Coordination Complexes Built from a Ditopic Triazole-Pyrazole Ligand with Antibacterial and Antifungal Performances
Abstract
:1. Introduction
2. Result and Discussion
2.1. Synthesis of the Ligand (L)
2.2. Synthesis of the Complexes
2.3. FT-IR and Diffuse Reflectance Spectroscopies
2.4. Single Crystal X-ray Measurements
2.5. Antibacterial Activities
2.6. Antifungal Activities
3. Experimental Section
3.1. Material and Instrumentation
3.2. X-ray Crystallography
3.3. Synthesis Section
3.4. Antibacterial Activities
3.4.1. Bacterial Strains
3.4.2. Antibacterial Activity Evaluation
3.5. Antifungal Activities
3.5.1. Preparation of the Substances
3.5.2. Preparation of the Fungus
3.5.3. Antifungal Activities Protocol
- D0 diameter (cm) of FOA in the control;
- Dx: diameter (cm) of FOA in the test.
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- El-Sherief, H.A.; Youssif, B.G.; Bukhari, S.N.A.; Abdelazeem, A.H.; Abdel-Aziz, M.; Abdel-Rahman, H.M. Synthesis, anticancer activity and molecular modeling studies of 1, 2, 4-triazole derivatives as EGFR inhibitors. Eur. J. Med. Chem. 2018, 156, 774–789. [Google Scholar] [CrossRef]
- Han, M.İ.; Bekçi, H.; Uba, A.I.; Yıldırım, Y.; Karasulu, E.; Cumaoğlu, A.; Karasulu, H.Y.; Yelekçi, K.; Yılmaz, Ö.; Küçükgüzel, Ş.G. Synthesis, molecular modeling, in vivo study, and anticancer activity of 1, 2, 4-triazole containing hydrazide–hydrazones derived from (S)-naproxen. Arch. Pharm. 2019, 352, 1800365. [Google Scholar] [CrossRef] [PubMed]
- Turky, A.; Sherbiny, F.F.; Bayoumi, A.H.; Ahmed, H.E.; Abulkhair, H.S. Novel 1, 2, 4-triazole derivatives: Design, synthesis, anticancer evaluation, molecular docking, and pharmacokinetic profiling studies. Arch. Pharm. 2020, 353, 2000170. [Google Scholar] [CrossRef] [PubMed]
- Soleymanibrojeni, M.; Shi, H.; Udoh, I.I.; Liu, F.; Han, E.-H. Microcontainers with 3-amino-1, 2, 4-triazole-5-thiol for enhancing anticorrosion waterborne coatings for AA2024-T3. Prog. Org. Coat. 2019, 137, 105336. [Google Scholar] [CrossRef]
- Farsak, M.; Ongun Yüce, A.; Kardaş, G. Anticorrosion effect of 4-amino-5-(4-pyridyl)-4H-1, 2, 4-triazole-3-thiol for mild Steel in HCl Solution. Chem. Select 2017, 2, 3676–3682. [Google Scholar] [CrossRef]
- Sumrra, S.H.; Mushtaq, F.; Khalid, M.; Raza, M.A.; Nazar, M.F.; Ali, B.; Braga, A.A. Synthesis, spectral characterization and computed optical analysis of potent triazole based compounds. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 190, 197–207. [Google Scholar] [CrossRef]
- Karrouchi, K.; Fettach, S.; Radi, S.; Taoufik, J.; Mabkhot, Y.N.; Alterary, S.; Faouzi, M.E.; Ansar, M. Synthesis, characterization, free-radical scavenging capacity and antioxidant activity of novel series of hydrazone, 1, 3, 4-oxadiazole and 1, 2, 4-triazole derived from 3, 5-dimethyl-1H-pyrazole. Lett. Drug Des. Discov. 2019, 16, 712–720. [Google Scholar] [CrossRef]
- Grytsai, O.; Valiashko, O.; Penco-Campillo, M.; Dufies, M.; Hagege, A.; Demange, L.; Martial, S.; Pagès, G.; Ronco, C.; Benhida, R. Synthesis and biological evaluation of 3-amino-1, 2, 4-triazole derivatives as potential anticancer compounds. Bioorg. Chem. 2020, 104, 104271. [Google Scholar] [CrossRef] [PubMed]
- Beyzaei, H.; Khosravi, Z.; Aryan, R.; Ghasemi, B. A green one-pot synthesis of 3 (5)-substituted 1, 2, 4-triazol-5 (3)-amines as potential antimicrobial agents. J. Iran. Chem. Soc. 2019, 16, 2565–2573. [Google Scholar] [CrossRef]
- El-Sherief, H.A.; Youssif, B.G.; Bukhari, S.N.A.; Abdel-Aziz, M.; Abdel-Rahman, H.M. Novel 1, 2, 4-triazole derivatives as potential anticancer agents: Design, synthesis, molecular docking and mechanistic studies. Bioorg. Chem. 2018, 76, 314–325. [Google Scholar] [CrossRef]
- Min, J.; Guo, K.; Suryadevara, P.K.; Zhu, F.; Holbrook, G.; Chen, Y.; Feau, C.; Young, B.M.; Lemoff, A.; Connelly, M.C. Optimization of a novel series of ataxia-telangiectasia mutated kinase inhibitors as potential radiosensitizing agents. J. Med. Chem. 2016, 59, 559–577. [Google Scholar] [CrossRef]
- Romagnoli, R.; Prencipe, F.; Oliva, P.; Baraldi, S.; Baraldi, P.G.; Brancale, A.; Ferla, S.; Hamel, E.; Bortolozzi, R.; Viola, G. 3-Aryl/Heteroaryl-5-amino-1-(3′, 4′, 5′-trimethoxybenzoyl)-1, 2, 4-triazoles as antimicrotubule agents. Design, synthesis, antiproliferative activity and inhibition of tubulin polymerization. Bioorg. Chem. 2018, 80, 361–374. [Google Scholar] [CrossRef]
- Ouyang, X.; Chen, X.; Piatnitski, E.L.; Kiselyov, A.S.; He, H.-Y.; Mao, Y.; Pattaropong, V.; Yu, Y.; Kim, K.H.; Kincaid, J. Synthesis and structure–activity relationships of 1, 2, 4-triazoles as a novel class of potent tubulin polymerization inhibitors. Bioorg. Med. Chem. Lett. 2005, 15, 5154–5159. [Google Scholar] [CrossRef]
- Eastwood, P.; González, J.; Gómez, E.; Caturla, F.; Aguilar, N.; Mir, M.; Aiguadé, J.; Matassa, V.; Balagué, C.; Orellana, A. Indolin-2-one p38α inhibitors III: Bioisosteric amide replacement. Bioorg. Med. Chem. Lett. 2011, 21, 6253–6257. [Google Scholar] [CrossRef]
- Lipinski, C.A. Bioisosteric design of conformationally restricted pyridyltriazole histamine H2-receptor antagonists. J. Med. Chem. 1983, 26, 1–6. [Google Scholar] [CrossRef]
- Garcia, Y. Selected polyazole based coordination polymers displaying functional properties. Adv. Inorg. Chem. 2020, 76, 121–153. [Google Scholar]
- Adarsh, N.N.; Dîrtu, M.M.; Guionneau, P.; Devlin, E.; Sanakis, Y.; Howard, J.A.; Chattopadhyay, B.; Garcia, Y. One-Dimensional Looped Chain and Two-Dimensional Square Grid Coordination Polymers: Encapsulation of Bis (1, 2, 4-Triazole)-trans-cyclohexane into the Voids. Eur. J. Inorg. Chem. 2019, 5, 585–591. [Google Scholar] [CrossRef]
- Zhao, S.; Zheng, T.-R.; Zhang, Y.-Q.; Lv, X.-X.; Li, B.-L.; Zhang, Y. Syntheses, structures and photocatalytic properties of a series of cobalt coordination polymers based on flexible bis (triazole) and dicarboxylate ligands. Polyhedron 2017, 121, 61–69. [Google Scholar] [CrossRef]
- Li, K.; Liu, L.; Zhao, S.; Peng, Y.-F.; Li, B.-L.; Wu, B. Syntheses, structures and photocatalytic properties of two coordination polymers based on bis (1, 2, 4-triazol-4-ylmethyl) benzene and multicarboxylates. Inorg. Chem. Commun. 2015, 52, 34–37. [Google Scholar] [CrossRef]
- Setifi, Z.; Zambon, D.; Setifi, F.; El-Ghozzi, M.; Mahiou, R.; Glidewell, C. Three zinc (II) and cadmium (II) complexes containing 4-amino-3, 5-bis (pyridin-2-yl)-1, 2, 4-triazole and polynitrile ligands: Synthesis, molecular and supramolecular structures, and photoluminescence properties. Acta Crystallogr. C 2017, 73, 674–681. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, X.; Li, R.; Zhang, W.; Bai, H.; Liu, Y.; Liu, Z.; Yu, T.; Liu, Z.; Yang, Y. Twelve cadmium (II) coordination frameworks with asymmetric pyridinyl triazole carboxylate: Syntheses, structures, and fluorescence properties. Cryst. Growth Des. 2019, 19, 3785–3806. [Google Scholar] [CrossRef]
- Petrenko, Y.P.; Piasta, K.; Khomenko, D.M.; Doroshchuk, R.O.; Shova, S.; Novitchi, G.; Toporivska, Y.; Gumienna-Kontecka, E.; Martins, L.M.; Lampeka, R.D. An investigation of two copper (II) complexes with a triazole derivative as a ligand: Magnetic and catalytic properties. RSC Adv. 2021, 11, 23442–23449. [Google Scholar] [CrossRef]
- El Ibrahimi, B.; Soumoue, A.; Jmiai, A.; Bourzi, H.; Oukhrib, R.; El Mouaden, K.; El Issami, S.; Bazzi, L. Computational study of some triazole derivatives (un-and protonated forms) and their copper complexes in corrosion inhibition process. J. Mol. Struct. 2016, 1125, 93–102. [Google Scholar] [CrossRef]
- Singh, K.; Kumar, Y.; Puri, P.; Sharma, C.; Aneja, K.R. Antimicrobial, spectral and thermal studies of divalent cobalt, nickel, copper and zinc complexes with triazole Schiff bases. Arab. J. Chem. 2017, 10, S978–S987. [Google Scholar] [CrossRef]
- Benaissa, H.; Adarsh, N.N.; Robeyns, K.; Zakrzewski, J.J.; Chorazy, S.; Hooper, J.G.; Sagan, F.; Mitoraj, M.P.; Wolff, M.; Radi, S. Exploring “Triazole-Thiourea” Based Ligands for the Self-Assembly of Photoluminescent Hg (II) Coordination Compounds. Crystal Growth Des. 2021, 21, 3562–3581. [Google Scholar] [CrossRef]
- Marinozzi, M.; Marcelli, G.; Carotti, A.; Natalini, B. One-pot, telescoped synthesis of N-aryl-5-aminopyrazoles from anilines in environmentally benign conditions. RSC Adv. 2014, 4, 7019–7023. [Google Scholar] [CrossRef]
- Goebbert, D.J.; Garand, E.; Wende, T.; Bergmann, R.; Meijer, G.; Asmis, K.R.; Neumark, D.M. Infrared spectroscopy of the microhydrated nitrate ions NO3−(H2O)1− 6. J. Phys. Chem. A 2009, 113, 7584–7592. [Google Scholar] [CrossRef] [PubMed]
- Oulmidi, A.; Radi, S.; Idir, A.; Zyad, A.; Kabach, I.; Nhiri, M.; Robeyns, K.; Rotaru, A.; Garcia, Y. Synthesis and cytotoxicity against tumor cells of pincer N-heterocyclic ligands and their transition metal complexes. RSC Adv. 2021, 11, 34742. [Google Scholar] [CrossRef]
- Ketkaew, R.; Tantirungrotechai, Y.; Harding, P.; Chastanet, G.; Guionneau, P.; Marchivie, M.; Harding, D.J. OctaDist: A tool for calculating distortion parameters in spin crossover and coordination complexes. Dalton Trans. 2021, 50, 1086–1096. [Google Scholar] [CrossRef] [PubMed]
- Montazerozohori, M.; Zahedi, S.; Nasr-Esfahani, M.; Naghiha, A. Some new cadmium complexes: Antibacterial/antifungal activity and thermal behavior. J. Ind. Eng. Chem. 2014, 20, 2463–2470. [Google Scholar] [CrossRef]
- Biswas, F.B.; Roy, T.G.; Rahman, M.A.; Emran, T.B. An in vitro antibacterial and antifungal effects of cadmium (II) complexes of hexamethyltetraazacyclotetradecadiene and isomers of its saturated analogue. Asian Pac. J. Trop. Med. 2014, 7, S534–S539. [Google Scholar] [CrossRef]
- Sumrra, S.H.; Zafar, W.; Asghar, M.L.; Mushtaq, F.; Raza, M.A.; Nazar, M.F.; Nadeem, M.A.; Imran, M.; Mumtaz, S. Computational investigation of molecular structures, spectroscopic properties, cholinesterase inhibition and antibacterial activities of triazole Schiff bases endowed metal chelates. J. Mol. Struct. 2021, 1238, 130382. [Google Scholar] [CrossRef]
- You, Z.L.; Zhu, H.L. Syntheses, crystal structures, and antibacterial activities of four Schiff base copper (II), zinc (II), and cadmium (II) complexes derived from 2-[(2-dimethylaminoethylimino) methyl] phenol. Zeit. Anorg. Allg. Chem. 2006, 632, 140–146. [Google Scholar] [CrossRef]
- Chibane, E.; Essarioui, A.; Ouknin, M.; Boumezzourh, A.; Bouyanzer, A.; Majidi, L. Eco-friendly ‘ochratoxin A’control in stored licorice roots–quality assurance perspective. Moroc. J. Chem. 2020, 8, 2456–2465. [Google Scholar]
- Ali, I.; Wani, W.A.; Khan, A.; Haque, A.; Ahmad, A.; Saleem, K.; Manzoor, N. Synthesis and synergistic antifungal activities of a pyrazoline based ligand and its copper (II) and nickel (II) complexes with conventional antifungals. Microb. Pathog. 2012, 53, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Chohan, Z.H.; Pervez, H.; Khan, K.M.; Rauf, A.; Maharvi, G.M.; Supuran, C.T. Antifungal cobalt (II), copper (II), nickel (II) and zinc (II) complexes of furanyl-, thiophenyl-, pyrrolyl-, salicylyl-and pyridyl-derived cephalexins. J. Enzyme Inhib. Med. Chem. 2004, 19, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Kaddouri, Y.; Abrigach, F.; Ouahhoud, S.; Benabbes, R.; El Kodadi, M.; Alsalme, A.; Al-Zaqri, N.; Warad, I.; Touzani, R. Mono-alkylated ligands based on pyrazole and triazole derivatives tested against fusarium oxysporum f. sp. albedinis: Synthesis, characterization, dft, and phytase binding site identification using blind docking/virtual screening for potent fophy inhibitors. Front. Chem. 2020, 8, 559262. [Google Scholar] [PubMed]
- Tighadouini, S.; Radi, S.; Abrigach, F.; Benabbes, R.; Eddike, D.; Tillard, M. Novel β-keto–enol pyrazolic compounds as potent antifungal agents. Design, synthesis, crystal structure, DFT, homology modeling, and docking studies. J. Chem. Inf. Mod. 2019, 59, 1398–1409. [Google Scholar] [CrossRef] [PubMed]
- Kaddouri, Y.; Abrigach, F.; Ouahhoud, S.; Benabbes, R.; El Kodadi, M.; Alsalme, A.; Al-Zaqri, N.; Warad, I.; Touzani, R. Synthesis, characterization, reaction mechanism prediction and biological study of mono, bis and tetrakis pyrazole derivatives against Fusarium oxysporum f. sp. Albedinis with conceptual DFT and ligand-protein docking studies. Bioorg. Chem. 2021, 10, 104696. [Google Scholar] [CrossRef] [PubMed]
- CrysAlis PRO. CrysAlis Pro. V 1.171.37.35; Oxford Diffraction/Agilent Technologies UK Ltd.: Yarnton, UK, 2014. [Google Scholar]
- Sheldrick, G.M. Crystal Structure Solution with ShelXT. Acta Cryst. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Spek, A.L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Cryst. C 2015, 71, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Hurst, J.K. Water oxidation catalyzed by dimeric μ-oxo bridged ruthenium diimine complexes. Coord. Chem. Rev. 2005, 249, 313–328. [Google Scholar] [CrossRef]
- Chatterjee, D.; Mitra, A.; Shepherd, R.E. Oxo-transfer catalysis from t-BuOOH with C–H bond insertion using tridentate Schiff-base-chelate complexes of ruthenium (III). Inorg. Chim. Acta 2004, 357, 980–990. [Google Scholar] [CrossRef]
- Nelson, P.E.; Toussoun, T.A.; Cook, R.J. Fusarium: Diseases, Biology, and Taxonomy; Pennsylvania State University Press: University Park, PA, USA, 1981. [Google Scholar]
- Booth, C.; C.A.B. International; Commonwealth Mycological Institute (Kew, Surrey). The Genus Fusarium; Commonwealth Agricultural Bureaux: Farnham Royal, UK, 1985. [Google Scholar]
- Neri, F.; Mari, M.; Brigati, S. Control of Penicillium expansum by plant volatile compounds. Plant Pathol. 2006, 55, 100–105. [Google Scholar] [CrossRef]
- Hmouni, A.; Hajlaoui, M.; Mlaiki, A. Resistance of Botrytis cinerea to benzimidazoles and dicarboximides in sheltered tomato crops in Tunisia. OEPP. EPPO Bull. 1996, 26, 697–705. [Google Scholar] [CrossRef]
Complex | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Σ° | 74.99 | 100.72 | 91.88 | 93.36 |
Θ° | 237.71 | 316.03 | 357.02 | 283.03 |
Compound | Concentration (mmol/L) | Bacteria | |||
---|---|---|---|---|---|
S. aureus [p] | (St. spp.) [p] | E. coli [n] | (K. spp.) [n] | ||
DMSO | Solvent | 0 #,* | 0 #,* | 0 #,* | 0 #,* |
L | 24.51 | 13 ± 0.38 # | 15 ± 0.64 #,* | 14 ± 0.51 # | 14 ± 1.02 # |
1 | 4.62 | 12 ± 0.25 #,* | 10 ± 0.25 #,* | 12 ± 0.38 # | 22 ± 0.64 #,* |
2 | 5.11 | 24 ± 0.51 #,* | 21 ± 0.64 # | 25 ± 0.25#,* | 16 ± 0.89 #,* |
3 | 7.85 | 40 ± 0.25 * | 24 ± 0.64 #,* | 20 ± 0.38 #,* | 19 ± 1.15 #,* |
4 | 5.91 | 27 ± 0.19 #,* | 26 ± 0.25 #,* | 27 ± 0.25 #,* | 22 ± 0.64 #,* |
Lactic Acid | 44.40 | 17 ± 0.70 # | 21 ± 0.76 # | 15 ± 0.64 # | 17 ± 0.25 # |
Gentamicin | 8.38 | 41 ± 0.35 * | 43 ± 0.38 * | 32 ± 0.38 * | 42 ± 1.02 * |
Compound | Sample Volumes (µL) | Concentration (µmol/L) | Dx (mm) | Inhibition (%) |
---|---|---|---|---|
L | 50 | 81.7 | 85 ± 0.51 | 0 * |
100 | 163.4 | 78 ± 0.62 | 8.24 * | |
200 | 326.8 | 60 ± 0.25 | 29.41 #,* | |
1 | 50 | 15.4 | 85 ± 0.33 | 0 * |
100 | 30.8 | 60 ± 0.21 | 29.41 #,* | |
200 | 61.6 | 52 ± 0.72 | 38.82 #,* | |
2 | 50 | 17 | 85 ± 1.09 | 0 * |
100 | 34 | 73 ± 0.82 | 14.12 #,* | |
200 | 68.1 | 68 ± 0.17 | 20.00 #,* | |
3 | 50 | 26.2 | 64 ± 0.42 | 24.71 #,* |
100 | 52.3 | 50 ± 0.11 | 41.18 # | |
200 | 104.6 | 42 ± 1.11 | 50.58 #,* | |
4 | 50 | 19.7 | 70 ± 0.66 | 17.65 #,* |
100 | 39.3 | 50 ± 0.41 | 41.18 # | |
200 | 78.8 | 36 ± 0.29 | 57.65 #,* | |
Cycloheximide | 50 | 47.4 | 52 ± 0.15 | 38.82 # |
100 | 94.78 | 40 ± 0.15 | 52.94 # | |
200 | 189.6 | 18 ± 0.1 | 78.82 # |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Draoui, Y.; Radi, S.; El Massaoudi, M.; Bahjou, Y.; Ouahhoud, S.; Mamri, S.; Ferbinteanu, M.; Benabbes, R.; Wolff, M.; Robeyns, K.; et al. Coordination Complexes Built from a Ditopic Triazole-Pyrazole Ligand with Antibacterial and Antifungal Performances. Molecules 2023, 28, 6801. https://doi.org/10.3390/molecules28196801
Draoui Y, Radi S, El Massaoudi M, Bahjou Y, Ouahhoud S, Mamri S, Ferbinteanu M, Benabbes R, Wolff M, Robeyns K, et al. Coordination Complexes Built from a Ditopic Triazole-Pyrazole Ligand with Antibacterial and Antifungal Performances. Molecules. 2023; 28(19):6801. https://doi.org/10.3390/molecules28196801
Chicago/Turabian StyleDraoui, Youssef, Smaail Radi, Mohamed El Massaoudi, Yousra Bahjou, Sabir Ouahhoud, Samira Mamri, Marilena Ferbinteanu, Redouane Benabbes, Mariusz Wolff, Koen Robeyns, and et al. 2023. "Coordination Complexes Built from a Ditopic Triazole-Pyrazole Ligand with Antibacterial and Antifungal Performances" Molecules 28, no. 19: 6801. https://doi.org/10.3390/molecules28196801
APA StyleDraoui, Y., Radi, S., El Massaoudi, M., Bahjou, Y., Ouahhoud, S., Mamri, S., Ferbinteanu, M., Benabbes, R., Wolff, M., Robeyns, K., & Garcia, Y. (2023). Coordination Complexes Built from a Ditopic Triazole-Pyrazole Ligand with Antibacterial and Antifungal Performances. Molecules, 28(19), 6801. https://doi.org/10.3390/molecules28196801