Residual Change of Four Pesticides in the Processing of Pogostemon cablin and Associated Factors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Validation
2.2. Pesticides Detected in Samples
2.3. Effects of Processing on Residual Amounts of Pesticides
2.4. Processing Factors and Dietary Exposure Assessment
3. Materials and Methods
3.1. Standards and Chemicals
3.2. Sample Preparation and Processing
3.3. Extraction and Purification
3.4. LC-MS/MS Analytical Conditions
3.5. Determination of Processing Factors and Hazard Quotients
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Bunrathep, S.; Lockwood, G.B.; Songsak, T.; Ruangrungsi, N. Chemical constituents from leaves and cell cultures of Pogostemon cablin and use of precursor feeding to improve patchouli alcohol level. Sci. Asia 2006, 32, 293–296. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; English edition; China Press of Traditional Chinese Medicine: Beijing, China, 2020. [Google Scholar]
- Kumara, M.; Sinniah, U.R. A comprehensive review on the phytochemical constituents and pharmacological activities of Pogostemon cablin benth.: An aromatic medicinal plant of industrial importance. Molecules 2015, 20, 8521–8547. [Google Scholar]
- Junren, C.; Xiaofang, X.; Mengting, L.; Qiuyun, X.; Cheng, P. Pharmacological activities and mechanisms of action of Pogostemon cablin benth: A review. Chin. Med. 2021, 16, 5. [Google Scholar] [CrossRef] [PubMed]
- Croteau, R.; Munck, S.L.; Akoh, C.C.; Fisk, H.J.; Satterwhite, D.M. Biosynthesis of the sesquiterpene patchoulol from farnesyl pyrophosphate in leaf extracts of Pogostemon cablin (patchouli): Mechanistic considerations—Sciencedirect. Arch. Biochem. Biophys. 1987, 256, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Ohloff, G. Scent and Fragrances. The Fascination of Odors and Their Chemical Perspectives; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Carratù, B.; Federici, E.; Gallo, F.R.; Geraci, A.; Guidotti, M.; Multari, G.; Palazzino, G.; Sanzini, E. Plants and parts of plants used in food supplements: An approach to their safety assessment. Ann. Dell’istituto Super. Sanita 2010, 46, 370–388. [Google Scholar]
- Aguilar, F.; Ekramzadeh, K.; Scheper, T.; Beutel, S. Whole-cell production of patchouli oil sesquiterpenes in Escherichia coli: Metabolic engineering and fermentation optimization in solid–liquid phase partitioning cultivation. ACS Omega 2020, 5, 32436–32446. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Blanco, R.; Moreno-Gonzalez, D.; Nortes-Mendez, R.; Garcia-Reyes, J.F.; Molina-Diaz, A.; Gilbert-Lopez, B. Experimental and theoretical determination of pesticide processing factors to model their behavior during virgin olive oil production. Food Chem. 2017, 239, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Li, S.N.; Sun, M.N.; Wang, F.; Xu, X.; Cao, H.Q. Dissipation behavior of three fungicides during the industrial processing of paeoniae radix alba and associated processing factors. Int. J. Environ. Res. Public Health 2019, 16, 2196. [Google Scholar] [CrossRef]
- El-Sheikh, E.-S.A.; Li, D.; Hamed, I.; Ashour, M.-B.; Hammock, B.D. Residue Analysis and Risk Exposure Assessment of Multiple Pesticides in Tomato and Strawberry and Their Products from Markets. Foods 2023, 12, 1936. [Google Scholar] [CrossRef]
- Hakme, E.; Herrmann, S.S.; Poulsen, M.E. Processing factors of pesticide residues in biscuits and their relation to the physicochemical properties of pesticides. Food Addit. Contam. Part A 2020, 37, 1695–1706. [Google Scholar] [CrossRef]
- Bai, A.; Liu, S.; Chen, A.; Chen, W.; Luo, X.; Liu, Y.; Zhang, D. Residue changes and processing factors of eighteen field-applied pesticides during the production of Chinese Baijiu from rice. Food Chem. 2021, 359, 129983. [Google Scholar] [CrossRef]
- Xiao, J.J.; Duan, J.S.; Xu, X.; Li, S.N.; Wang, F.; Fang, Q.K.; Liao, M.; Cao, H.Q. Behavior of pesticides and their metabolites in traditional Chinese medicine Paeoniae Radix Alba during processing and associated health risk. J. Pharm. Biomed. Anal. 2018, 161, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Xiao, O.; Li, M.; Chen, D.; Chen, J.; Simal-Gandara, J.; Dai, X.; Kong, Z. The dissipation, processing factors, metabolites, and risk assessment of pesticides in honeysuckle from field to table. J. Hazard. Mater. 2022, 431, 128519. [Google Scholar] [CrossRef]
- Nie, J.; Miao, S.; Lehotay, S.J.; Li, W.T.; Zhou, H.; Mao, X.H.; Lu, J.W.; Lan, L.; Ji, S. Multi-residue analysis of pesticides in traditional Chinese medicines using gas chromatography-negative chemical ionisation tandem mass spectrometry. Food Addit. Contam. Part A 2015, 32, 1287–1300. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Kong, W.; Zhao, L.; Xiao, Q.; Liu, H.; Zhao, X. A multiresidue method for simultaneous determination of 44 organophosphorous pesticides in Pogostemon cablin and related products using modified quechers sample preparation procedure and gc–fpd. J. Chromatogr. B 2015, 974, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Li, Y.; Liu, C.; Ren, H.; Li, H. Rapid Simultaneous Determination of 43 Pesticide Residues in Schizonepeta tenuifolia by Gas Chromatography Mass Spectrometry. Int. J. Anal. Chem. 2021, 2021, 8934998. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Li, X.Y.; Chang, Q.Y.; Li, Y.; Jin, L.H.; Pang, G.F.; Fan, C.L. Screening of 439 Pesticide Residues in Fruits and Vegetables by Gas Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry Based on TOF Accurate Mass Database and Q-TOF Spectrum Library. J. AOAC Int. 2018, 101, 1631–1638. [Google Scholar] [CrossRef]
- Wu, Y.G.; Guo, Q.S.; Zheng, H.Q. Studies on residuals of organochlorine pesticides and heavy metals in soil of planting base and Pogostemon cablin. China J. Chin. Mater. Medica 2008, 33, 1528. [Google Scholar]
- El-Sheikh, E.-S.A.; Ramadan, M.M.; El-Sobki, A.E.; Shalaby, A.A.; McCoy, M.R.; Hamed, I.A.; Ashour, M.-B.; Hammock, B.D. Pesticide Residues in Vegetables and Fruits from Farmer Markets and Associated Dietary Risks. Molecules 2022, 27, 8072. [Google Scholar] [CrossRef]
- Kaushik, G.; Satya, S.; Naik, S.N. Food processing a tool to pesticide residue dissipation—A review. Food Res. Int. 2009, 42, 26–40. [Google Scholar] [CrossRef]
- Cámara, M.A.; Cermeño, S.; Martínez, G.; Oliva, J. Removal residues of pesticides in apricot, peach and orange processed and dietary exposure assessment. Food Chem. 2020, 325, 126936. [Google Scholar] [CrossRef] [PubMed]
- Noh, H.H.; Shin, H.W.; Kim, D.J.; Lee, J.W.; Jo, S.H.; Kim, D.; Kyung, K.S. Effect of Processing on Residual Buprofezin Levels in Ginseng Products. Int. J. Environ. Res. Public Health 2021, 18, 471. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Gao, F.; Zhang, Y.; Du, P.; Feng, W.; Zheng, X. Effect of processing on the reduction of pesticide residues in a traditional Chinese medicine (TCM). Food Addit. Contam. Part A 2020, 37, 1156–1164. [Google Scholar] [CrossRef] [PubMed]
- Timme, G.; Walzmilylla, B. Effects of Food Preparation and Processing on Pesticide Residues in Commodities of Plant Origin; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Wang, Y.; Gou, Y.; Zhang, L.; Li, C.; Wang, Z.; Liu, Y.X.; Geng, Z.; Shen, M.; Sun, L.; Wei, F.; et al. Levels and Health Risk of Pesticide Residues in Chinese Herbal Medicines. Front. Pharmacol. 2022, 12, 818268. [Google Scholar] [CrossRef]
- Wang, Z.; Jin, H.Y.; Li, Y.L.; Li, J.; Xu, W.Y.; Ma, S.C. Screening of multiple pesticide residues in jinyinhua formula granules. China J. Chin. Mater. Medica 2019, 44, 3287–3296. [Google Scholar]
- Bonnechère, A.; Hanot, V.; Jolie, R.; Hendrickx, M.; Bragard, C.; Bedoret, T.; Van Loco, J. Effect of household and industrial processing on levels of five pesticide residues and two degradation products in spinach. Food Control 2012, 25, 397–406. [Google Scholar] [CrossRef]
- Zuo, T.T.; Wang, Y.; Zhang, L.; Shi, S.M.; Shen, M.R.; Liu, L.N. Guideline of risk assessment of exogenous harmful residues in traditional Chinese medicines. Chin. J. Pharm. Anal. 2019, 39, 1902–1907. (In Chinese) [Google Scholar]
- Wang, Y.B.N.; Liu, A.D.; Li, J.W.; Liu, S.N.; Huang, J.P.; Jin, H.Y.; Zhang, L.; Ma, S.C. The Survey of Traditional Chinese Medicine Consumption among Adult Residents in 11 Provinces and Cities. Chin. Pharm. Aff. 2017, 31, 666–672. (In Chinese) [Google Scholar]
Processing | Pesticide | r | LOD (mg·kg−1) | Recovery/% | Precision, RSD/% | |
---|---|---|---|---|---|---|
Mean | RSD | |||||
P. cablin | Carbendazim | 0.9908 | <0.005 | 101.06 | 5.84 | 3.16 |
Carbofuran | 0.9996 | <0.005 | 103.50 | 6.33 | 2.11 | |
pyraclostrobin | 0.9997 | <0.01 | 83.57 | 5.68 | 6.09 | |
pyridaben | 0.9936 | <0.005 | 75.30 | 4.97 | 1.58 |
Pesticide | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 |
---|---|---|---|---|---|---|---|---|---|
Carbendazim | ND | ND | ND | 0.01 | 0.04 | 0.40 | 0.01 | ND | 0.09 |
Carbofuran | ND | ND | ND | ND | ND | 0.01 | 0.02 | 0.004 | ND |
Pyridaben | ND | ND | ND | 0.01 | ND | 0.93 | 0.01 | 0.01 | ND |
Pyraclostrobin | 0.02 | ND | ND | ND | 0.27 | 0.05 | ND | ND | ND |
Pesticides | PFs | HQ | HQ × PF | Overestimated Value | |
---|---|---|---|---|---|
Carbendazim | Decocting | 0.12 | 5.66 × 10−5 | 0.68 × 10−5 | 8.33 |
75% ethanol extracting | 0.40 | 2.26 × 10−5 | 2.50 | ||
Essential oil | / | / | |||
Carbofuran | Decocting | 0.75 | 1.37 × 10−4 | 1.03 × 10−4 | 1.33 |
75% ethanol extracting | 0.98 | 1.34 × 10−4 | 1.02 | ||
Essential oil | / | / | |||
Pyridaben | Decocting | 0.02 | 2.96 × 10−4 | 0.06 × 10−4 | 50 |
75% ethanol extracting | 0.90 | 2.66 × 10−4 | 1.11 | ||
Essential oil | 0.02 | 0.06 × 10−4 | 50 | ||
Pyraclostrobin | Decocting | 0.04 | 3.38 × 10−5 | 0.14 × 10−5 | 25 |
75% ethanol extracting | 0.94 | 3.18 × 10−5 | 1.06 | ||
Essential oil | / | / |
Pesticide | Retention Time t (min) | Cone Voltage (V) | Quantitative Ion | CE1 | Qualitative Ion | CE2 |
---|---|---|---|---|---|---|
Carbendazim | 1.23 | 30 | 192.1 > 160.1 | 18 | 192.1 > 132.1 | 28 |
Carbofuran | 3.49 | 20 | 222.1 > 123.0 | 21 | 222.1 > 165.1 | 16 |
Pyraclostrobin | 7.33 | 30 | 388.1 > 194.1 | 17 | 388.1 > 296.1 | 19 |
Pyridaben | 9.83 | 2 | 365.2 > 147.1 | 24 | 365.2 > 309.2 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zheng, Z.; Liu, H.; Hou, D.; Li, H.; Li, Y.; Jing, W.; Jin, H.; Wang, Y.; Ma, S. Residual Change of Four Pesticides in the Processing of Pogostemon cablin and Associated Factors. Molecules 2023, 28, 6675. https://doi.org/10.3390/molecules28186675
Liu Y, Zheng Z, Liu H, Hou D, Li H, Li Y, Jing W, Jin H, Wang Y, Ma S. Residual Change of Four Pesticides in the Processing of Pogostemon cablin and Associated Factors. Molecules. 2023; 28(18):6675. https://doi.org/10.3390/molecules28186675
Chicago/Turabian StyleLiu, Yuanxi, Zuntao Zheng, Hongbin Liu, Dongjun Hou, Hailiang Li, Yaolei Li, Wenguang Jing, Hongyu Jin, Ying Wang, and Shuangcheng Ma. 2023. "Residual Change of Four Pesticides in the Processing of Pogostemon cablin and Associated Factors" Molecules 28, no. 18: 6675. https://doi.org/10.3390/molecules28186675
APA StyleLiu, Y., Zheng, Z., Liu, H., Hou, D., Li, H., Li, Y., Jing, W., Jin, H., Wang, Y., & Ma, S. (2023). Residual Change of Four Pesticides in the Processing of Pogostemon cablin and Associated Factors. Molecules, 28(18), 6675. https://doi.org/10.3390/molecules28186675