and K | Prevention or alleviation of prostatic hypertrophy (in animals); phytosterols can not only reduce the prostate mass but also inhibit the synthesis of proteins in the prostate | [296,297] |
Sweet & sour cherry oil | 83.81% unsaturated fatty acids such as linoleic acid 41.5%, oleic acid 35.1%, nervonic acid 4.0%, and eico-sapentenoic acid 2.9%, and 12.2% saturated fatty acids such as stearic acid 3.0% and palmitic acid 9.1% | Antioxidants and polyphenol contents 6.28 mg GAE/kg oil | 428.62 mg/L tocopherols and β-carotene 8.47 mg/L | Control the cholesterol level and prevent cardiovascular diseases | [298,299] |
Kangar oil | Linoleic acid 572.9 ± 4.9 g kg−1, oleic acid 248.4 g kg−1 palmitic acid 97.2 g kg−1, and unsaturated fatty acids | Conjugated dienes, conjugated trienes, carbonyl and anisidine | Tocopherols and antioxidants | Antibacterial, anti-inflammatory, hypolipemic prospective, and hepatoprotective activity | [300,301] |
Sacha inchi oil | Polyunsaturated fatty acids (85%) such as 33.5% of linoleic acid and 44% of linolenic acid | Terpenoids, saponins, and phenolic compounds (flavonoids) | Vitamin E, polyphenols, and minerals | Antibacterial, anti-inflammatory, skin tightening, anti-aging effects, and anticancer | [302] |
Pistachio oil | Palmitic acid 19.44%, linoleic acid 13.57%, and oleic acid 63.55% | Polyphenols, antioxidants, and flavonoids | Vitamin E (tocopherols) and higher concentrations of natural antioxidants such as tocotrienols | Anticancer, antidiabetic, lowers cholesterol level, and improvement in liver functions | [303,304] |
Cotton oil | Linoleic acid 54.4%, oleic acid 18.6%, and palmitic acid 21.6% | Sterols, resins, phospholipids, pesticides, carbohydrates, and gossypol | Flavonoids, 70% tocopherols | Anti-inflammatory and cardio-protective properties | [283] |
6. Therapeutic Properties and Functional Applications of Seed Oils
Fatty Acids and Their Types | Seed Sources | Other Sources | Therapeutic Uses | Recommended Dietary Allowance (RDA)/Day | References |
---|---|---|---|---|---|
Omega-3 (ALA-alpha linolenic acid, EPA-eicosapentaenoic acid, and DHA-docosahexaenoic acid) Essential fatty acids | Chia seed oil, linseed oil, walnut oil, borage oil, evening primrose oil, olive oil, flaxseed oil, navy bean oil, and pecan oil | Cold water salmon, leafy green vegetables, winter squash, kidney beans, tofu, oysters, seafood, brussels sprouts, muskmelons, berries, and avocados | Improving heart health by managing cholesterol, triglycerides, and blood pressure levels, supporting mental health, builds cellular membranes in brain, prevent depression, help in weight reduction especially waist size, lowering liver fat, supporting infant brain development, preventing blood clotting, and fighting inflammation | Males: 1.6 g Females: 1.1 g | [307,310] |
Omega-6 (linoleic acid, GLA-gamma-linolenic acid, AA-arachidonic acid, and CLA-conjugated linoleic acid) Essential fatty acids | Grapeseed oil, corn oil, walnut oil, cottonseed oil, soybean oil, sesame oil, peanut oil, olive seed oil, borage oil, evening primrose oil, almond oil, flaxseed oil, pistachio oil, pecan seed oil, sunflower oil, and pumpkin seed oil | Duck fat, chicken fat, bacon grease, goose fat, eggs, popcorn (air popped), corn, chicken liver, cooked carrots, beef tallow, butter, brown rice, beef liver, and whole wheat flour | Reduces inflammation, reduces excessive fat mass from organs at cellular levels, play key role in immune system by boosting immunity and keeps immune cells safe from foreigners, regulates brain functioning, regulates growth and development, maintains reproductive system, and maintains healthy bones | Males = 17 g Females = 12 g | [311,312] |
Omega-7 (Palmitoleic acid, rumenic acid, and vaccinic acid) Non-essential fatty acids | Macadamia nuts (seed oil) and sea buckthorn seed oil | Salmon, anchovies, and avocado | Lipokine activity improves digestion, improves liver health at the cellular level, boosts collagen production, influences healthy fat metabolism, encourages healthy eye lubrication and tear production, and reduces insulin resistance | About 2.5 g | [313,314,315] |
Omega-9 (OA-Oleic acid) Non-essential fatty acids | Olive seed oil, cashew nut oil, almond oil, and peanut oil | Avocado, animal liver, and seafood | Improved insulin sensitivity, decreased inflammation, and improves joint health and healing | --- | [316,317,318] |
7. Cosmetics Properties
8. Contraindications of Omega (ω) Fatty Acids
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- De Falco, B.; Amato, M.; Lanzotti, V. Chia seeds products: An overview. Phytochem. Rev. 2017, 16, 745–760. [Google Scholar] [CrossRef]
- Khalid, W.; Arshad, M.S.; Aziz, A.; Rahim, M.A.; Qaisrani, T.B.; Afzal, F. Chia seeds (Salvia hispanica L.): A therapeutic weapon in metabolic disorders. Food Sci. Nutr. 2023, 11, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Shekhara, N.; Anurag, A.; Prakruthi, M.; Mahesh, M. Flax Seeds (Linum usitatissimmum): Nutritional composition and health benefits. IP J. Nutr. Metab. Health Sci. 2020, 3, 35–40. [Google Scholar] [CrossRef]
- Dotto, J.M.; Chacha, J.S. The potential of pumpkin seeds as a functional food ingredient: A review. Sci. Afr. 2020, 10, e00575. [Google Scholar] [CrossRef]
- Bellaloui, N.; Stetina, S.R.; Turley, R.B. Cottonseed protein, oil, and mineral status in near-isogenic Gossypium hirsutum cotton lines expressing fuzzy/linted and fuzzless/linted seed phenotypes under field conditions. Front. Plant Sci. 2015, 6, 137. [Google Scholar] [CrossRef]
- Beyzi, E.; Karaman, K.; Gunes, A.; Beyzi, S.B. Change in some biochemical and bioactive properties and essential oil composition of coriander seed (Coriandrum sativum L.) varieties from Turkey. Ind. Crops Prod. 2017, 109, 74–78. [Google Scholar] [CrossRef]
- Malik, M.A.; Saini, C.S. Engineering properties of sunflower seed: Effect of dehulling and moisture content. Cogent Food Agric. 2016, 2, 1145783. [Google Scholar] [CrossRef]
- Nosheen, A.; Bano, A.; Yasmin, H.; Keyani, R.; Habib, R.; Shah, S.T. Protein quantity and quality of safflower seed improved by NP fertilizer and Rhizobacteria (Azospirillum and Azotobacter spp.). Front. Plant Sci. 2016, 7, 104. [Google Scholar] [CrossRef]
- Diego, C.-R.F.; Wanderley, O.P. Clove (Syzygium aromaticum): A precious spice. Asian Pac. J. Trop. Biomed. 2014, 4, 90–96. [Google Scholar] [CrossRef]
- Naji-Tabasi, S.; Razavi, S.M.A. Functional properties and applications of basil seed gum: An overview. Food Hydrocoll. 2017, 73, 313–325. [Google Scholar] [CrossRef]
- Kumari, A.; Paul, S.; Sharma, V. Genetic diversity analysis using RAPD and ISSR markers revealed discrete genetic makeup in relation to fibre and oil content in Linum usitatissimum L. genotypes. Nucleus 2018, 61, 45–53. [Google Scholar] [CrossRef]
- Ojobor, C.; Anosike, C.; Ezeanyika, L. Evaluation of Phytochemical, Proximate and Nutritive Potentials of (Coconut) Seeds Cocos nucifera. J. Exp. Res. 2018, 6, 11–18. [Google Scholar]
- Iqbal, W.; Afridi, M.Z.; Jamal, A.; Mihoub, A.; Saeed, M.F.; Székely, Á. Canola seed priming and its effect on gas exchange, chlorophyll photobleaching, and enzymatic activities in response to salt stress. Sustainability 2022, 14, 9377. [Google Scholar] [CrossRef]
- Sohail, M.; Rakha, A.; Butt, M.S.; Iqbal, M.J.; Rashid, S. Rice bran nutraceutics: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2017, 57, 3771–3780. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, J.; Du, F. Potential use of peanut by-products in food processing: A review. J. Food Sci. Technol. 2012, 49, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, P.; Wang, D.; Shannon, G.; Zeng, A.; Orazaly, M. Identification and mapping of stable QTL for protein content in soybean seeds. Mol. Breed. 2015, 35, 92. [Google Scholar] [CrossRef]
- Zhou, L.; Lin, X.; Abbasi, A.M.; Zheng, B. Phytochemical contents and antioxidant and antiproliferative activities of selected black and white sesame seeds. BioMed Res. Int. 2016, 2016, 8495630. [Google Scholar] [CrossRef]
- Batal, A.B.; Dale, N.M.; Saha, U.K. Mineral composition of corn and soybean meal. J. Appl. Poult. Res. 2010, 19, 361–364. [Google Scholar] [CrossRef]
- Guerin, C.; Serret, J.; Montúfar, R.; Vaissayre, V.; Bastos-Siqueira, A.; Durand-Gasselin, T. Palm seed and fruit lipid composition: Phylogenetic and ecological perspectives. Ann. Bot. 2020, 125, 157–172. [Google Scholar] [CrossRef]
- Gustinelli, G.; Eliasson, L.; Svelander, C.; Andlid, T.; Lundin, L.; Ahrné, L. Supercritical fluid extraction of berry seeds: Chemical composition and antioxidant activity. J. Food Qual. 2018, 2018, 6046074. [Google Scholar] [CrossRef]
- Al-Asmari, K.; Al-Attar, A.; Mohamed, I.; Zeid, A. Potential health benefits and components of olive oil: An overview. Biosci. Res. 2020, 17, 2673–2687. [Google Scholar]
- Vecchio, M.G.; Loganes, C.; Minto, C. Beneficial and healthy properties of Eucalyptus plants: A great potential use. Open Agric. J. 2016, 10, 52–57. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Bhuyan, D.J.; Punia, S.; Grasso, S.; Sa, A.G.A. Tomato (Solanum lycopersicum L.) seed: A review on bioactives and biomedical activities. Biomed. Pharmacother. 2021, 142, 112018. [Google Scholar] [CrossRef]
- Demirbas, A. Tea seed upgrading facilities and economic assessment of biodiesel production from tea seed oil. Energy Convers. Manag. 2010, 51, 2595–2599. [Google Scholar] [CrossRef]
- Khalid, W.; Ikram, A.; Rehan, M.; Afzal, F.; Ambreen, S.; Ahmad, M. Chemical composition and health benefits of melon seed: A Review. PJAR 2021, 34, 309–317. [Google Scholar] [CrossRef]
- Zarfeshany, A.; Asgary, S.; Javanmard, S.H. Potent health effects of pomegranate. Adv. Biomed. Res. 2014, 3, 100. [Google Scholar] [CrossRef]
- Grygier, A. Mustard seeds as a bioactive component of food. Food Rev. Int. 2022, 39, 4088–4101. [Google Scholar] [CrossRef]
- Melo, D.; Álvarez-Ortí, M.; Nunes, M.A.; Espírito Santo, L.; Machado, S.; Pardo, J.E. Nutritional and Chemical Characterization of Poppy Seeds, Cold-Pressed Oil, and Cake: Poppy Cake as a High-Fibre and High-Protein Ingredient for Novel Food Production. Foods 2022, 11, 3027. [Google Scholar] [CrossRef] [PubMed]
- Liaqat, H.; Jeong, E.; Kim, K.J.; Kim, J.Y. Effect of wheat germ on metabolic markers: A systematic review and meta-analysis of randomized controlled trials. Food Sci. Biotechnol. 2020, 29, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Gemede, H.F.; Ratta, N.; Haki, G.D.; Woldegiorgis, A.Z.; Beyene, F. Nutritional quality and health benefits of okra (Abelmoschus esculentus): A review. J. Food Process Technol. 2015, 6, 2. [Google Scholar] [CrossRef]
- Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Moringa oleifera seeds and oil: Characteristics and uses for human health. Int. J. Mol. Sci. 2016, 17, 2141. [Google Scholar] [CrossRef]
- Krist, S.; Krist, S. Borneo Tallow Nut Oil. In Vegetable Fats and Oils; Springer: Cham, Switzerland, 2020; pp. 153–157. [Google Scholar]
- Lakkab, I.; Hajaji, H.E.; Lachkar, N.; Bali, B.E.; Lachkar, M.; Ciobica, A. Phytochemistry, bioactivity: Suggestion of Ceratonia siliqua L. as neurodegenerative disease therapy. J. Complement. Integr. Med. 2018, 15, 20180013. [Google Scholar] [CrossRef] [PubMed]
- Ran, M.; Chen, C.; Li, C.; He, L.; Zeng, X. Effects of replacing fat with Perilla seed on the characteristics of meatballs. Meat Sci. 2020, 161, 107995. [Google Scholar] [CrossRef]
- Bhattacharya, S. Milk thistle seeds in health. In Nuts and Seeds in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2020; pp. 429–438. [Google Scholar]
- Mahdavi, R.; Heshmati, J.; Namazi, N. Effects of black seeds (Nigella sativa) on male infertility: A systematic review. J. Herb. Med. 2015, 5, 133–139. [Google Scholar] [CrossRef]
- Vega-Castro, O.; Ramírez, M.; Blandón-Mena, L.; Contreras-Calderón, J.; Mesías, M.; Delgado-Andrade, C. Characterization and application of a coating of starch extracted from avocado (Persea americana L. cv. Hass) seeds as an alternative to reduce acrylamide content in French fries. Food Sci. Biotechnol. 2022, 31, 1547–1558. [Google Scholar] [CrossRef] [PubMed]
- Lavenburg, V.M.; Rosentrater, K.A.; Jung, S. Extraction methods of oils and phytochemicals from seeds and their environmental and economic impacts. Processes 2021, 9, 1839. [Google Scholar] [CrossRef]
- Zahari, N.A.A.R.; Chong, G.H.; Abdullah, L.C.; Chua, B.L. Ultrasonic-assisted extraction (UAE) process on thymol concentration from Plectranthus amboinicus leaves: Kinetic modeling and optimization. Processes 2020, 8, 322. [Google Scholar] [CrossRef]
- Eskilsson, C.S.; Björklund, E. Analytical-scale microwave-assisted extraction. J. Chromatogr. A 2000, 902, 227–250. [Google Scholar] [CrossRef]
- Goti, D.; Dasgupta, S. A comprehensive review of conventional and non-conventional solvent extraction techniques. J. Pharmacogn. Phytochem. 2023, 12, 202–211. [Google Scholar] [CrossRef]
- Kim, J.; Choi, K.; Chung, D. Sample Preparation for Capillary Electrophoretic Applications; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Cheng, X.; Bi, L.; Zhao, Z.; Chen, Y. Advances in enzyme assisted extraction of natural products. In Proceedings of the 3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 2015), Guangzhou, China, 27–28 June 2015; Atlantis Press: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Swartz, M. HPLC detectors: A brief review. J. Liq. Chromatogr. Relat. Technol. 2010, 33, 1130–1150. [Google Scholar] [CrossRef]
- Karasek, F.W.; Clement, R.E. Basic Gas Chromatography-Mass Spectrometry: Principles and Techniques; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Coskun, O. Separation techniques: Chromatography. North. Clin. Istanb. 2016, 3, 156. [Google Scholar] [CrossRef] [PubMed]
- Leclercq, L.; Meyers, R. Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; ISBN 978-0-470-97333-2. [Google Scholar]
- Nurrulhidayah, A.F.; Che Man, Y.B.; Al-Kahtani, H.A.; Rohman, A. Application of FTIR spectroscopy coupled with chemometrics for authentication of Nigella sativa seed oil. Spectroscopy 2011, 25, 243–250. [Google Scholar] [CrossRef]
- Aaserud, D.J.; Prokai, L.; Simonsick, W.J. Gel permeation chromatography coupled to Fourier transform mass spectrometry for polymer characterization. Anal. Chem. 1999, 71, 4793–4799. [Google Scholar] [CrossRef]
- Zou, Z.; Deng, Y.; Hu, J.; Jiang, X.; Hou, X. Recent trends in atomic fluorescence spectrometry towards miniaturized instrumentation—A review. Anal. Chim. Acta 2018, 1019, 25–37. [Google Scholar] [CrossRef]
- Goldsmith, C.S.; Miller, S.E. Modern uses of electron microscopy for detection of viruses. Clin. Microbiol. Rev. 2009, 22, 552–563. [Google Scholar] [CrossRef]
- Kondrlova, E.; Igaz, D.; Horak, J. Effect of calculation models on particle size distribution estimated by laser diffraction. J. Ege Univ. Fac. Agric. Spec. 2015, 21–27, 1018–8851. [Google Scholar]
- Graziani, G.; Gaspari, A.; Chianese, D.; Conte, L.; Ritieni, A. Direct determination of 3-chloropropanol esters in edible vegetable oils using high resolution mass spectrometry (HRMS-Orbitrap). Food Addit. Contam. Part A 2017, 34, 1893–1903. [Google Scholar]
- Zhang, R.; Song, B.; Yuan, J. Bioanalytical methods for hypochlorous acid detection: Recent advances and challenges. TrAC Trends Anal. Chem. 2018, 99, 1–33. [Google Scholar] [CrossRef]
- Grancieri, M.; Martino, H.S.D.; Gonzalez de Mejia, E. Chia seed (Salvia hispanica L.) as a source of proteins and bioactive peptides with health benefits: A review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 480–499. [Google Scholar] [CrossRef]
- Subash-Babu, P.; Al-Saran, N.M.; Alshammari, G.; Naif Al-Harbi, L.; Hussain Alhussain, M.; Shamlan, G. Evaluation of Biosafety, Antiobesity, and Endothelial Cells Proliferation Potential of Basil Seed Extract Loaded Organic Solid Lipid Nanoparticle. Front. Pharmacol. 2021, 12, 722258. [Google Scholar] [CrossRef] [PubMed]
- Kulczyński, B.; Kobus-Cisowska, J.; Taczanowski, M.; Kmiecik, D.; Gramza-Michałowska, A. The chemical composition and nutritional value of chia seeds—Current state of knowledge. Nutrients 2019, 11, 1242. [Google Scholar] [CrossRef] [PubMed]
- Rahim, M.A.; Imran, M.; Khan, M.K.; Ahmad, M.H.; Ahmad, R.S. Impact of spray drying operating conditions on encapsulation efficiency, oxidative quality, and sensorial evaluation of chia and fish oil blends. J. Food Process. Preserv. 2022, 46, e16248. [Google Scholar] [CrossRef]
- Patel, K.; Mangu, S.R.; Sukhdeo, S.V.; Sharan, K. Ethanolic extract from the root and leaf of Sida cordifolia promotes osteoblast activity and prevents ovariectomy-induced bone loss in mice. Phytomedicine 2022, 99, 154024. [Google Scholar] [CrossRef]
- Webster, R.; Salam, A.; De Silva, H.A.; Selak, V.; Stepien, S.; Rajapakse, S. Fixed low-dose triple combination antihypertensive medication vs usual care for blood pressure control in patients with mild to moderate hypertension in Sri Lanka: A randomized clinical trial. JAMA 2018, 320, 566–579. [Google Scholar] [CrossRef]
- Marambe, H.; Wanasundara, J. Protein from flaxseed (Linum usitatissimum L.). In Sustainable Protein Sources; Elsevier: Amsterdam, The Netherlands, 2017; pp. 133–144. [Google Scholar]
- Abou-Zeid, R.E.; Dacrory, S.; Ali, K.A.; Kamel, S. Novel method of preparation of tricarboxylic cellulose nanofiber for efficient removal of heavy metal ions from aqueous solution. Int. J. Biol. Macromol. 2018, 119, 207–214. [Google Scholar] [CrossRef]
- Amin, M.Z.; Islam, T.; Mostofa, F.; Uddin, M.J.; Rahman, M.; Satter, M.A. Comparative assessment of the physicochemical and biochemical properties of native and hybrid varieties of pumpkin seed and seed oil (Cucurbita maxima Linn.). Heliyon 2019, 5, e02994. [Google Scholar] [CrossRef]
- Niazi, M.K.; Hassan, F.H.; Ashfaq, J.; Ejaz, F.; Aamir, Z.; Imran, S. Nutritional and Potential Health Effect of Pumpkin seeds: Health Effect of Pumpkin seeds. Pak. BioMed. J. 2022, 17–21. [Google Scholar] [CrossRef]
- Fornara, P.; Madersbacher, S.; Vahlensieck, W.; Bracher, F.; Romics, I.; Kil, P. Phytotherapy adds to the therapeutic armamentarium for the treatment of mild-to-moderate lower urinary tract symptoms in men. Urol. Int. 2020, 104, 333–342. [Google Scholar] [CrossRef]
- Imran, M.; Khan, M.K.; Ahmad, M.H.; Ahmad, R.S.; Anwar, H.; Nadeem, M. Composition and Functionality of Agriculture Waste from Coriander Plant. In Handbook of Coriander (Coriandrum Sativum); CRC Press: Boca Raton, FL, USA, 2023; pp. 303–308. [Google Scholar]
- Ashraf, R.; Ghufran, S.; Akram, S.; Mushtaq, M.; Sultana, B. Cold pressed coriander (Coriandrum sativum L.) seed oil. In Cold Pressed Oils; Academic Press: Cambridge, MA, USA, 2020; pp. 345–356. [Google Scholar]
- Shashidhar, M.; Giridhar, P.; Sankar, K.U.; Manohar, B. Bioactive principles from Cordyceps sinensis: A potent food supplement–A review. J. Funct. Foods 2013, 5, 1013–1030. [Google Scholar] [CrossRef]
- Guo, S.; Ge, Y.; Na Jom, K. A review of phytochemistry, metabolite changes, and medicinal uses of the common sunflower seed and sprouts (Helianthus annuus L.). Chem. Cent. J. 2017, 11, 95. [Google Scholar] [CrossRef]
- Premnath, A.; Narayana, M.; Ramakrishnan, C.; Kuppusamy, S.; Chockalingam, V. Mapping quantitative trait loci controlling oil content, oleic acid and linoleic acid content in sunflower (Helianthus annuus L.). Mol. Breed. 2016, 36, 106. [Google Scholar] [CrossRef]
- Bester, D.; Esterhuyse, A.J.; Truter, E.J.; Van Rooyen, J. Cardiovascular effects of edible oils: A comparison between four popular edible oils. Nutr. Res. Rev. 2010, 23, 334–348. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Nadeem, M.; Imran, M.; Gulzar, N.; Ahmad, M.H.; Tayyab, M. Impact of safflower oil derived conjugated linoleic acid supplementation on fatty acids profile, lipolysis and sensory properties of cheddar cheese. Int. J. Food Prop. 2022, 25, 2223–2236. [Google Scholar] [CrossRef]
- Ahmadzadeh, S.; Azadmard Damirchi, S.; Valizadeh, H.; Peighambardoust, S.H. Production of chitosan–gallic acid nanogel and its application in sunflower oil oxidative stability. Iran. J. Biosyst. Eng. 2018, 49, 121–128. [Google Scholar] [CrossRef]
- Gecgel, U.; Demirci, M.; Esendal, E.; Tasan, M. Fatty acid composition of the oil from developing seeds of different varieties of safflower (Carthamus tinctorius L.). J. Am. Oil Chem. Soc. 2007, 84, 47–54. [Google Scholar] [CrossRef]
- Hossen Jenia, S. Study on Nutritional Composition, Bioactive Compounds, Antioxidant and Antimicrobial Activity of the Clove (Syzygium Aromaticum); Chattogram Veterinary and Animal Sciences University: Chattogram, Bangladesh, 2019. [Google Scholar]
- Burt, S.A.; Reinders, R.D. Antibacterial activity of selected plant essential oils against Escherichia coli O157: H7. Lett. Appl. Microbiol. 2003, 36, 162–167. [Google Scholar] [CrossRef]
- Elujoba, A.A.; Odeleye, O.; Ogunyemi, C. Traditional medicine development for medical and dental primary health care delivery system in Africa. Afr. J. Tradit. Complement. Altern. Med. 2005, 2, 46–61. [Google Scholar] [CrossRef]
- Bilal, A.; Jahan, N.; Ahmed, A.; Bilal, S.N.; Habib, S.; Hajra, S. Phytochemical and pharmacological studies on Ocimum basilicum Linn—A review. Int. J. Curr. Res. Rev. 2012, 4, 73–83. [Google Scholar]
- Zamani Ghaleshahi, A.; Ezzatpanah, H.; Rajabzadeh, G.; Ghavami, M. Comparison and analysis characteristics of flax, perilla and basil seed oils cultivated in Iran. J. Food Sci. Technol. 2020, 57, 1258–1268. [Google Scholar] [CrossRef]
- Gajendiran, A.; Thangaraman, V.; Thangamani, S.; Ravi, D.; Abraham, J. Antimicrobial, antioxidant and anticancer screening of Ocimum basilicum seeds. Bull. Pharm. Res. 2016, 6, 114–119. [Google Scholar] [CrossRef]
- Mostafavi, S.; Asadi-Gharneh, H.A.; Miransari, M. The phytochemical variability of fatty acids in basil seeds (Ocimum basilicum L.) affected by genotype and geographical differences. Food Chem. 2019, 276, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, V.; Abidi, A.; Marker, S.; Bilal, S. Linseed and linseed oil: Health benefits—A review. Int. J. Pharm. Biol. Sci. 2013, 3, 434–442. [Google Scholar]
- Singh, S.; Malhotra, M.; Majumdar, D. Antibacterial activity of Ocimum sanctum L. fixed oil. NISCAIR-CSI 2005, 43, 835–837. [Google Scholar]
- Mabood, F.; Gilani, S.A.; Hussain, J.; Alshidani, S.; Alghawi, S.; Albroumi, M. New design of experiment combined with UV–Vis spectroscopy for extraction and estimation of polyphenols from Basil seeds, Red seeds, Sesame seeds and Ajwan seeds. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 178, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Deen, A.; Visvanathan, R.; Wickramarachchi, D.; Marikkar, N.; Nammi, S.; Jayawardana, B.C. Chemical composition and health benefits of coconut oil: An overview. J. Sci. Food Agric. 2021, 101, 2182–2193. [Google Scholar] [CrossRef] [PubMed]
- Appaiah, P.; Sunil, L.; Prasanth Kumar, P.; Gopala Krishna, A. Composition of coconut testa, coconut kernel and its oil. J. Am. Oil Chem. Soc. 2014, 91, 917–924. [Google Scholar] [CrossRef]
- Marina, A.; Che Man, Y.; Nazimah, S.; Amin, I. Chemical properties of virgin coconut oil. J. Am. Oil Chem. Soc. 2009, 86, 301–307. [Google Scholar] [CrossRef]
- Bhatnagar, A.S.; Prasanth Kumar, P.; Hemavathy, J.; Gopala Krishna, A. Fatty acid composition, oxidative stability, and radical scavenging activity of vegetable oil blends with coconut oil. J. Am. Oil Chem. Soc. 2009, 86, 991–999. [Google Scholar] [CrossRef]
- Marina, A.; Man, Y.C.; Amin, I. Virgin coconut oil: Emerging functional food oil. Trends Food Sci. Technol. 2009, 20, 481–487. [Google Scholar] [CrossRef]
- Przybylski, R.; Mag, T.; Eskin, N.; McDonald, B. Canola oil. Bailey’s Ind. Oil Fat Prod. 2005, 2, 61–122. [Google Scholar] [CrossRef]
- Gunstone, F.D. Rapeseed and Canola Oil: Production, Processing, Properties and Uses; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Gaber, M.A.F.M.; Tujillo, F.J.; Mansour, M.P.; Juliano, P. Improving oil extraction from canola seeds by conventional and advanced methods. Food Eng. Rev. 2018, 10, 198–210. [Google Scholar] [CrossRef]
- Przybylski, R.; Eskin, N.M. Oil composition and properties. In Canola; Elsevier: Amsterdam, The Netherlands, 2011; pp. 189–227. [Google Scholar] [CrossRef]
- Przybylski, R.; Mag, T. Canola/rapeseed oil. In Vegetable Oils in Food Technology: Composition, Properties and Uses; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2011; pp. 107–136. [Google Scholar]
- Daun, J.K.; Eskin, M.N.; Hickling, D. Canola: Chemistry, Production, Processing, and Utilization; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Orthoefer, F.T.; Eastman, J. Rice bran oil. Bailey’s Ind. Oil Fat Prod. 2005, 2, 465–489. [Google Scholar] [CrossRef]
- Gopala Krishna, A.; Hemakumar, K.; Khatoon, S. Study on the composition of rice bran oil and its higher free fatty acids value. J. Am. Oil Chem. Soc. 2006, 83, 117–120. [Google Scholar] [CrossRef]
- Friedman, M. Rice brans, rice bran oils, and rice hulls: Composition, food and industrial uses, and bioactivities in humans, animals, and cells. J. Agric. Food Chem. 2013, 61, 10626–10641. [Google Scholar] [CrossRef]
- Pengkumsri, N.; Chaiyasut, C.; Sivamaruthi, B.S.; Saenjum, C.; Sirilun, S.; Peerajan, S. The influence of extraction methods on composition and antioxidant properties of rice bran oil. Food Sci. Technol. 2015, 35, 493–501. [Google Scholar] [CrossRef]
- Rahim, M.A.; Umar, M.; Habib, A.; Imran, M.; Khalid, W.; Lima, C.M.G. Photochemistry, functional properties, food applications, and health prospective of black rice. J. Chem. 2022, 2022, 2755084. [Google Scholar] [CrossRef]
- Nicolosi, R.J.; Rogers, E.J.; Ausman, L.; Orthoefer, F. Rice Bran Oil and Its Heath Benefits. Food Sci. Technol. 1993, 59, 421. [Google Scholar] [CrossRef]
- Saunders, R. Rice bran: Composition and potential food uses. Food Rev. Int. 1985, 1, 465–495. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, F.; Hao, L.; Du, Y.; Liu, C. Peanut oil body composition and stability. J. Food Sci. 2019, 84, 2812–2819. [Google Scholar] [CrossRef]
- Carrín, M.E.; Carelli, A.A. Peanut oil: Compositional data. Eur. J. Lipid Sci. Technol. 2010, 112, 697–707. [Google Scholar] [CrossRef]
- Sundaram, J.; Kandala, C.V.; Holser, R.A.; Butts, C.L.; Windham, W.R. Determination of in-shell peanut oil and fatty acid composition using near-infrared reflectance spectroscopy. J. Am. Oil Chem. Soc. 2010, 87, 1103–1114. [Google Scholar] [CrossRef]
- Akhtar, S.; Khalid, N.; Ahmed, I.; Shahzad, A.; Suleria, H.A.R. Physicochemical characteristics, functional properties, and nutritional benefits of peanut oil: A review. Crit. Rev. Food Sci. Nutr. 2014, 54, 1562–1575. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.-A.; Han, Z.; Zi, Z.-H. Effects of pulsed electric field treatments on quality of peanut oil. Food Control 2010, 21, 611–614. [Google Scholar] [CrossRef]
- Carrera, C.S.; Reynoso, C.M.; Funes, G.J.; Martínez, M.J.; Dardanelli, J.; Resnik, S.L. Amino acid composition of soybean seeds as affected by climatic variables. Pesqui. Agropecuária Bras. 2011, 46, 1579–1587. [Google Scholar] [CrossRef]
- Ghahari, S.; Alinezhad, H.; Nematzadeh, G.A.; Tajbakhsh, M.; Baharfar, R. Chemical composition, antioxidant and biological activities of the essential oil and extract of the seeds of Glycine max (soybean) from North Iran. Curr. Microbiol. 2017, 74, 522–531. [Google Scholar] [CrossRef]
- Fagbohun, E.; Lawal, O. Effect of Storage on nutrient composition and mycoflora of sundried soyabean (Glycine max). Afr. J. Food Sci. 2011, 5, 473–477. [Google Scholar] [CrossRef]
- Sotelo, J.P.; Oddino, C.; Giordano, D.F.; Carezzano, M.E.; Oliva, M.d.l.M. Effect of Thymus vulgaris essential oil on soybeans seeds infected with Pseudomonas syringae. Physiol. Mol. Plant Pathol. 2021, 116, 101735. [Google Scholar] [CrossRef]
- Khodadad, M.; Amir, P.L.; Faezeh, A.M. Investigating Fe and Zn foliar application on yield and its components of soybean (Glycine max (L) Merr.) at different growth stages. J. Agric. Biotechnol. Sustain. Dev. 2011, 3, 189–197. [Google Scholar] [CrossRef]
- Elleuch, M.; Besbes, S.; Roiseux, O.; Blecker, C.; Attia, H. Quality characteristics of sesame seeds and by-products. Food Chem. 2007, 103, 641–650. [Google Scholar] [CrossRef]
- Ji, J.; Liu, Y.; Shi, L.; Wang, N.; Wang, X. Effect of roasting treatment on the chemical composition of sesame oil. LWT 2019, 101, 191–200. [Google Scholar] [CrossRef]
- Tir, R.; Dutta, P.C.; Badjah-Hadj-Ahmed, A.Y. Effect of the extraction solvent polarity on the sesame seeds oil composition. Eur. J. Lipid Sci. Technol. 2012, 114, 1427–1438. [Google Scholar] [CrossRef]
- Yasothai, R. Chemical composition of sesame oil cake—Review. Int. J. Sci. Environ. Technol. 2014, 3, 827–835. [Google Scholar] [CrossRef]
- Bamigboye, A.Y.; Okafor, A.C.; Adepoju, O.T. Proximate and mineral composition of whole and dehulled Nigerian sesame seed. Afr. J. Food Sci. Technol. 2010, 1, 71–75. [Google Scholar]
- El Khier, M.K.S.; Ishag, K.E.A.; Yagoub, A.A. Chemical composition and oil characteristics of sesame seed cultivars grown in Sudan. Res. J. Agric. Biol. Sci. 2008, 4, 761–766. [Google Scholar]
- Pathak, N.; Rai, A.; Kumari, R.; Bhat, K. Value addition in sesame: A perspective on bioactive components for enhancing utility and profitability. Pharmacogn. Rev. 2014, 8, 147. [Google Scholar] [CrossRef]
- Imran, M.; Khan, M.K.; Ali, M.; Nadeem, M.; Mushtaq, Z.; Ahmad, M.H. Cold pressed sesame (Sesamum indicum) oil. In Cold Pressed Oils; Elsevier: Amsterdam, The Netherlands, 2020; pp. 105–111. [Google Scholar] [CrossRef]
- Barrera-Arellano, D.; Badan-Ribeiro, A.P.; Serna-Saldivar, S.O. Corn oil: Composition, processing, and utilization. In Corn; Elsevier: Amsterdam, The Netherlands, 2019; pp. 593–613. [Google Scholar] [CrossRef]
- Orthoefer, F.; Eastman, J.; List, G. Corn oil: Composition, processing, and utilization. In Corn: Chemistry and Technology, 2nd ed.; American Association of Cereal Chemists: St. Paul, MN, USA, 2003; pp. 671–693. [Google Scholar]
- Veljković, V.B.; Biberdžić, M.O.; Banković-Ilić, I.B.; Djalović, I.G.; Tasić, M.B.; Nježić, Z.B. Biodiesel production from corn oil: A review. Renew. Sustain. Energy Rev. 2018, 91, 531–548. [Google Scholar] [CrossRef]
- White, P.J.; Pollak, L.M.; Duvick, S. Improving the fatty acid composition of corn oil by using germplasm introgression. Lipid Technol. 2007, 19, 35–38. [Google Scholar] [CrossRef]
- Jabri Karoui, I.; Msaada, K.; Abderrabba, M.; Marzouk, B. Bioactive compounds and antioxidant activities of thyme-enriched refined corn oil. J. Agric. Sci. Technol. 2016, 18, 79–91. [Google Scholar]
- Gee, P.T. Analytical characteristics of crude and refined palm oil and fractions. Eur. J. Lipid Sci. Technol. 2007, 109, 373–379. [Google Scholar] [CrossRef]
- Che Man, Y.; Haryati, T.; Ghazali, H.M.; Asbi, B. Composition and thermal profile of crude palm oil and its products. J. Am. Oil Chem. Soc. 1999, 76, 237–242. [Google Scholar] [CrossRef]
- Morcillo, F.; Vaissayre, V.; Serret, J.; Avallone, S.; Domonhédo, H.; Jacob, F. Natural diversity in the carotene, tocochromanol and fatty acid composition of crude palm oil. Food Chem. 2021, 365, 130638. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, K.A.; Ayala, J.V.; Van Hoed, V.; Monteiro, S.; Ceriani, R.; Verhé, R. Impact of crude oil quality on the refining conditions and composition of nutraceuticals in refined palm oil. J. Food Sci. 2017, 82, 1842–1850. [Google Scholar] [CrossRef] [PubMed]
- Awogbemi, O.; Kallon, D.V.V.; Aigbodion, V.S.; Mzozoyana, V. Property determination, FA composition and NMR characterization of palm oil, used palm oil and their methyl esters. Processes 2021, 10, 11. [Google Scholar] [CrossRef]
- El-Sawi, S.A.; Motawae, H.M.; Ali, A.M. Chemical composition, cytotoxic activity and antimicrobial activity of essential oils of leaves and berries of Juniperus phoenicea L. grown in Egypt. Afr. J. Tradit. Complement. Altern. Med. 2007, 4, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Sasidharan, I.; Nirmala Menon, A. Comparative chemical composition and antimicrobial activity of berry and leaf essential oils of Piper nigrum L. Int. J. Biol. Med. Res. 2010, 1, 215–218. [Google Scholar]
- Li, Q.; Wang, J.; Shahidi, F. Chemical characteristics of cold-pressed blackberry, black raspberry, and blueberry seed oils and the role of the minor components in their oxidative stability. J. Agric. Food Chem. 2016, 64, 5410–5416. [Google Scholar] [CrossRef]
- KraStanov, I. Chemical composition and antioxidant properties of juniper berry (Juniperus communis L.) essential oil. Bulg. J. Agric. Sci. 2014, 20, 227–237. [Google Scholar]
- Boskou, D.; Blekas, G.; Tsimidou, M. Olive oil composition. In Olive Oil; Elsevier: Amsterdam, The Netherlands, 2006; pp. 41–72. [Google Scholar] [CrossRef]
- Inglese, P.; Famiani, F.; Galvano, F.; Servili, M.; Esposto, S.; Urbani, S. 3 factors affecting extra-virgin olive oil composition. Hortic. Rev. 2011, 38, 83. [Google Scholar] [CrossRef]
- Peres, F.; Martins, L.L.; Ferreira-Dias, S. Influence of enzymes and technology on virgin olive oil composition. Crit. Rev. Food Sci. Nutr. 2017, 57, 3104–3126. [Google Scholar] [CrossRef]
- Raji, O.H.; Orelaja, O.T. Nutritional composition and oil characteristics of golden melon (Cucumis melo) seeds. Food Sci. Qual. Manag. 2014, 27, 18–21. [Google Scholar]
- Wang, F.; Li, H.; Zhao, H.; Zhang, Y.; Qiu, P.; Li, J. Antidiabetic activity and chemical composition of Sanbai melon seed oil. Evid.-Based Complement. Altern. Med. 2018, 2018, 5434156. [Google Scholar] [CrossRef]
- Milovanović, M.; Pićurić-Jovanović, K. Characteristics and composition of melon seed oil. J. Agric. Sci. 2005, 50, 41–47. [Google Scholar] [CrossRef]
- De Mello, M.L.; Bora, P.S.; Narain, N. Fatty and amino acids composition of melon (Cucumis melo var. saccharinus) seeds. J. Food Compos. Anal. 2001, 14, 69–74. [Google Scholar] [CrossRef]
- Dadashi, S.; Mousazadeh, M.; Emam-Djomeh, Z.; Mousavi, S.M. Pomegranate (Punica granatum L.) seed: A comparative study on biochemical composition and oil physicochemical characteristics. Int. J. Adv. Biol. Biomed. Res. 2013, 1, 351–363. [Google Scholar] [CrossRef]
- Hadrich, F.; Cher, S.; Gargouri, Y.T.; Adel, S. Antioxidant and lipase inhibitory activities and essential oil composition of pomegranate peel extracts. J. Oleo Sci. 2014, 63, 515–525. [Google Scholar] [CrossRef]
- Amri, Z.; Lazreg-Aref, H.; Mekni, M.; El-Gharbi, S.; Dabbaghi, O.; Mechri, B. Oil characterization and lipids class composition of pomegranate seeds. BioMed Res. Int. 2017, 2017, 2037341. [Google Scholar] [CrossRef] [PubMed]
- Rojo-Gutiérrez, E.; Carrasco-Molinar, O.; Tirado-Gallegos, J.; Levario-Gómez, A.; Chávez-González, M.; Baeza-Jiménez, R. Evaluation of green extraction processes, lipid composition and antioxidant activity of pomegranate seed oil. J. Food Meas. Charact. 2021, 15, 2098–2107. [Google Scholar] [CrossRef]
- Chowdhury, K.; Banu, L.A.; Khan, S.; Latif, A. Studies on the fatty acid composition of edible oil. Bangladesh J. Sci. Ind. Res. 2007, 42, 311–316. [Google Scholar] [CrossRef]
- Sehwag, S.; Das, M. A brief overview: Present status on utilization of mustard oil and cake. Indian J. Tradit. Knowl. 2015, 14, 244–250. [Google Scholar]
- Sawicka, B.; Kotiuk, E.; Kiełtyka-Dadasiewicz, A.; Krochmal-Marczak, B. Fatty acids composition of mustard oil from two cultivars and physico-chemical characteristics of the seeds. J. Oleo Sci. 2020, 69, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Ostrikov, A.N.; Kleymenova, N.L.; Bolgova, I.N.; Kopylov, M.V. Gas chromatographic analysis of the fatty acid composition of mustard oil obtained by cold pressing (method). Emir. J. Food Agric. 2020, 32, 391–396. [Google Scholar] [CrossRef]
- Wang, T.; Johnson, L.A. Refining high-free fatty acid wheat germ oil. J. Am. Oil Chem. Soc. 2001, 78, 71–76. [Google Scholar] [CrossRef]
- Ghafoor, K.; Özcan, M.M.; Al-Juhaımı, F.; Babıker, E.E.; Sarker, Z.I.; Ahmed, I.A.M. Nutritional composition, extraction, and utilization of wheat germ oil: A review. Eur. J. Lipid Sci. Technol. 2017, 119, 1600160. [Google Scholar] [CrossRef]
- Niu, L.-Y.; Jiang, S.-T.; Pan, L.-J.; Pang, M. Characterization of wheat germ oil in terms of volatile compounds, lipid composition, thermal behavior, and structure. Int. J. Food Prop. 2013, 16, 1740–1749. [Google Scholar] [CrossRef]
- Zou, Y.; Gao, Y.; He, H.; Yang, T. Effect of roasting on physico-chemical properties, antioxidant capacity, and oxidative stability of wheat germ oil. LWT 2018, 90, 246–253. [Google Scholar] [CrossRef]
- Dunford, N.T. Wheat germ oil. In Gourmet and Health-Promoting Specialty Oils; Elsevier: Amsterdam, The Netherlands, 2009; pp. 359–376. [Google Scholar] [CrossRef]
- Wieser, H.; Koehler, P.; Scherf, K.A. Wheat-An Exceptional Crop: Botanical Features, Chemistry, Utilization, Nutritional and Health Aspects; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Anwar, F.; Rashid, U.; Mahmood, Z.; Iqbal, T.; Sherazi, T.H. Inter-varietal variation in the composition of okra (Hibiscus esculentus L.) seed oil. Pak. J. Bot. 2011, 43, 271–280. [Google Scholar]
- Açıkgöz, Ç.; Borazan, A.A.; Andoglu, E.M.; Gokdai, D. Chemical composition of turkish okra seeds (Hibiscus esculenta L.) And the total phenolic content of okra seeds flour. Anadolu Univ. Sci. Technol. A Appl. Sci. Eng. 2016, 17, 766–774. [Google Scholar] [CrossRef]
- Jarret, R.L.; Wang, M.L.; Levy, I.J. Seed oil and fatty acid content in okra (Abelmoschus esculentus) and related species. J. Agric. Food Chem. 2011, 59, 4019–4024. [Google Scholar] [CrossRef]
- Woolf, A.; Wong, M.; Eyres, L.; McGhie, T.; Lund, C.; Olsson, S. Avocado Oil. Gourmet and Health-Promoting Specialty Oils; Elsevier: Amsterdam, The Netherlands, 2009; pp. 73–125. [Google Scholar] [CrossRef]
- Qin, X.; Zhong, J. A review of extraction techniques for avocado oil. J. Oleo Sci. 2016, 65, 881–888. [Google Scholar] [CrossRef]
- Tan, C.X. Virgin avocado oil: An emerging source of functional fruit oil. J. Funct. Foods 2019, 54, 381–392. [Google Scholar] [CrossRef]
- Flores, M.; Saravia, C.; Vergara, C.E.; Avila, F.; Valdés, H.; Ortiz-Viedma, J. Avocado oil: Characteristics, properties, and applications. Molecules 2019, 24, 2172. [Google Scholar] [CrossRef]
- Krumreich, F.D.; Borges, C.D.; Mendonça, C.R.B.; Jansen-Alves, C.; Zambiazi, R.C. Bioactive compounds and quality parameters of avocado oil obtained by different processes. Food Chem. 2018, 257, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, M.F.; Mörsel, J.T. Characterization of phospholipid composition of black cumin (Nigella sativa L.) seed oil. Food/Nahrung 2002, 46, 240–244. [Google Scholar] [CrossRef]
- Albakry, Z.; Karrar, E.; Ahmed, I.A.M.; Oz, E.; Proestos, C.; El Sheikha, A.F. Nutritional composition and volatile compounds of black cumin (Nigella sativa L.) seed, fatty acid composition and tocopherols, polyphenols, and antioxidant activity of its essential oil. Horticulturae 2022, 8, 575. [Google Scholar] [CrossRef]
- Gali-Muhtasib, H.; El-Najjar, N.; Schneider-Stock, R. The medicinal potential of black seed (Nigella sativa) and its components. Adv. Phytomed. 2006, 2, 133–153. [Google Scholar] [CrossRef]
- Forouzanfar, F.; Bazzaz, B.S.F.; Hosseinzadeh, H. Black cumin (Nigella sativa) and its constituent (thymoquinone): A review on antimicrobial effects. Iran. J. Basic Med. Sci. 2014, 17, 929. [Google Scholar]
- Rahim, M.A.; Shoukat, A.; Khalid, W.; Ejaz, A.; Itrat, N.; Majeed, I. A narrative review on various oil extraction methods, encapsulation processes, fatty acid profiles, oxidative stability, and medicinal properties of black seed (Nigella sativa). Foods 2022, 11, 2826. [Google Scholar] [CrossRef]
- Shang, X.; Cheng, C.; Ding, J.; Guo, W. Identification of candidate genes from the SAD gene family in cotton for determination of cottonseed oil composition. Mol. Genet. Genom. 2017, 292, 173–186. [Google Scholar] [CrossRef]
- Ahmad, S.; Anwar, F.; Hussain, A.I.; Ashraf, M.; Awan, A.R. Does soil salinity affect yield and composition of cottonseed oil? J. Am. Oil Chem. Soc. 2007, 84, 845–851. [Google Scholar] [CrossRef]
- Dowd, M.K.; Boykin, D.L.; Meredith Jr, W.R.; Campbell, B.T.; Bourland, F.M.; Gannaway, J.R. Fatty acid profiles of cottonseed genotypes from the national cotton variety trials. J. Cotton Sci. 2010, 14, 1524–3303. [Google Scholar]
- Guo, S. Triterpenoids, phenolic compounds, macro-and microelements in anatomical parts of sea buckthorn (Hippophae rhamnoides L.) berries, branches and leaves. J. Food Compos. Anal. 2021, 103, 104107. [Google Scholar] [CrossRef]
- Zielińska, A.; Izabela, N. Abundance of active ingredients in sea-buckthorn oil. Lipids Health Dis. 2017, 16, 95. [Google Scholar] [CrossRef]
- Turkiewicz, I.P. Comprehensive characterization of Chaenomeles seeds as a potential source of nutritional and biologically active compounds. J. Food Compos. Anal. 2021, 102, 104065. [Google Scholar] [CrossRef]
- Miao, J. Chemical composition and bioactivities of two common Chaenomeles fruits in China: Chaenomeles speciosa and Chaenomeles sinensis. J. Food Sci. 2016, 81, H2049–H2058. [Google Scholar] [CrossRef]
- Xu, Y.X.; Milford, A.H.; Scott, J.J. Hybrid hazelnut oil characteristics and its potential oleochemical application. Ind. Crops Prod. 2007, 26, 69–76. [Google Scholar] [CrossRef]
- Cardoso-Ugarte, G.A. Microwave-assisted extraction of essential oils from herbs. J. Microw. Power Electromagn. 2013, 47, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Destandau, E.; Michel, T.; Elfakir, C. Microwave-Assisted Extraction; The Royal Society of Chemistry: London, UK, 2013; p. 4. [Google Scholar]
- De Menezes Rodrigues, G.; Cardozo-Filho, L.; da Silva, C. Pressurized liquid extraction of oil from soybean seeds. Can. J. Chem. Eng. 2017, 95, 2383–2389. [Google Scholar] [CrossRef]
- Tarasevičienė, Ž.; Laukagalis, V.; Paulauskienė, A.; Baltušnikienė, A.; Meškinytė, E. Quality Changes of Cold-Pressed Black Cumin (Nigella sativa L.), Safflower (Carthamus tinctorius L.), and Milk Thistle (Silybum marianum L.) Seed Oils during Storage. Plants 2023, 12, 1351. [Google Scholar] [CrossRef]
- Natić, M.; Zagorac, D.D.; Ćirić, I.; Meland, M.; Rabrenović, B.; Akšić, M.F. Cold pressed oils from genus Prunus. In Cold Pressed Oils; Elsevier: Amsterdam, The Netherlands, 2020; pp. 637–658. [Google Scholar]
- Arshad, M.S.; Khalid, W.; Khalid, M.Z.; Maqbool, Z.; Ali, A.; Kousar, S. Sonication microwave synergistic extraction of bioactive compounds from plants, animals and others agro-industrial waste sources. In Ultrasound and Microwave for Food Processing; Elsevier: Amsterdam, The Netherlands; pp. 345–361. [CrossRef]
- Deng, W.; Zhang, X.; Zhou, Y.; Liu, Y.; Zhou, X.; Chen, H. An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems. Inf. Sci. 2022, 585, 441–453. [Google Scholar] [CrossRef]
- Callejón, M.J.J.; Medina, A.R.; Sánchez, M.D.M.; Moreno, P.A.G.; López, E.N.; Cerdán, L.E. Supercritical fluid extraction and pressurized liquid extraction processes applied to eicosapentaenoic acid-rich polar lipid recovery from the microalga Nannochloropsis sp. Algal Res. 2022, 61, 102586. [Google Scholar] [CrossRef]
- Vafaei, N.; Rempel, C.B.; Scanlon, M.G.; Jones, P.J.; Eskin, M.N. Application of supercritical fluid extraction (SFE) of tocopherols and carotenoids (hydrophobic antioxidants) compared to non-SFE methods. Appl. Chem. 2022, 2, 5. [Google Scholar] [CrossRef]
- Feng, G.; Wang, Y.; Xu, T.; Wang, F.; Shi, Y. Multiphase flow modeling and energy extraction performance for supercritical geothermal systems. Renew. Energy 2021, 173, 442–454. [Google Scholar] [CrossRef]
- Pontillo, A.R.N.; Papakosta-Tsigkri, L.; Lymperopoulou, T.; Mamma, D.; Kekos, D.; Detsi, A. Conventional and enzyme-assisted extraction of rosemary leaves (Rosmarinus officinalis L.): Toward a greener approach to high added-value extracts. Appl. Sci. 2021, 11, 3724. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, Y.; Niu, G.; Zhao, Q.; Pu, S. Entity concept-enhanced few-shot relation extraction. arXiv 2021, arXiv:210602401. [Google Scholar]
- Roobab, U.; Abida, A.; Chacha, J.S.; Athar, A.; Madni, G.M.; Ranjha, M.M.A.N. Applications of innovative non-thermal pulsed electric field technology in developing safer and healthier fruit juices. Molecules 2022, 27, 4031. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wen, C.; Duan, Y.; Deng, Q.; Peng, D.; Zhang, H. The composition, extraction, analysis, bioactivities, bioavailability and applications in food system of flaxseed (Linum usitatissimum L.) oil: A review. Trends Food Sci. Technol. 2021, 118, 252–260. [Google Scholar] [CrossRef]
- Castro-Vázquez, L.; Rodríguez-Robledo, V.; Plaza-Oliver, M.; Santander-Ortega, M.J.; Victoria Lozano, M.; González, J. Pressurized liquid extraction to obtain chia seeds oils extracts enriched in tocochromanols. Nanoemulsions approaches to preserve the antioxidant potential. J. Food Sci. Technol. 2021, 58, 4034–4044. [Google Scholar] [CrossRef]
- Gumus, Z.P.; Argon, Z.U.; Celenk, V.U.; Timur, S. Cold pressed tomato (Lycopersicon esculentum L.) seed oil. In Cold Pressed Oils; Elsevier: Amsterdam, The Netherlands, 2020; pp. 449–458. [Google Scholar] [CrossRef]
- Yousuf, O.; Gaibimei, P.; Singh, A. Ultrasound assisted extraction of oil from soybean. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 843–852. [Google Scholar] [CrossRef]
- Da Silva Santos, V.; Fernandes, G.D. Cold pressed avocado (Persea americana Mill.) oil. In Cold Pressed Oils; Elsevier: Amsterdam, The Netherlands, 2020; pp. 405–428. [Google Scholar] [CrossRef]
- Adiba, A.; Razouk, R.; Haddioui, A.; Ouaabou, R.; Hamdani, A.; Kouighat, M. FTIR spectroscopy-based lipochemical fingerprints involved in pomegranate response to water stress. Heliyon 2023, 9, 2405–8440. [Google Scholar] [CrossRef]
- Anwar, F.; Qadir, R.; Ahmad, N. Cold pressed okra (Abelmoschus esculentus) seed oil. In Cold Pressed Oils; Elsevier: Amsterdam, The Netherlands, 2020; pp. 309–314. [Google Scholar] [CrossRef]
- Torres-Ramón, E.; García-Rodríguez, C.; Estévez-Sánchez, K.; Ruiz-López, I.; Rodríguez-Jimenes, G.; de la Vega, G.R. Optimization of a coconut oil extraction process with supercritical CO2 considering economical and thermal variables. J. Supercrit. Fluids 2021, 170, 105160. [Google Scholar] [CrossRef]
- Bouazzaoui, N.; Bouajila, J.; Camy, S.; Mulengi, J.K.; Condoret, J.-S. Fatty acid composition, cytotoxicity and anti-inflammatory evaluation of melon (Cucumis melo L. Inodorus) seed oil extracted by supercritical carbon dioxide. Sep. Sci. Technol. 2018, 53, 2622–2627. [Google Scholar] [CrossRef]
- Hu, B.; Li, C.; Qin, W.; Zhang, Z.; Liu, Y.; Zhang, Q. A method for extracting oil from tea (Camelia sinensis) seed by microwave in combination with ultrasonic and evaluation of its quality. Ind. Crops Prod. 2019, 131, 234–242. [Google Scholar] [CrossRef]
- Moghimi, M.; Farzaneh, V.; Bakhshabadi, H. The effect of ultrasound pretreatment on some selected physicochemical properties of black cumin (Nigella Sativa). Nutrire 2018, 43, 18. [Google Scholar] [CrossRef]
- Prommaban, A.; Kuanchoom, R.; Seepuan, N.; Chaiyana, W. Evaluation of fatty acid compositions, antioxidant, and pharmacological activities of pumpkin (Cucurbita moschata) seed oil from aqueous enzymatic extraction. Plants 2021, 10, 1582. [Google Scholar] [CrossRef]
- Marzouki, H.; Piras, A.; Marongiu, B.; Rosa, A.; Dessì, M.A. Extraction and separation of volatile and fixed oils from berries of Laurus nobilis L. by supercritical CO2. Molecules 2008, 13, 1702–1711. [Google Scholar] [CrossRef]
- Rojo Gutierrez, E.; Buenrostro Figueroa, J.J.; Natividad Rangel, R.; Romero Romero, R.; Sepulveda Ahumada, D.R.; Baeza Jimenez, R. Effect of different extraction methods on cottonseed oil yield. Rev. Mex. Ing. Quim. 2020, 19, 385–394. [Google Scholar] [CrossRef]
- Senrayan, J.; Venkatachalam, S. Optimization of ultrasound-assisted solvent extraction (UASE) based on oil yield, antioxidant activity and evaluation of fatty acid composition and thermal stability of Coriandrum sativum L. seed oil. Food Sci. Biotechnol. 2019, 28, 377–386. [Google Scholar] [CrossRef]
- Capellini, M.C.; Chiavoloni, L.; Giacomini, V.; Rodrigues, C.E. Alcoholic extraction of sesame seed cake oil: Influence of the process conditions on the physicochemical characteristics of the oil and defatted meal proteins. J. Food Eng. 2019, 240, 145–152. [Google Scholar] [CrossRef]
- Sarkis, J.R.; Boussetta, N.; Blouet, C.; Tessaro, I.C.; Marczak, L.D.F.; Vorobiev, E. Effect of pulsed electric fields and high voltage electrical discharges on polyphenol and protein extraction from sesame cake. Innov. Food Sci. Emerg. Technol. 2015, 29, 170–177. [Google Scholar] [CrossRef]
- De Leonardis, A.; Macciola, V.; Di Rocco, A. Oxidative stabilization of cold-pressed sunflower oil using phenolic compounds of the same seeds. J. Sci. Food Agric. 2003, 83, 523–528. [Google Scholar] [CrossRef]
- Mazaheri, Y.; Torbati, M.; Azadmard-Damirchi, S.; Savage, G.P. Oil extraction from blends of sunflower and black cumin seeds by cold press and evaluation of its physicochemical properties. J. Food Process. Preserv. 2019, 43, e14154. [Google Scholar] [CrossRef]
- Stamenković, O.S.; Djalović, I.G.; Kostić, M.D.; Mitrović, P.M.; Veljković, V.B. Optimization and kinetic modeling of oil extraction from white mustard (Sinapis alba L.) seeds. Ind. Crops Prod. 2018, 121, 132–141. [Google Scholar] [CrossRef]
- Chanioti, S.; Tzia, C. Optimization of ultrasound-assisted extraction of oil from olive pomace using response surface technology: Oil recovery, unsaponifiable matter, total phenol content and antioxidant activity. LWT-Food Sci. Technol. 2017, 79, 178–189. [Google Scholar] [CrossRef]
- Piras, A.; Rosa, A.; Falconieri, D.; Porcedda, S.; Dessì, M.A.; Marongiu, B. Extraction of oil from wheat germ by supercritical CO2. Molecules 2009, 14, 2573–2581. [Google Scholar] [CrossRef]
- Benito-Román, O.; Varona, S.; Sanz, M.T.; Beltrán, S. Valorization of rice bran: Modified supercritical CO2 extraction of bioactive compounds. J. Ind. Eng. Chem. 2019, 80, 273–282. [Google Scholar] [CrossRef]
- Perrier, A.; Delsart, C.; Boussetta, N.; Grimi, N.; Citeau, M.; Vorobiev, E. Effect of ultrasound and green solvents addition on the oil extraction efficiency from rapeseed flakes. Ultrason. Sonochem. 2017, 39, 58–65. [Google Scholar] [CrossRef]
- Zhong, J.; Wang, Y.; Yang, R.; Liu, X.; Yang, Q.; Qin, X. The application of ultrasound and microwave to increase oil extraction from Moringa oleifera seeds. Ind. Crops Prod. 2018, 120, 1–10. [Google Scholar] [CrossRef]
- Puangsri, T.; Abdulkarim, S.; Ghazali, H. Properties of Carica papaya L.(papaya) seed oil following extractions using solvent and aqueous enzymatic methods. J. Food Lipids 2005, 12, 62–76. [Google Scholar] [CrossRef]
- Sharma, A.; Khare, S.; Gupta, M. Enzyme-assisted aqueous extraction of peanut oil. J. Am. Oil Chem. Soc. 2002, 79, 215–218. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Sui, X.; Zhang, Y.; Feng, H.; Jiang, L. Ultrasound-assisted aqueous enzymatic extraction of oil from perilla (Perilla frutescens L.) seeds. CyTA-J. Food 2014, 12, 16–21. [Google Scholar] [CrossRef]
- Moreau, R.A.; Johnston, D.B.; Powell, M.J.; Hicks, K.B. A comparison of commercial enzymes for the aqueous enzymatic extraction of corn oil from corn germ. J. Am. Oil Chem. Soc. 2004, 81, 1071–1075. [Google Scholar] [CrossRef]
- Porel, A.; Sanyal, Y.; Kundu, A. Simultaneous HPLC determination of 22 components of essential oils; method robustness with experimental design. Indian J. Pharm. Sci. 2014, 76, 19. [Google Scholar] [PubMed]
- Rahim, M.A.; Yasmin, A.; Imran, M.; Nisa, M.U.; Khalid, W.; Esatbeyoglu, T. Optimization of the Ultrasound Operating Conditions for Extraction and Quantification of Fructooligosaccharides from Garlic (Allium sativum L.) via High-Performance Liquid Chromatography with Refractive Index Detector. Molecules 2022, 27, 6388. [Google Scholar] [CrossRef]
- Kato, S.; Shimizu, N.; Hanzawa, Y.; Otoki, Y.; Ito, J.; Kimura, F.; Takekoshi, S.; Sakaino, M.; Sano, T.; Eitsuka, T.; et al. Determination of triacylglycerol oxidation mechanisms in canola oil using liquid chromatography–tandem mass spectrometry. Npj Sci. Food 2018, 2, 1. [Google Scholar] [CrossRef]
- Wang, J.U.N.; Wu, W.; Wang, X.; Wang, M.I.N.; Wu, F. An effective GC method for the determination of the fatty acid composition in silkworm pupae oil using a two-step methylation process. J. Serb. Chem. Soc. 2015, 80, 9–20. [Google Scholar] [CrossRef]
- Li, Y.-Q.; Kong, D.-X.; Wu, H. Analysis and evaluation of essential oil components of cinnamon barks using GC-MS and FTIR spectroscopy. Ind. Crops Prod. 2013, 41, 269–278. [Google Scholar] [CrossRef]
- Haiyan, Z.; Bedgood, D.R., Jr.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Endogenous biophenol, fatty acid and volatile profiles of selected oils. Food Chem. 2007, 100, 1544–1551. [Google Scholar] [CrossRef]
- Rasheed, D.M.; Serag, A.; Shakour, Z.T.A.; Farag, M. Novel trends and applications of multidimensional chromatography in the analysis of food, cosmetics and medicine bearing essential oils. Talanta 2021, 223, 121710. [Google Scholar] [CrossRef] [PubMed]
- Aluyor, E.O. Chromatographic analysis of vegetable oils: A review. Sci. Res. Essays 2009, 4, 4. [Google Scholar]
- Vlachos, N.; Skopelitis, Y.; Psaroudaki, M.; Konstantinidou, V.; Chatzilazarou, A.; Tegou, E. Applications of Fourier transform-infrared spectroscopy to edible oils. Anal. Chim. Acta 2006, 573, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Lerma-García, M.J.; Ramis-Ramos, G.; Herrero-Martínez, J.M.; Simó-Alfonso, E.F. Authentication of extra virgin olive oils by Fourier-transform infrared spectroscopy. Food Chem. 2010, 118, 78–83. [Google Scholar] [CrossRef]
- Ahmad, R.S.; Imran, M.; Ahmad, M.H.; Khan, M.K.; Yasmin, A.; Saima, H. Eucalyptus essential oils. In Essential Oils; Elsevier: Amsterdam, The Netherlands, 2023; pp. 217–239. [Google Scholar]
- Hu, W.; Zhang, L.; Li, P.; Wang, X.; Zhang, Q.; Xu, B. Characterization of volatile components in four vegetable oils by headspace two-dimensional comprehensive chromatography time-of-flight mass spectrometry. Talanta 2014, 129, 629–635. [Google Scholar] [CrossRef]
- Krock, K.A.; Ragunathan, N.; Wilkins, C.L. Multidimensional gas chromatography coupled with infrared and mass spectrometry for analysis of eucalyptus essential oils. Anal. Chem. 1994, 66, 425–430. [Google Scholar] [CrossRef]
- Blomberg, J.; Schoenmakers, P.J.; Brinkman, U.T. Gas chromatographic methods for oil analysis. J. Chromatogr. A 2002, 972, 137–173. [Google Scholar] [CrossRef]
- Coleman, I.I.I.W.; Gordon, B.M. Analysis of natural products by gas chromatography/matrix isolation/infrared spectrometry. Adv. Chromatogr. 1994, 34, 57–108. [Google Scholar] [CrossRef]
- Nunes, L.S. Multi-element determination of Cu, Fe, Ni and Zn content in vegetable oils samples by high-resolution continuum source atomic absorption spectrometry and microemulsion sample preparation. Food Chem. 2011, 127, 780–783. [Google Scholar] [CrossRef]
- Valasques, G.S.; Dos Santos, A.M.P.; da Silva, D.L.F.; da Mata Cerqueira, U.M.F.; Ferreira, S.L.C.; Dos Santos, W.N.L. Extraction induced by emulsion breaking for As, Se and Hg determination in crude palm oil by vapor generation-AFS. Food Chem. 2020, 318, 126473. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.; Agrawal, S. Comparative analysis of essential oil composition and oil containing glands in Ocimum sanctum L.(Holy basil) under ambient and supplemental level of UV-B through gas chromatography–mass spectrometry and scanning electron microscopy. Acta Physiol. Plant. 2011, 33, 1093–1101. [Google Scholar] [CrossRef]
- Du, L.; Wang, Y.; Wang, K.; Shen, C.; Luo, G. In situ dispersion of oil-based Ag nanocolloids by microdroplet coalescence and their applications in SERS detection. RSC Adv. 2016, 6, 59639–59647. [Google Scholar] [CrossRef]
- Samaram, S.; Mirhosseini, H.; Tan, C.P.; Ghazali, H.M. Ultrasound-assisted extraction and solvent extraction of papaya seed oil: Crystallization and thermal behavior, saturation degree, color and oxidative stability. Ind. Crops Prod. 2014, 52, 702–708. [Google Scholar] [CrossRef]
- Lee, W.J.; Lee, M.H.; Su, N.W. Characteristics of papaya seed oils obtained by extrusion–expelling processes. J. Sci. Food Agric. 2011, 91, 2348–2354. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, B. New insights into chemical compositions and health promoting effects of edible oils from new resources. Food Chem. 2021, 364, 130363. [Google Scholar] [CrossRef] [PubMed]
- Al-Temimi, W.K.; Al-Garory, N.H.; Khalaf, A.A. Diagnose the bioactive compounds in flaxseed extract and its oil and use their mixture as an antioxidant. Basrah J. Agric. Sci. 2020, 33, 172–188. [Google Scholar] [CrossRef]
- Goyal, A.; Sharma, V.; Upadhyay, N.; Gill, S.; Sihag, M. Flax and flaxseed oil: An ancient medicine & modern functional food. J. Food Sci. Technol. 2014, 51, 1633–1653. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.M.; Abe, S.Y.; Murakami, F.S.; Frensch, G.; Marques, F.A.; Nakashima, T. Essential oils from different plant parts of Eucalyptus cinerea F. Muell. ex Benth.(Myrtaceae) as a source of 1, 8-cineole and their bioactivities. Pharmaceuticals 2011, 4, 1535–1550. [Google Scholar] [CrossRef]
- Salehi, B.; Sharifi-Rad, J.; Quispe, C.; Llaique, H.; Villalobos, M.; Smeriglio, A. Insights into Eucalyptus genus chemical constituents, biological activities and health-promoting effects. Trends Food Sci. Technol. 2019, 91, 609–624. [Google Scholar] [CrossRef]
- Gorzynik-Debicka, M.; Przychodzen, P.; Cappello, F.; Kuban-Jankowska, A.; Marino Gammazza, A.; Knap, N. Potential health benefits of olive oil and plant polyphenols. Int. J. Mol. Sci. 2018, 19, 686. [Google Scholar] [CrossRef]
- Zhang, C.-J.; Auer, C. Overwintering assessment of camelina (Camelina sativa) cultivars and congeneric species in the northeastern US. Ind. Crops Prod. 2019, 139, 111532. [Google Scholar] [CrossRef]
- Mondor, M.; Hernández-Álvarez, A.J. Camelina sativa composition, attributes, and applications: A review. Eur. J. Lipid Sci. Technol. 2022, 124, 2100035. [Google Scholar] [CrossRef]
- Kurasiak-Popowska, D.; Ryńska, B.; Stuper-Szablewska, K. Analysis of distribution of selected bioactive compounds in Camelina sativa from seeds to pomace and oil. Agronomy 2019, 9, 168. [Google Scholar] [CrossRef]
- Berti, M.; Gesch, R.; Eynck, C.; Anderson, J.; Cermak, S. Camelina uses, genetics, genomics, production, and management. Ind. Crops Prod. 2016, 94, 690–710. [Google Scholar] [CrossRef]
- Li, X.; Mupondwa, E. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies. Sci. Total Environ. 2014, 481, 17–26. [Google Scholar] [CrossRef]
- Heydarian, Z.; Yu, M.; Gruber, M.; Glick, B.R.; Zhou, R.; Hegedus, D.D. Inoculation of soil with plant growth promoting bacteria producing 1-aminocyclopropane-1-carboxylate deaminase or expression of the corresponding acdS gene in transgenic plants increases salinity tolerance in Camelina sativa. Front. Microbiol. 2016, 7, 1966. [Google Scholar] [CrossRef]
- Heydarian, Z.; Gruber, M.; Glick, B.R.; Hegedus, D.D. Gene expression patterns in roots of Camelina sativa with enhanced salinity tolerance arising from inoculation of soil with plant growth promoting bacteria producing 1-aminocyclopropane-1-carboxylate deaminase or expression the corresponding acds gene. Front. Microbiol. 2018, 9, 1297. [Google Scholar] [CrossRef] [PubMed]
- Shinagawa, F.B.; Santana, F.C.D.; Torres, L.R.O.; Mancini-Filho, J. Grape seed oil: A potential functional food? Food Sci. Technol. 2015, 35, 399–406. [Google Scholar] [CrossRef]
- Maier, T.; Schieber, A.; Kammerer, D.R.; Carle, R. Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chem. 2009, 112, 551–559. [Google Scholar] [CrossRef]
- Aydeniz-Guneser, B.; Yılmaz, E. Sunflower oil-polyglycerol stearate oleogels: Alternative deep-fat frying media for onion rings. J. Oleo Sci. 2022, 71, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Aydeniz, B.; Güneşer, O.; Yılmaz, E. Physico-chemical, sensory and aromatic properties of cold press produced safflower oil. J. Am. Oil Chem. Soc. 2014, 91, 99–110. [Google Scholar] [CrossRef]
- Fernández-Cuesta, Á.; Velasco, L.; Ruiz-Méndez, M.V. Novel safflower oil with high γ-tocopherol content has a high oxidative stability. Eur. J. Lipid Sci. Technol. 2014, 116, 832–836. [Google Scholar] [CrossRef]
- Neschen, S.; Moore, I.; Regittnig, W.; Yu, C.L.; Wang, Y.; Pypaert, M. Contrasting effects of fish oil and safflower oil on hepatic peroxisomal and tissue lipid content. Am. J. Physiol.-Endocrinol. Metab. 2002, 282, E395–E401. [Google Scholar] [CrossRef]
- Grompone, M.A. Sunflower oil. In Vegetable Oils in Food Technology; Wiley-Blackwel: Oxford, UK, 2011; pp. 137–167. [Google Scholar]
- Bernardo-Gil, G. Extraction of lipids from cherry seed oil using supercritical carbon dioxide. Eur. Food Res. Technol. 2001, 212, 170–174. [Google Scholar] [CrossRef]
- Bak, I.; Lekli, I.; Juhasz, B.; Varga, E.; Varga, B.; Gesztelyi, R. Isolation and analysis of bioactive constituents of sour cherry (Prunus cerasus) seed kernel: An emerging functional food. J. Med. Food 2010, 13, 905–910. [Google Scholar] [CrossRef]
- Jiao, J.; Li, Z.-G.; Gai, Q.-Y.; Li, X.-J.; Wei, F.-Y.; Fu, Y.-J. Microwave-assisted aqueous enzymatic extraction of oil from pumpkin seeds and evaluation of its physicochemical properties, fatty acid compositions and antioxidant activities. Food Chem. 2014, 147, 17–24. [Google Scholar] [CrossRef]
- Parashar, A. Lipid content and fatty acid composition of seed oils from six pomegranate cultivars. Int. J. Fruit Sci. 2010, 10, 425–430. [Google Scholar] [CrossRef]
- Hernandez, F.; Melgarejo, P.; Martínez, J.; Martínez, R.; Legua, P. Fatty acid composition of seed oils from important Spanish pomegranate cultivars. Ital. J. Food Sci. 2011, 23, 188. [Google Scholar]
- Kim, N.D.; Mehta, R.; Yu, W.; Neeman, I.; Livney, T.; Amichay, A. Chemopreventive and adjuvant therapeutic potential of pomegranate (Punica granatum) for human breast cancer. Breast Cancer Res. Treat. 2002, 71, 203–217. [Google Scholar] [CrossRef] [PubMed]
- Harkat, H.; Bousba, R.; Benincasa, C.; Atrouz, K.; Gültekin-Özgüven, M.; Altuntaş, Ü.; Demircan, E.; Zahran, H.A.; Özçelik, B. Assessment of biochemical composition antioxidant properties of Algerian date palm (Phoenix dactylifera L.) seed oil. Plants 2022, 11, 381. [Google Scholar] [CrossRef]
- Besbes, S.; Blecker, C.; Deroanne, C.; Lognay, G.; Drira, N.; Attia, H. Quality characteristics and oxidative stability of date seed oil during storage. Food Sci. Technol. Int. 2004, 10, 333–338. [Google Scholar] [CrossRef]
- Yepes-Betancur, D.P.; Márquez-Cardozo, C.J.; Cadena-Chamorro, E.M.; Martinez-Saldarriaga, J.; Torres-León, C.; Ascacio-Valdes, A. Solid-state fermentation—Assisted extraction of bioactive compounds from hass avocado seeds. Food Bioprod. Process. 2021, 126, 155–163. [Google Scholar] [CrossRef]
- Mishra, S.; Manchanda, S.C. Cooking oils for heart health. J. Prev. Cardiol. 2012, 1, 123–131. [Google Scholar]
- Saini, R.K.; Prasad, P.; Sreedhar, R.V.; Akhilender Naidu, K.; Shang, X.; Keum, Y.-S. Omega-3 polyunsaturated fatty acids (PUFAs): Emerging plant and microbial sources, oxidative stability, bioavailability, and health benefits—A review. Antioxidants 2021, 10, 1627. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Marineli, R.; Moraes, É.A.; Lenquiste, S.A.; Godoy, A.T.; Eberlin, M.N.; Maróstica, M.R., Jr. Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.). LWT-Food Sci. Technol. 2014, 59, 1304–1310. [Google Scholar] [CrossRef]
- Zettel, V.; Hitzmann, B. Applications of chia (Salvia hispanica L.) in food products. Trends Food Sci. Technol. 2018, 80, 43–50. [Google Scholar] [CrossRef]
- Afzal, M.F.; Khalid, W.; Armghan Khalid, M.; Zubair, M.; Akram, S.; Kauser, S. Recent industrials extraction of plants seeds oil used in the development of functional food products: A Review. Int. J. Food Prop. 2022, 25, 2530–2550. [Google Scholar] [CrossRef]
- Hashemi, S.M.B.; Amarowicz, R.; Khaneghah, A.M.; Vardehsara, M.S.; Hosseini, M.; Yousefabad, S.H.A. Kangar (Gundelia tehranica) seed oil: Quality measurement and frying performance. J. Food Nutr. Res. 2017, 56, 86–95. [Google Scholar]
- Khoza, M.F.G. The Effectiveness of Natural Antioxidants from Marula and Orange Peels in Stabilizing Emulsions (Sunflower Based Salad Dressing); University of Johannesburg: Johannesburg, South Africa, 2019. [Google Scholar]
- Asadi-Samani, M.; Rafieian-Kopaei, M.; Azimi, N. Gundelia: A systematic review of medicinal and molecular perspective. Pak. J. Biol. Sci. PJBS 2013, 16, 1238–1247. [Google Scholar] [CrossRef]
- Al-Saadi, S.; Qader, K.; Hassan, T. Variations in fatty acid methyl ester contents and composition in oil seeds Gundelia tournefortii L. Asteraceae 2017, 6, 188–192. [Google Scholar] [CrossRef]
- Follegatti-Romero, L.A.; Piantino, C.R.; Grimaldi, R.; Cabral, F.A. Supercritical CO2 extraction of omega-3 rich oil from Sacha inchi (Plukenetia volubilis L.) seeds. J. Supercrit. Fluids 2009, 49, 323–329. [Google Scholar] [CrossRef]
- Maurer, N.E.; Hatta-Sakoda, B.; Pascual-Chagman, G.; Rodriguez-Saona, L.E. Characterization and authentication of a novel vegetable source of omega-3 fatty acids, sacha inchi (Plukenetia volubilis L.) oil. Food Chem. 2012, 134, 1173–1180. [Google Scholar] [CrossRef]
- Tavakoli, J.; Khodaparast, M.H.H.; Aminlari, M.; Kenari, R.E.; Sharif, A. Introducing Pistacia khinjuk (Kolkhoung) fruit hull oil as a vegetable oil with special chemical composition and unique oxidative stability. Chem. Nat. Compd. 2013, 49, 803–810. [Google Scholar] [CrossRef]
- Guarneri, V.; Miles, D.; Robert, N.; Diéras, V.; Glaspy, J.; Smith, I. Bevacizumab and osteonecrosis of the jaw: Incidence and association with bisphosphonate therapy in three large prospective trials in advanced breast cancer. Breast Cancer Res. Treat. 2010, 122, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Hasan, M.; Choyal, P.; Tomar, M.; Gupta, O.P.; Sasi, M. Cottonseed feedstock as a source of plant-based protein and bioactive peptides: Evidence based on biofunctionalities and industrial applications. Food Hydrocoll. 2022, 131, 107776. [Google Scholar] [CrossRef]
- El-Mallah, M.H.; El-Shami, S.M.; Hassanien, M.M.M.; Abdel-Razek, A.G. Effect of chemical refining steps on the minor and major components of cottonseed oil. Agric. Biol. J. N. Am. 2011, 2, 341–349. [Google Scholar] [CrossRef]
- Knez Hrnčič, M.; Ivanovski, M.; Cör, D.; Knez, Ž. Chia Seeds (Salvia hispanica L.): An overview—Phytochemical profile, isolation methods, and application. Molecules 2019, 25, 11. [Google Scholar] [CrossRef]
- Dorni, C.; Sharma, P.; Saikia, G.; Longvah, T. Fatty acid profile of edible oils and fats consumed in India. Food Chem. 2018, 238, 9–15. [Google Scholar] [CrossRef]
- Hossain, M.S.; Kader, M.A.; Goh, K.W.; Islam, M.; Khan, M.S.; Rashid, M.H.-A. Herb and Spices in Colorectal Cancer Prevention and Treatment: A Narrative Review. Front. Pharmacol. 2022, 13, 865801. [Google Scholar] [CrossRef]
- Sánchez-Calvo, B.; Cassina, A.; Mastrogiovanni, M.; Santos, M.; Trias, E.; Kelley, E.E. Olive oil-derived nitro-fatty acids: Protection of mitochondrial function in non-alcoholic fatty liver disease. J. Nutr. Biochem. 2021, 94, 108646. [Google Scholar] [CrossRef]
- Rubilar, J.F.; Cruz, R.M.; Silva, H.D.; Vicente, A.A.; Khmelinskii, I.; Vieira, M.C. Physico-mechanical properties of chitosan films with carvacrol and grape seed extract. J. Food Eng. 2013, 115, 466–474. [Google Scholar] [CrossRef]
- Surini, S.; Nursatyani, K.; Ramadon, D. Gel formulation containing microcapsules of grape seed oil (Vitis vinifera L.) for skin moisturizer. J. Young Pharm. 2018, 10, 41. [Google Scholar] [CrossRef]
- Alberghini, B.; Zanetti, F.; Corso, M.; Boutet, S.; Lepiniec, L.; Vecchi, A. Camelina [Camelina sativa (L.) Crantz] seeds as a multi-purpose feedstock for bio-based applications. Ind. Crops Prod. 2022, 182, 114944. [Google Scholar] [CrossRef]
- Raczyk, M.; Popis, E.; Kruszewski, B.; Ratusz, K.; Rudzińska, M. Physicochemical quality and oxidative stability of linseed (Linum usitatissimum) and camelina (Camelina sativa) cold-pressed oils from retail outlets. Eur. J. Lipid Sci. Technol. 2016, 118, 834–839. [Google Scholar] [CrossRef]
- Kaur, M.; Kaur, R.; Punia, S. Characterization of mucilages extracted from different flaxseed (Linum usitatissiumum L.) cultivars: A heteropolysaccharide with desirable functional and rheological properties. Int. J. Biol. Macromol. 2018, 117, 919–927. [Google Scholar] [CrossRef]
- Karami, N.; Kamkar, A.; Shahbazi, Y.; Misaghi, A. Electrospinning of double-layer chitosan-flaxseed mucilage nanofibers for sustained release of Ziziphora clinopodioides essential oil and sesame oil. LWT 2021, 140, 110812. [Google Scholar] [CrossRef]
- Drinić, Z.; Mudrić, J.; Zdunić, G.; Bigović, D.; Menković, N.; Šavikin, K. Effect of pomegranate peel extract on the oxidative stability of pomegranate seed oil. Food Chem. 2020, 333, 127501. [Google Scholar] [CrossRef]
- Bedel, H.A.; Turgut, N.; Kurtoglu, A.U.; Usta, C. Effects of nutraceutical punicic acid. Indian J. Pharm. Sci. 2017, 79, 328–334. [Google Scholar] [CrossRef]
- Siano, F.; Straccia, M.C.; Paolucci, M.; Fasulo, G.; Boscaino, F.; Volpe, M.G. Physico-chemical properties and fatty acid comosition of pomegranate, cherry and pumpkin seed oils. J. Sci. Food Agric. 2016, 96, 1730. [Google Scholar] [CrossRef] [PubMed]
- Gossell-Williams, M.; Davis, A.; O’connor, N. Inhibition of testosterone-induced hyperplasia of the prostate of sprague-dawley rats by pumpkin seed oil. J. Med. Food 2006, 9, 284–286. [Google Scholar] [CrossRef]
- Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S.Z. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: A roadmap to achieve the best performance. J. Am. Chem. Soc. 2014, 136, 4394–4403. [Google Scholar] [CrossRef]
- Farag, M.A.; Eldin, A.B.; Khalifa, I. Valorization and extraction optimization of Prunus seeds for food and functional food applications: A review with further perspectives. Food Chem. 2022, 388, 132955. [Google Scholar] [CrossRef]
- Jeyakumar, N.; Narayanasamy, B.; Balasubramanian, D.; Viswanathan, K. Characterization and effect of Moringa Oleifera Lam. antioxidant additive on the storage stability of Jatropha biodiesel. Fuel 2020, 281, 118614. [Google Scholar] [CrossRef]
- Kafash-Farkhad, N.; Asadi-Samani, M.; Rafieian-Kopaei, M. A review on phytochemistry and pharmacological effects of Prangos ferulacea (L.) Lindl. Life Sci. J. 2013, 10, 360–367. [Google Scholar]
- Wang, S.; Zhu, F.; Kakuda, Y. Sacha inchi (Plukenetia volubilis L.): Nutritional composition, biological activity, and uses. Food Chem. 2018, 265, 316–328. [Google Scholar] [CrossRef] [PubMed]
- Asnaashari, M.; Bagher Hashemi, S.M.; Mehr, H.M.; Asadi Yousefabad, S.H. Kolkhoung (Pistacia khinjuk) Hull oil and Kernel oil as antioxidative vegetable oils with high oxidative stability and nutritional value. Food Technol. Biotechnol. 2015, 53, 81–86. [Google Scholar] [CrossRef]
- Demir, B.; Gürbüz, M.; Çatak, J.; Uğur, H.; Duman, E.; Beceren, Y. In vitro bioaccessibility of vitamins B1, B2, and B3 from various vegetables. Food Chem. 2023, 398, 133944. [Google Scholar] [CrossRef]
- Khalid, W.; Ali, A.; Arshad, M.S.; Afzal, F.; Akram, R.; Siddeeg, A. Nutrients and bioactive compounds of Sorghum bicolor L. used to prepare functional foods: A review on the efficacy against different chronic disorders. Int. J. Food Prop. 2022, 25, 1045–1062. [Google Scholar] [CrossRef]
- Khalid, W.; Maqbool, Z.; Arshad, M.S.; Kousar, S.; Akram, R.; Siddeeg, A. Plant-derived functional components: Prevent from various disorders by regulating the endocrine glands. Int. J. Food Prop. 2022, 25, 976–995. [Google Scholar] [CrossRef]
- Quílez, M.; Ferreres, F.; López-Miranda, S.; Salazar, E.; Jordán, M.J. Seed oil from Mediterranean aromatic and medicinal plants of the Lamiaceae family as a source of bioactive components with nutritional. Antioxidants 2020, 9, 510. [Google Scholar] [CrossRef]
- Rahim, M.A.; Saeed, F.; Khalid, W.; Hussain, M.; Anjum, F.M. Functional and nutraceutical properties of fructo-oligosaccharides derivatives: A review. Int. J. Food Prop. 2021, 24, 1588–1602. [Google Scholar] [CrossRef]
- Khalid, W.; Iqra Afzal, F.; Rahim, M.A.; Abdul Rehman, A.; Faiz ul Rasul, H. Industrial applications of kale (Brassica oleracea var. sabellica) as a functional ingredient: A review. Int. J. Food Prop. 2023, 26, 489–501. [Google Scholar] [CrossRef]
- Rahim, M.A.; Imran, M.; Khan, M.K.; Haseeb Ahmad, M.; Nadeem, M.; Khalid, W. Omega-3 Fatty Acid Retention and Oxidative Stability of Spray-Dried Chia–Fish-Oil-Prepared Microcapsules. Processes 2022, 10, 2184. [Google Scholar] [CrossRef]
- Mazidi, M.; Shekoohi, N.; Katsiki, N.; Banach, M. Omega-6 fatty acids and the risk of cardiovascular disease: Insights from a systematic review and meta-analysis of randomized controlled trials and a Mendelian randomization study. Arch. Med. Sci. AMS 2022, 18, 466. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.; Zhang, S.; Shen, W.; Chen, H.; Salazar, C.; Schneider, A. Lung function and short-term ambient air pollution exposure: Differential impacts of omega-3 and omega-6 fatty acids. Ann. Am. Thorac. Soc. 2022, 19, 583–593. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Park, H.; Koster, K.L.; Cahoon, R.E.; Nguyen, H.T.; Shanklin, J. Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds. Plant Biotechnol. J. 2015, 13, 38–50. [Google Scholar] [CrossRef]
- Song, I.-B.; Gu, H.; Han, H.-J.; Lee, N.-Y.; Cha, J.-Y.; Son, Y.-K. Omega-7 inhibits inflammation and promotes collagen synthesis through SIRT1 activation. Appl. Biol. Chem. 2018, 61, 433–439. [Google Scholar] [CrossRef]
- García, V.L. The omega 7 as a health strategy for the skin and mucous membranes. EC Nutr. 2019, 14, 484–489. [Google Scholar] [CrossRef]
- Johnson, M.; Bradford, C. Omega-3, omega-6 and omega-9 fatty acids: Implications for cardiovascular and other diseases. J. Glycom. Lipidom. 2014, 4, 000123. [Google Scholar] [CrossRef]
- Farag, M.A.; Gad, M.Z. Omega-9 fatty acids: Potential roles in inflammation and cancer management. J. Genet. Eng. Biotechnol. 2022, 20, 48. [Google Scholar] [CrossRef]
- Adnan, A.; Nadeem, M.; Ahmad, M.H.; Tayyab, M.; Kamran Khan, M.; Imran, M. Effect of lactoferrin supplementation on composition, fatty acids composition, lipolysis and sensory characteristics of cheddar cheese. Int. J. Food Prop. 2023, 26, 437–452. [Google Scholar] [CrossRef]
- Rahim, M.A.; Naeem, M.; Khalid, K.; Imran, M.; Khan, M.K.; Khan, M.I. Effects of different levels of egg protein replacement in weaned diets on hematology, kidney functions, and immunity biomarkers. Food Sci. Nutr. 2023, 11, 1747–1754. [Google Scholar] [CrossRef]
- Pachuau, L.; Devi, C.M.; Goswami, A.; Sahu, S.; Dutta, R.S. Seed oils as a source of natural bio-active compounds. In Natural Bio-active Compounds: Volume 1: Production and Applications; Springer: Singapore, 2019; pp. 209–235. [Google Scholar] [CrossRef]
- Guillaume, D.; Charrouf, Z. Argan oil and other argan products: Use in dermocosmetology. Eur. J. Lipid Sci. Technol. 2011, 113, 403–408. [Google Scholar] [CrossRef]
- Komane, B.M.; Vermaak, I.; Kamatou, G.P.; Summers, B.; Viljoen, A.M. Beauty in Baobab: A pilot study of the safety and efficacy of Adansonia digitata seed oil. Rev. Bras. Farmacogn. 2017, 27, 1–8. [Google Scholar] [CrossRef]
- Parnsamut, N.; Kanlayavattanakul, M.; Lourith, N. (Eds.) Development and efficacy assessments of tea seed oil makeup remover. In Annales Pharmaceutiques Francaises; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Kowalska, M.; Ziomek, M.; Żbikowska, A. Stability of cosmetic emulsion containing different amount of hemp oil. Int. J. Cosmet. Sci. 2015, 37, 408–416. [Google Scholar] [CrossRef]
- Nyam, K.L.; Tan, C.P.; Lai, O.M.; Long, K.; Man, Y.B.C. Enzyme-assisted aqueous extraction of Kalahari melon seed oil: Optimization using response surface methodology. J. Am. Oil Chem. Soc. 2009, 86, 1235–1240. [Google Scholar] [CrossRef]
- Afiq, M.A.; Rahman, R.A.; Man, Y.C.; Al-Kahtani, H.; Mansor, T. Date seed and date seed oil. Int. Food Res. J. 2013, 20, 2035. [Google Scholar]
- Górska, A.; Piasecka, I.; Wirkowska-Wojdyła, M.; Bryś, J.; Kienc, K.; Brzezińska, R. Berry Seeds—A By-Product of the Fruit Industry as a Source of Oils with Beneficial Nutritional Characteristics. Appl. Sci. 2023, 13, 5114. [Google Scholar] [CrossRef]
- Sandha, G.; Swami, V. Jojoba oil as an organic, shelf stable standard oil-phase base for cosmetic industry. Rasayan. J. Chem. 2009, 2, 300–306. [Google Scholar]
- Martin, M.E.; Grao-Cruces, E.; Millan-Linares, M.C.; Montserrat-De la Paz, S. Grape (Vitis vinifera L.) seed oil: A functional food from the winemaking industry. Foods 2020, 9, 1360. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Alexander Leaf, and Norman Salem. Essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids. Ann. Nutr. Metab 1999, 43, 127–130. [Google Scholar] [CrossRef]
- Valojerdi, F.M.; Farasat, A.; Gheibi, N. In vitro and in silico assessment of human serum albumin interactions with omega 3-6-9 fatty acids. J. Appl. Spectrosc. 2022, 88, 1291–1303. [Google Scholar] [CrossRef]
- Elbossaty, W.F. Clinical influence of triple omega fatty acids (Omega-3, 6, 9). Omega 3.6. 2018, 9, 194–209. [Google Scholar] [CrossRef]
- Mercola, J.; Christopher, R.D. Linoleic Acid: A Narrative Review of the Effects of Increased Intake in the Standard American Diet and Associations with Chronic Disease. Nutrients 2023, 15, 3129. [Google Scholar] [CrossRef] [PubMed]
Seed Oil | Active Constituents | Cosmetic Applications | References |
---|---|---|---|
Argon oil | Phenolics, vitamin E, fatty acids (linolenic acid, palmitic acid, linoleic acid, oleic acid, and stearic acid) | Wound healer, emollient, anti-aging, and hair oils (hair nourishing) | [321] |
Baobab oil | Rich in vitamins D, E, and A, and a natural source of D3 | Bath oil preparations, moisturizer, massage oil, hot oil soaks for hair, and nail conditioning | [322] |
Tea seed oil | Richest oil in polyphenols | Hair products (related to some specific hair problems like dandruff, coiled hairs, and split ends) and strong anti-aging ingredient | [323] |
Hemp oil | The highest content of omega-3 and -6 fatty acids | Skin regenerative, in ointments/creams related to eczema and acne, and anti-aging | [324] |
Kalahari melon oil | Rich in E vitamin | Light skin moisturizer, skin regeneration, and foaming agent to treat skin discoloration/tanning and acne/vulgaris | [325] |
Black cumin seed oil | Linoleic acid, phytosterols, and thymoquinone | Beneficial for acne, hair loss, and toothache | [165] |
Date seed oil | Phenolic, PUFA, and carotenoids | In shaving soaps, body creams, shampoos, and sunscreen (protective mechanism against UV-B and UV-A lights) | [326] |
Cranberry seed oil | Omega-3, -6, and -9 fatty acids, PUFA | The highly moisturizing effect, hand and body creams, and hair shampoo | [327] |
Jojoba oil | Wax esters of fatty acids | Hair moisturizer | [328] |
Grape seed oil | PUFAs, linoleic acid, vitamin E, proanthocyanidins, and polyphenols | Light oil, skin moisturizers, acne products, skin lightening agent, promotes hair growth, and anti-aging | [329] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahim, M.A.; Ayub, H.; Sehrish, A.; Ambreen, S.; Khan, F.A.; Itrat, N.; Nazir, A.; Shoukat, A.; Shoukat, A.; Ejaz, A.; et al. Essential Components from Plant Source Oils: A Review on Extraction, Detection, Identification, and Quantification. Molecules 2023, 28, 6881. https://doi.org/10.3390/molecules28196881
Rahim MA, Ayub H, Sehrish A, Ambreen S, Khan FA, Itrat N, Nazir A, Shoukat A, Shoukat A, Ejaz A, et al. Essential Components from Plant Source Oils: A Review on Extraction, Detection, Identification, and Quantification. Molecules. 2023; 28(19):6881. https://doi.org/10.3390/molecules28196881
Chicago/Turabian StyleRahim, Muhammad Abdul, Hudda Ayub, Aqeela Sehrish, Saadia Ambreen, Faima Atta Khan, Nizwa Itrat, Anum Nazir, Aurbab Shoukat, Amna Shoukat, Afaf Ejaz, and et al. 2023. "Essential Components from Plant Source Oils: A Review on Extraction, Detection, Identification, and Quantification" Molecules 28, no. 19: 6881. https://doi.org/10.3390/molecules28196881
APA StyleRahim, M. A., Ayub, H., Sehrish, A., Ambreen, S., Khan, F. A., Itrat, N., Nazir, A., Shoukat, A., Shoukat, A., Ejaz, A., Özogul, F., Bartkiene, E., & Rocha, J. M. (2023). Essential Components from Plant Source Oils: A Review on Extraction, Detection, Identification, and Quantification. Molecules, 28(19), 6881. https://doi.org/10.3390/molecules28196881