Electroassisted Incorporation of Ferrocene within Sol–Gel Silica Films to Enhance Electron Transfer
Abstract
1. Introduction
2. Results and Discussion
2.1. Electrochemical Performance of Bare ITO Electrodes in Ferrocenium Solutions
2.2. Electrochemical Performance of Silica-Modified Electrodes
2.3. Electrochemical Performance of Fc@Silica-Modified Electrodes
2.4. Electrochemical Performance of Fc@Silica-Modified Electrodes for Electron Transfer to Cyt c
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peled, Y.; Shamir, D.; Marks, V.; Kornweitz, H.; Albo, Y.; Yakhin, E.; Meyerstein, D.; Burg, A. Sol-gel matrices for the separation of uranyl and other heavy metals. J. Environ. Chem. Eng. 2022, 10, 108142. [Google Scholar] [CrossRef]
- Gamero-Quijano, A.; Dossot, M.; Walcarius, A.; Scanlon, M.D.; Herzog, G. Electrogeneration of a Free-Standing Cytochrome c—Silica Matrix at a Soft Electrified Interface. Langmuir 2021, 37, 4033–4041. [Google Scholar] [CrossRef]
- Shekarriz, M.; Khadivi, R.; Taghipoor, S.; Eslamian, M. Systematic synthesis of high surface area silica nanoparticles in the sol-gel condition by using the central composite design (CCD) method. Can. J. Chem. Eng. 2014, 92, 828–834. [Google Scholar] [CrossRef]
- Schäfer, H.; Milow, B.; Ratke, L. Synthesis of inorganic aerogels via rapid gelation using chloride precursors. RSC Adv. 2013, 3, 15263–15272. [Google Scholar] [CrossRef]
- Nampi, P.P.; Mohan, V.S.; Sinha, A.K.; Varma, H. High surface area sol-gel nano silica as a novel drug carrier substrate for sustained drug release. Mater. Res. Bull. 2012, 47, 1379–1384. [Google Scholar] [CrossRef]
- Hubbard, P.J.; Benzie, J.W.; Bakhmutov, V.I.; Blümel, J. Ferrocene Adsorbed on Silica and Activated Carbon Surfaces: A Solid-State NMR Study of Molecular Dynamics and Surface Interactions. ACS Appl. Mater. Interfaces 2020, 39, 1080–1091. [Google Scholar] [CrossRef]
- Vilà, N.; André, E.; Ciganda, R.; Ruiz, J.; Astruc, D.; Walcarius, A. Molecular Sieving with Vertically Aligned Mesoporous Silica Films and Electronic Wiring through Isolating Nanochannels. Chem. Mater. 2016, 28, 2511–2514. [Google Scholar] [CrossRef]
- Gamero-Quijano, A.; Huerta, F.; Salinas-Torres, D.; Morallón, E.; Montilla, F. Electrocatalytic Performance of SiO2-SWCNT Nanocomposites Prepared by Electroassisted Deposition. Electrocatalysis 2013, 4, 259–266. [Google Scholar] [CrossRef]
- Gamero-Quijano, A.; Huerta, F.; Morallón, E.; Montilla, F.; Morallon, E.; Montilla, F. Modulation of the silica sol-gel composition for the promotion of direct electron transfer to encapsulated cytochrome c. Langmuir 2014, 30, 10531–10538. [Google Scholar] [CrossRef]
- Celebanska, A.; Tomaszewska, D.; Lesniewski, A.; Opallo, M. Film electrode prepared from oppositely charged silicate submicroparticles and carbon nanoparticles for selective dopamine sensing. Biosens. Bioelectron. 2011, 26, 4417–4422. [Google Scholar] [CrossRef]
- Sanchez, C.; Julián, B.; Belleville, P.; Popall, M. Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem. 2005, 15, 3559–3592. [Google Scholar] [CrossRef]
- Yui, T.; Kobayashi, Y.; Yamada, Y.; Yano, K.; Fukushima, Y.; Torimoto, T.; Takagi, K. Photoinduced electron transfer between the anionic porphyrins and viologens in titania nanosheets and monodisperse mesoporous silica hybrid films. ACS Appl. Mater. Interfaces 2011, 3, 931–935. [Google Scholar] [CrossRef]
- Vancea, A.; Kirkpatrick, I.; Worrall, D.R.; Williams, S.L. Energy and electron transfer reactions on silica gel and titania–silica mixed oxide surfaces. Res. Chem. Intermed. 2019, 45, 4205–4223. [Google Scholar] [CrossRef]
- Worrall, D.R.; Williams, S.L.; Wilkinson, F. Electron transfer reactions of anthracene adsorbed on silica gel. J. Phys. Chem. B 1997, 101, 4709–4716. [Google Scholar] [CrossRef]
- Karman, C.; Vilà, N.; Walcarius, A. Amplified Charge Transfer for Anionic Redox Probes through Oriented Mesoporous Silica Thin Films. ChemElectroChem 2016, 3, 2130–2137. [Google Scholar] [CrossRef]
- Doherty, W.J.; Armstrong, N.R.; Saavedra, S.S. Erratum: Conducting polymer growth in porous sol-gel thin films: Formation of Nanoelectrode arrays and mediated electron transfer to sequestered macromolecules (Chemistry of Materials (2005) 17 (3652–3660)). Chem. Mater. 2005, 17, 6842. [Google Scholar] [CrossRef][Green Version]
- Lad, U.; Kale, G.M.; Bryaskova, R. Sarcosine Oxidase Encapsulated Polyvinyl Alcohol-Silica-AuNP Hybrid Films for Sarcosine Sensing Electrochemical Bioelectrode. J. Electrochem. Soc. 2014, 161, B98–B101. [Google Scholar] [CrossRef]
- Kumar, A.; Hsu, L.H.H.; Kavanagh, P.; Barrière, F.; Lens, P.N.L.; Lapinsonnière, L.; Lienhard, J.H.; Schröder, U.; Jiang, X.; Leech, D. The ins and outs of microorganism-electrode electron transfer reactions. Nat. Rev. Chem. 2017, 1, 24. [Google Scholar] [CrossRef]
- Takahashi, S.; Anzai, J. Recent Progress in Ferrocene-Modified Thin Films and Nanoparticles for Biosensors. Materials 2013, 6, 5742–5762. [Google Scholar] [CrossRef]
- Wang, B.; Anzai, J.I. A facile electrochemical detection of hypochlorite ion based on ferrocene compounds. Int. J. Electrochem. Sci. 2015, 10, 3260–3268. [Google Scholar] [CrossRef]
- Zhan, T.; Feng, X.Z.; An, Q.Q.; Li, S.; Xue, M.; Chen, Z.; Han, G.C.; Kraatz, H.B. Enzyme-free glucose sensors with efficient synergistic electro-catalysis based on a ferrocene derivative and two metal nanoparticles. RSC Adv. 2022, 12, 5072–5079. [Google Scholar] [CrossRef]
- Guven, N.; Apetrei, R.M.; Camurlu, P. Next step in 2nd generation glucose biosensors: Ferrocene-loaded electrospun nanofibers. Mater. Sci. Eng. C 2021, 128, 112270. [Google Scholar] [CrossRef]
- Cass, A.E.G.; Davis, G.; Francis, G.D.; Allen, H.; Hill, O.; Aston, W.J.; Higgins, I.J.; Plotkin, E.V.; Scott, L.D.L.; Turner, A.P.F. Ferrocene-Mediated Enzyme Electrode for Amperometric Determination of Glucose. Anal. Chem. 1984, 56, 667–671. [Google Scholar] [CrossRef]
- Delacote, C.; Bouillon, J.-P.; Walcarius, A. Voltammetric response of ferrocene-grafted mesoporous silica. Electrochim. Acta 2006, 51, 6373–6383. [Google Scholar] [CrossRef]
- Vilà, N.; Walcarius, A. Electrochemical response of vertically-aligned, ferrocene-functionalized mesoporous silica films: Effect of the supporting electrolyte. Electrochim. Acta 2015, 179, 304–314. [Google Scholar] [CrossRef]
- Audebert, P.; Miomandre, F.; Sadki, S.; Sallard, S. Analysis of the gelation process of hybrid silica–zirconia and silica–titania gels using two different grafted electroactive probes. J. Electroanal. Chem. 2006, 598, 15–21. [Google Scholar] [CrossRef]
- Rohlfing, D.F.; Rathouský, J.; Rohlfing, Y.; Bartels, O.; Wark, M. Functionalized mesoporous silica films as a matrix for anchoring electrochemically active guests. Langmuir 2005, 21, 11320–11329. [Google Scholar] [CrossRef]
- Abramczyk, H.; Brozek-Pluska, B.; Kopeć, M. Double face of cytochrome c in cancers by Raman imaging. Sci. Rep. 2022, 12, 2120. [Google Scholar] [CrossRef]
- Martinou, J.C.; Desagher, S.; Antonsson, B. Cytochrome c release from mitochondria: All or nothing. Nat. Cell Biol. 2000, 2, 41–43. [Google Scholar] [CrossRef]
- Manickam, P.; Kaushik, A.; Karunakaran, C.; Bhansali, S. Recent advances in cytochrome c biosensing technologies. Biosens. Bioelectron. 2017, 87, 654–668. [Google Scholar] [CrossRef]
- Ouyang, C.; Aoki, K.J.; Chen, J.; Nishiumi, T. Determination of concentration of saturated ferrocene in aqueous solution. Rep. Electrochem. 2013, 3, 17–23. [Google Scholar] [CrossRef][Green Version]
- Wang, Y.; Rogers, E.I.; Compton, R.G. The measurement of the diffusion coefficients of ferrocene and ferrocenium and their temperature dependence in acetonitrile using double potential step microdisk electrode chronoamperometry. J. Electroanal. Chem. 2010, 648, 15–19. [Google Scholar] [CrossRef]
- Abdallah, M.; Alharbi, A.; Morad, M.; Hameed, A.M.; Al-Juaid, S.S.; Foad, N.; Mabrouk, E.M. Electrochemical studies and the electrode reaction mechanism of ferrocene and naphthoquinones in microemulsion Medium at GC electrode. Int. J. Electrochem. Sci. 2020, 15, 6522–6548. [Google Scholar] [CrossRef]
- Miecznikowski, K.; Cox, J.A. Electroanalysis based on stand-alone matrices and electrode-modifying films with silica sol-gel frameworks: A review. J. Solid State Electrochem. 2020, 24, 2617–2631. [Google Scholar] [CrossRef]
- Sipa, K.; Rudnicki, K.; Vilà, N.; Herzog, G.; Skrzypek, S.; Poltorak, L.; Walcarius, A. Switchable voltammetric response of electrodes modified with a mesoporous silica thin film and a polyelectrolyte multilayer. Electrochem. Commun. 2021, 132, 107142. [Google Scholar] [CrossRef]
- Walcarius, A. Silica-based electrochemical sensors and biosensors: Recent trends. Curr. Opin. Electrochem. 2018, 10, 88–97. [Google Scholar] [CrossRef]
- Brinker, C.F.; Scherer, G.W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, 1st ed.; Academic Press: Cambridge, MA, USA, 1990; ISBN 9780121349707. [Google Scholar]
- Moerz, S.T.; Huber, P. Protein adsorption into mesopores: A combination of electrostatic interaction, counterion release, and van der waals forces. Langmuir 2014, 30, 2729–2737. [Google Scholar] [CrossRef]
- Nasir, T.; Herzog, G.; Hébrant, M.; Despas, C.; Liu, L.; Walcarius, A. Mesoporous Silica Thin Films for Improved Electrochemical Detection of Paraquat. ACS Sens. 2018, 3, 484–493. [Google Scholar] [CrossRef]
- Fery-Forgues, S.; Delavaux-Nicot, B. Ferrocene and ferrocenyl derivatives in luminescent systems. J. Photochem. Photobiol. A Chem. 2000, 132, 137–159. [Google Scholar] [CrossRef]
- Paparazzo, E. XPS and Auger Spectroscopy on mixtures of the oxides SiO2, Al2O3, Fe2O3, and Cr2O3. J. Electron Spectrosc. Relat. Phenom. 1987, 43, 97–112. [Google Scholar] [CrossRef]
- Singh, A.; Chowdhury, D.R.; Paul, A. A kinetic study of ferrocenium cation decomposition utilizing an integrated electrochemical methodology composed of cyclic voltammetry and amperometry. Analyst 2014, 139, 5747–5754. [Google Scholar] [CrossRef]
- Das, J.; Jo, K.; Jae, W.L.; Yang, H. Electrochemical immunosensor using p-aminophenol redox cycling by hydrazine combined with a low background current. Anal. Chem. 2007, 79, 2790–2796. [Google Scholar] [CrossRef]
- Akanda, M.R.; Tamilavan, V.; Park, S.; Jo, K.; Hyun, M.H.; Yang, H. Hydroquinone diphosphate as a phosphatase substrate in enzymatic amplification combined with electrochemical-chemical-chemical redox cycling for the detection of E. coli O157:H7. Anal. Chem. 2013, 85, 1631–1636. [Google Scholar] [CrossRef]
- Kajama, M.N. Hydrogen Permeation Using Nanostructured Silica Membranes. Sustain. Dev. Plan. VII 2015, 1, 447–456. [Google Scholar] [CrossRef]
- Choma, J.; Kloske, M.; Jaroniec, M. An Improved Methodology for Adsorption Characterization of Unmodified and Modified Silica Gels. J. Colloid Interface Sci. 2003, 266, 168–174. [Google Scholar] [CrossRef]
- Scott, D.R.; Becker, R.S. Comprehensive Investigation of the Electronic Spectroscopy and Theoretical Treatments of Ferrocene and Nickelocene. J. Chem. Phys. 1961, 35, 516–531. [Google Scholar] [CrossRef]
- Cardinaud, C.; Rhounna, A.; Turban, G.; Grolleau, B. Analyse XPS Des Surfaces de Si et SiO2 Exposées Aux Plasmas de CHF3 et CHF3—C2F6. Polymérisation et Gravure. Rev. Phys. Appliquée 1989, 24, 309–321. [Google Scholar] [CrossRef]
- Johansson, L.I.; Owman, F.; Mårtensson, P. High-Resolution Core-Level Study of 6H-SiC (0001). Phys. Rev. B 1996, 53, 13793. [Google Scholar] [CrossRef]
- Hollinger, G. Structures Chimique et Electronique de l’interface SiO2-Si. Appl. Surf. Sci. 1981, 8, 318–336. [Google Scholar] [CrossRef]
- Hristova, S.H.; Zhivkov, A.M. Isoelectric Point of Free and Adsorbed Cytochrome c Determined by Various Methods. Colloids Surf. B Biointerfaces 2019, 174, 87–94. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loughlani, R.-I.; Gamero-Quijano, A.; Montilla, F. Electroassisted Incorporation of Ferrocene within Sol–Gel Silica Films to Enhance Electron Transfer. Molecules 2023, 28, 6845. https://doi.org/10.3390/molecules28196845
Loughlani R-I, Gamero-Quijano A, Montilla F. Electroassisted Incorporation of Ferrocene within Sol–Gel Silica Films to Enhance Electron Transfer. Molecules. 2023; 28(19):6845. https://doi.org/10.3390/molecules28196845
Chicago/Turabian StyleLoughlani, Rayane-Ichrak, Alonso Gamero-Quijano, and Francisco Montilla. 2023. "Electroassisted Incorporation of Ferrocene within Sol–Gel Silica Films to Enhance Electron Transfer" Molecules 28, no. 19: 6845. https://doi.org/10.3390/molecules28196845
APA StyleLoughlani, R.-I., Gamero-Quijano, A., & Montilla, F. (2023). Electroassisted Incorporation of Ferrocene within Sol–Gel Silica Films to Enhance Electron Transfer. Molecules, 28(19), 6845. https://doi.org/10.3390/molecules28196845