Primary Products from Fast Co-Pyrolysis of Palm Kernel Shell and Sawdust
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterisation of Biomass
2.2. Effect of Blending Two Biomasses on Product Distribution and Yield
2.3. Effect of Blending Three Biomasses on Product Distribution and Yield
3. Materials and Methods
3.1. Materials and Sample Preparation
3.2. Proximate Analysis
3.3. Compositional Analysis of Biomass
3.4. Calorific Analysis
3.5. Py-GC-MS/FID
4. Conclusions
- The binary blends show that the co-pyrolysis of PKS with MAH or IRO in equal proportions (PKS:MAH-1:1 and PKS:IRO-1:1) decreased the relative yield of phenolic compounds by 19% compared to the pyrolysis of each material individually;
- The saccharides, mainly levoglucosan, were inhibited to a large extent, while HAA was promoted by 43% for the PKS:IRO-1:1 pyrolysis blend;
- The relative yields of 2,6-dimethoxyphenol and furfural were also promoted by 21 and 37%, respectively, for the pyrolysis of the MAH:IRO-1:1 blend;
- No major difference in the relative yield was observed across the different classes of compounds when the woody biomasses were co-pyrolysed together, which is due to their similar chemical structures;
- The ternary blends showed that the pyrolysis of PKS, MAH, and IRO in equal proportions (PKS:MAH:IRO_1:1:1) led to an increase in the relative yield of the saccharides to a large extent, while an increase in the proportion of the woody biomass in the pyrolysis blend (PKS:MAH:IRO-1:2:2) led to a strong inhibition in the relative yield of the saccharides;
- Analysis of the individual volatile compounds formed shows that the pyrolysis of PKS:MAH:IRO-1:2:2 resulted in a decreased yield of phenols by 25%, while the relative yields of HAA and levoglucosan were promoted by 34 and 24%, respectively, for PKS:MAH:IRO_1:1:1.
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Kim, J.-S.; Choi, G.-G. Chapter 11—Pyrolysis of Lignocellulosic Biomass for Biochemical Production. In Waste Biorefinery; Bhaskar, T., Pandey, A., Mohan, S.V., Lee, D.-J., Khanal, S.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 323–348. [Google Scholar]
- Mahadevan, R.; Shakya, R.; Adhikari, S.; Fasina, O.; Taylor, S.E. Fast Pyrolysis of Biomass: Effect of Blending Southern Pine and Switchgrass. Trans. ASABE 2016, 59, 5–10. [Google Scholar] [CrossRef]
- Edmunds, C.W.; Reyes Molina, E.A.; André, N.; Hamilton, C.; Park, S.; Fasina, O.; Adhikari, S.; Kelley, S.S.; Tumuluru, J.S.; Rials, T.G.; et al. Blended Feedstocks for Thermochemical Conversion: Biomass Characterization and Bio-Oil Production from Switchgrass-Pine Residues Blends. Front. Energy Res. 2018, 6, 79. [Google Scholar] [CrossRef]
- Abnisa, F.; Wan Daud, W.M.A. A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil. Energy Convers. Manag. 2014, 87, 71–85. [Google Scholar] [CrossRef]
- Pinto, F.; Paradela, F.; Carvalheiro, F.; Duarte, L.C.; Costa, P.; André, R.N. Co-pyrolysis of pre-treated biomass and wastes to produce added value liquid compounds. Chem. Eng. Trans. 2018, 65, 211–216. [Google Scholar]
- Chen, D.; Gao, D.; Huang, S.; Capareda, S.C.; Liu, X.; Wang, Y.; Zhang, T.; Liu, Y.; Niu, W. Influence of acid-washed pretreatment on the pyrolysis of corn straw: A study on characteristics, kinetics and bio-oil composition. J. Anal. Appl. Pyrolysis 2021, 155, 105027. [Google Scholar] [CrossRef]
- Dong, Q.; Zhang, S.; Zhang, L.; Ding, K.; Xiong, Y. Effects of four types of dilute acid washing on moso bamboo pyrolysis using Py–GC/MS. Bioresour. Technol. 2015, 185, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Usino, D.O.; Sar, T.; Ylitervo, P.; Richards, T. Effect of Acid Pretreatment on the Primary Products of Biomass Fast Pyrolysis. Energies 2023, 16, 2377. [Google Scholar] [CrossRef]
- Khodaparasti, M.S.; Khorasani, R.; Tavakoli, O.; Khodadadi, A.A. Optimal Co-pyrolysis of municipal sewage sludge and microalgae Chlorella Vulgaris: Products characterization, synergistic effects, mechanism, and reaction pathways. J. Clean. Prod. 2023, 390, 135991. [Google Scholar] [CrossRef]
- Nie, Y.; Deng, M.; Shan, M.; Yang, X. Is there interaction between forestry residue and crop residue in co-pyrolysis? Evidence from wood sawdust and peanut shell. J. Therm. Anal. Calorim. 2023, 148, 2467–2481. [Google Scholar] [CrossRef]
- Chen, C.; Qiu, S.; Ling, H.; Zhao, J.; Fan, D.; Zhu, J. Effect of transition metal oxide on microwave co-pyrolysis of sugarcane bagasse and Chlorella vulgaris for producing bio-oil. Ind. Crops Prod. 2023, 199, 116756. [Google Scholar] [CrossRef]
- Muniyappan, D.; Pereira Junior, A.O.; Ramanathan, A. Synergistic recovery of renewable hydrocarbon resources via microwave co-pyrolysis of biomass residue and plastic waste over spent toner catalyst towards sustainable solid waste management. Energy 2023, 278, 127652. [Google Scholar] [CrossRef]
- Park, D.K.; Kim, S.D.; Lee, S.H.; Lee, J.G. Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor. Bioresour. Technol. 2010, 101, 6151–6156. [Google Scholar] [CrossRef]
- Hopa, D.Y.; Alagöz, O.; Yılmaz, N.; Dilek, M.; Arabacı, G.; Mutlu, T. Biomass co-pyrolysis: Effects of blending three different biomasses on oil yield and quality. Waste Manag. Res. 2019, 37, 925–933. [Google Scholar] [CrossRef]
- Wang, W.; Lemaire, R.; Bensakhria, A.; Luart, D. Review on the catalytic effects of alkali and alkaline earth metals (AAEMs) including sodium, potassium, calcium and magnesium on the pyrolysis of lignocellulosic biomass and on the co-pyrolysis of coal with biomass. J. Anal. Appl. Pyrolysis 2022, 163, 105479. [Google Scholar] [CrossRef]
- Vibhakar, C.; Sabeenian, R.S.; Kaliappan, S.; Patil, P.Y.; Patil, P.P.; Madhu, P.; Sowmya Dhanalakshmi, C.; Ababu Birhanu, H. Production and Optimization of Energy Rich Biofuel through Co-Pyrolysis by Utilizing Mixed Agricultural Residues and Mixed Waste Plastics. Adv. Mater. Sci. Eng. 2022, 2022, 8175552. [Google Scholar] [CrossRef]
- Du, J.; Zhang, F.; Hu, J.; Yang, S.; Liu, H.; Wang, H. Co-pyrolysis of industrial hemp stems and waste plastics into biochar-based briquette: Product characteristics and reaction mechanisms. Fuel Process. Technol. 2023, 247, 107793. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, Z.; He, Z.; Wang, S. Machine learning-driven prediction and optimization of monoaromatic oil production from catalytic co-pyrolysis of biomass and plastic wastes. Fuel 2023, 350, 128819. [Google Scholar] [CrossRef]
- Chen, W.-H.; Naveen, C.; Ghodke, P.K.; Sharma, A.K.; Bobde, P. Co-pyrolysis of lignocellulosic biomass with other carbonaceous materials: A review on advance technologies, synergistic effect, and future prospectus. Fuel 2023, 345, 128177. [Google Scholar] [CrossRef]
- Biswas, B.; Sahoo, D.; Sukumaran, R.K.; Krishna, B.B.; Kumar, J.; Reddy, Y.S.; Adarsh, V.P.; Puthiyamadam, A.; Mallapureddy, K.K.; Ummalyma, S.B.; et al. Co-hydrothermal liquefaction of phumdi and paragrass an aquatic biomass: Characterization of bio-oil, aqueous fraction and solid residue. J. Energy Inst. 2022, 102, 247–255. [Google Scholar] [CrossRef]
- Fricler, V.Y.; Nyashina, G.S.; Vershinina, K.Y.; Vinogrodskiy, K.V.; Shvets, A.S.; Strizhak, P.A. Microwave pyrolysis of agricultural waste: Influence of catalysts, absorbers, particle size and blending components. J. Anal. Appl. Pyrolysis 2023, 171, 105962. [Google Scholar] [CrossRef]
- El-Sayed, S.A.; Mostafa, M.E. Pyrolysis and co-pyrolysis of Egyptian olive pomace, sawdust, and their blends: Thermal decomposition, kinetics, synergistic effect, and thermodynamic analysis. J. Clean. Prod. 2023, 401, 136772. [Google Scholar] [CrossRef]
- Ge, Y.; Ding, S.; Kong, X.; Kantarelis, E.; Engvall, K.; Pettersson, J.B.C. Online monitoring of alkali release during co-pyrolysis/gasification of forest and agricultural waste: Element migration and synergistic effects. Biomass Bioenergy 2023, 172, 106745. [Google Scholar] [CrossRef]
- Vasu, H.; Wong, C.F.; Vijiaretnam, N.R.; Chong, Y.Y.; Thangalazhy-Gopakumar, S.; Gan, S.; Lee, L.Y.; Ng, H.K. Insight into Co-pyrolysis of Palm Kernel Shell (PKS) with Palm Oil Sludge (POS): Effect on Bio-oil Yield and Properties. Waste Biomass Valorization 2020, 11, 5877–5889. [Google Scholar] [CrossRef]
- Tauseef, M.; Ansari, A.A.; Khoja, A.H.; Naqvi, S.R.; Liaquat, R.; Nimmo, W.; Daood, S.S. Thermokinetics synergistic effects on co-pyrolysis of coal and rice husk blends for bioenergy production. Fuel 2022, 318, 123685. [Google Scholar] [CrossRef]
- Donaldson, L.; Nanayakkara, B.; Harrington, J. Wood Growth and Development. In Encyclopedia of Applied Plant Sciences, 2nd ed.; Thomas, B., Murray, B.G., Murphy, D.J., Eds.; Academic Press: Oxford, UK, 2017; pp. 203–210. [Google Scholar]
- Tekpetey, S.L.; Essien, C.; Appiah-Kubi, E.; Opuni-Frimpong, E.; Korang, J. Evaluation of the chemical composition and natural durability of natural and plantation grown African Mahogany Khaya ivorensis A. Chev. in Ghana. J. Indian Acad. Wood Sci. 2016, 13, 152–155. [Google Scholar] [CrossRef]
- Usino, D.O.; Supriyanto; Ylitervo, P.; Pettersson, A.; Richards, T. Influence of Temperature and Time on Initial Pyrolysis of Cellulose and Xylan. J. Anal. Appl. Pyrolysis 2020, 147, 104782. [Google Scholar] [CrossRef]
- Supriyanto; Usino, D.O.; Ylitervo, P.; Dou, J.; Sipponen, M.H.; Richards, T. Identifying the primary reactions and products of fast pyrolysis of alkali lignin. J. Anal. Appl. Pyrolysis 2020, 151, 104917. [Google Scholar] [CrossRef]
- Usino, D.O.; Ylitervo, P.; Moreno, A.; Sipponen, M.H.; Richards, T. Primary interactions of biomass components during fast pyrolysis. J. Anal. Appl. Pyrolysis 2021, 159, 105297. [Google Scholar] [CrossRef]
- Sukarni; Sudjito; Hamidi, N.; Yanuhar, U.; Wardana, I.N.G. Potential and properties of marine microalgae Nannochloropsis oculata as biomass fuel feedstock. Int. J. Energy Environ. Eng. 2014, 5, 279–290. [Google Scholar] [CrossRef]
- Mitchual, S.J.; Frimpong-Mensah, K.; Darkwa, N.A. Evaluation of fuel properties of six tropical hardwood timber species for briquettes. J. Sustain. Bioenergy Syst. 2014, 2014, 44225. [Google Scholar] [CrossRef]
- Woodyard, D. Chapter Four—Fuels and Lubes: Chemistry and Treatment. In Pounder’s Marine Diesel Engines and Gas Turbines, 9th ed.; Woodyard, D., Ed.; Butterworth-Heinemann: Oxford, UK, 2009; pp. 87–142. [Google Scholar]
- Abnisa, F.; Wan Daud, W.M.A. Optimization of fuel recovery through the stepwise co-pyrolysis of palm shell and scrap tire. Energy Convers. Manag. 2015, 99, 334–345. [Google Scholar] [CrossRef]
- Mante, O.D.; Babu, S.P.; Amidon, T.E. A comprehensive study on relating cell-wall components of lignocellulosic biomass to oxygenated species formed during pyrolysis. J. Anal. Appl. Pyrolysis 2014, 108, 56–67. [Google Scholar] [CrossRef]
- Zhou, S.; Xue, Y.; Sharma, A.; Bai, X. Lignin Valorization through Thermochemical Conversion: Comparison of Hardwood, Softwood and Herbaceous Lignin. ACS Sustain. Chem. Eng. 2016, 4, 6608–6617. [Google Scholar] [CrossRef]
- Jin, F.; Cao, J.; Zhou, Z.; Moriya, T.; Enomoto, H. Effect of Lignin on Acetic Acid Production in Wet Oxidation of Lignocellulosic Wastes. Chem. Lett. 2004, 33, 910–911. [Google Scholar] [CrossRef]
- Pan, W.-P.; Richards, G.N. Influence of metal ions on volatile products of pyrolysis of wood. J. Anal. Appl. Pyrolysis 1989, 16, 117–126. [Google Scholar] [CrossRef]
- Richards, G.N.; Zheng, G. Influence of metal ions and of salts on products from pyrolysis of wood: Applications to thermochemical processing of newsprint and biomass. J. Anal. Appl. Pyrolysis 1991, 21, 133–146. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, X.; Guo, H.; Wei, T.; Dong, D.; Hu, G.; Hu, S.; Xiang, J.; Liu, Q.; Wang, Y. Pyrolysis of poplar, cellulose and lignin: Effects of acidity and alkalinity of the metal oxide catalysts. J. Anal. Appl. Pyrolysis 2018, 134, 590–605. [Google Scholar] [CrossRef]
- Chang, G.; Miao, P.; Wang, H.; Wang, L.; Hu, X.; Guo, Q. A synergistic effect during the co-pyrolysis of Nannochloropsis sp. and palm kernel shell for aromatic hydrocarbon production. Energy Convers. Manag. 2018, 173, 545–554. [Google Scholar] [CrossRef]
- Zulkafli, A.H.; Hassan, H.; Ahmad, M.A.; Din, A.T.M. Co-pyrolysis of palm kernel shell and polypropylene for the production of high-quality bio-oil: Product distribution and synergistic effect. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Azeez, A.M.; Meier, D.; Odermatt, J.; Willner, T. Fast Pyrolysis of African and European Lignocellulosic Biomasses Using Py-GC/MS and Fluidized Bed Reactor. Energy Fuels 2010, 24, 2078–2085. [Google Scholar] [CrossRef]
- Uchegbulam, I.; Momoh, E.O.; Agan, S.A. Potentials of palm kernel shell derivatives: A critical review on waste recovery for environmental sustainability. Clean. Mater. 2022, 6, 100154. [Google Scholar] [CrossRef]
- Ojha, D.K.; Vinu, R. Fast co-pyrolysis of cellulose and polypropylene using Py-GC/MS and Py-FT-IR. RSC Adv. 2015, 5, 66861–66870. [Google Scholar] [CrossRef]
- Shurong, W. High-Efficiency Separation of Bio-Oil. In Biomass Now; Miodrag Darko, M., Ed.; IntechOpen: Rijeka, Croatia, 2013. [Google Scholar]
- Panwar, N.L.; Paul, A.S. An overview of recent development in bio-oil upgrading and separation techniques. Environ. Eng. Res. 2021, 26, 200382. [Google Scholar] [CrossRef]
- ASTM E871-82; Standard Test Method for Moisture Analysis of Particulate Wood Fuels. ASTM International: West Conshohocken, PA, USA, 2019. [CrossRef]
- ASTM Standard E872-82; Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM E1755-01; Standard Test Method for Ash in Biomass. ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]
- Sluiter, A. Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP): Issue Date, April 2008, Revision Date: August 2012 (Version 08-03-2012); National Renewable Energy Laboratory: Cole Boulevard, CO, USA, 2012. [Google Scholar]
Feedstock | PKS (wt.%) | MAH (wt.%) | IRO (wt.%) |
---|---|---|---|
Proximate analysis | |||
Moisture content | 2.2 ± 0.1 | 3.9 ± 0.1 | 3.8 ± 0.2 |
Ash content | 0.9 ± 0.1 | 2.6 ± 0.4 | 4.8 ± 0.1 |
Volatile matter | 76.7 ± 1.0 | 82.5 ± 0.6 | 78.6 ± 0.1 |
Fixed carbon (by difference) | 20.3 | 11.1 | 12.9 |
Calorific value (HHV, MJ/kg) | 20.7 ± 0.2 | 18.9 ± 0.3 | 19.5 ± 0.2 |
Component analysis | |||
Cellulose | 8.4 ± 1.3 | 27.5 ± 0.6 | 25.0 ± 0.3 |
Hemicellulose (by difference) | 33.5 | 38.0 | 31.8 |
Lignin | 57.2 ± 0.7 | 31.9 ± 1.6 | 38.4 ± 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usino, D.O.; Ylitervo, P.; Richards, T. Primary Products from Fast Co-Pyrolysis of Palm Kernel Shell and Sawdust. Molecules 2023, 28, 6809. https://doi.org/10.3390/molecules28196809
Usino DO, Ylitervo P, Richards T. Primary Products from Fast Co-Pyrolysis of Palm Kernel Shell and Sawdust. Molecules. 2023; 28(19):6809. https://doi.org/10.3390/molecules28196809
Chicago/Turabian StyleUsino, David O., Päivi Ylitervo, and Tobias Richards. 2023. "Primary Products from Fast Co-Pyrolysis of Palm Kernel Shell and Sawdust" Molecules 28, no. 19: 6809. https://doi.org/10.3390/molecules28196809