Sustainable Recovery of Phenolic Compounds from Distilled Rosemary By-Product Using Green Extraction Methods: Optimization, Comparison, and Antioxidant Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of Phenolic Compounds
2.2. Fitting, Adequacy of the Models and Optimization
2.3. Effect of Different Process Parameters on Extraction Responses of Phenolics
2.4. Efficiency of Green Processes on Extraction Yield and Main Phenolic Compounds Contents Compared to Conventional (Soxhlet) Extraction
2.5. Efficiency of Green Processes on TPC, TFCt, and Antioxidant Activity Compared to Soxhlet
2.6. Energy Consumption and Environmental Impact of Different Extraction Processes
3. Materials and Methods
3.1. Materials and Chemicals
3.2. UAE of Phenolic Compounds
3.3. MAE of Phenolic Compounds
3.4. ASE of Phenolic Compounds
3.5. Soxhlet Extraction of Phenolic Compounds
3.6. LC-MS Analysis
3.7. Determination of Total Phenolic Content, Total Flavonoids Contents and Antioxidant Activity
3.8. Experimental Design and Optimization
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hassani, F.V.; Shirani, K.; Hosseinzadeh, H. Rosemary (Rosmarinus officinalis) as a potential therapeutic plant in metabolic syndrome: A review. Naunyn Schmiedebergs Arch. Pharmacol. 2016, 389, 931–949. [Google Scholar] [CrossRef] [PubMed]
- Afonso, M.S.; de O Silva, A.M.; Carvalho, E.B.; Rivelli, D.P.; Barros, S.B.; Rogero, M.M.; Lottenberg, A.M.; Torres, R.P.; Mancini-Filho, J. Phenolic compounds from rosemary (Rosmarinus officinalis L.) attenuate oxidative stress and reduce blood cholesterol concentrations in diet-induced hypercholesterolemic rats. Nutr. Metab. 2013, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Use of rosemary extracts as a food additive—Scientific opinion of the panel on food additives, flavourings, processing aids and materials in contact with food. EFSA J. 2008, 6, 721. [Google Scholar] [CrossRef]
- Veenstra, J.P.; Johnson, J.J. Rosemary (Salvia rosmarinus): Health-promoting benefits and food preservative properties. Int. J. Nutr. 2021, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- European Commission. European Commission Directive 2010/67/EU of 20 October 2010 Amending Directive 2008/84/EC Laying down Specific Purity Criteria on Food Additives Other Than Colours and Sweeteners; European Comission: Brussels, Belgium, 2010. [Google Scholar]
- European Commission. European Commission Directive 2010/69/EU of 22 October 2010 Amending the Annexes to European Parliament and Council Directive 95/2/EC on Food Additives Other Than Colours and Sweeteners; European Comission: Brussels, Belgium, 2010. [Google Scholar]
- European Commission. European Commission Directive (EU) No 231/2012 of 9 March 2012 Laying Down Specifications for Food Additives Listed in Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council; European Comission: Brussels, Belgium, 2012. [Google Scholar]
- Skendi, A.; Irakli, M.; Chatzopoulou, P. Analysis of phenolic compounds in Greek plants of Lamiaceae family by HPLC. J. Appl. Res. Med. Aromat. Plants 2017, 6, 62–69. [Google Scholar] [CrossRef]
- Loussouarn, M.; Krieger-Liszkay, A.; Svilar, L.; Bily, A.; Birtić, S.; Havaux, M. Carnosic acid and carnosol, two major antioxidants of rosemary, act through different mechanisms. Plant Physiol. 2017, 175, 1381–1394. [Google Scholar] [CrossRef]
- Munné-Bosch, S.; Alegre, L. Subcellular compartmentation of the diterpene carnosic acid and its derivatives in the leaves of rosemary. Plant Physiol. 2001, 125, 1094–1102. [Google Scholar] [CrossRef]
- Moreno, S.; Scheyer, T.; Romano, C.S.; Vojnov, A.A. Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radic. Res. 2006, 40, 223–231. [Google Scholar] [CrossRef]
- Doolaege, E.H.A.; Raes, K.; Smet, K.; Andjelkovic, M.; Van Poucke, C.; De Smet, S.; Verhé, R. Characterization of two unknown compounds in methanol extracts of rosemary oil. J. Agric. Food Chem. 2007, 55, 7283–7287. [Google Scholar] [CrossRef]
- Gutiérrez-Pacheco, M.M.; Mazzucotelli, C.; Aguilar, G.; Ayala-Zavala, J.F.; Silva-Espinoza, B. By-products from essential oil extraction. In Plant Food by-Products; Ayala-Zavala, J.F., González-Aguilar, G., Siddiqui, M.W., Eds.; Apple Academic Press: New York, NY, USA, 2018; pp. 289–316. [Google Scholar]
- Almela, L.; Sánchez-Muñoz, B.; Fernández-López, J.A.; Roca, M.J.; Rabe, V. Liquid chromatograpic–mass spectrometric analysis of phenolics and free radical scavenging activity of rosemary extract from different raw material. J. Chromatogr. A 2006, 1120, 221–229. [Google Scholar] [CrossRef]
- Irakli, M.; Skendi, A.; Bouloumpasi, E.; Chatzopoulou, P.; Biliaderis, C.G. LC-MS identification and quantification of phenolic compounds in solid residues from the essential oil industry. Antioxidants 2021, 10, 2016. [Google Scholar] [CrossRef] [PubMed]
- Christaki, S.; Bouloumpasi, E.; Lalidou, E.; Chatzopoulou, P.; Irakli, M. Bioactive profile of distilled solid by-products of rosemary, Greek sage and spearmint as affected by distillation methods. Molecules 2022, 27, 9058. [Google Scholar] [CrossRef] [PubMed]
- Mulinacci, N.; Innocenti, M.; Bellumori, M.; Giaccherini, C.; Martini, V.; Michelozzi, M. Storage method, drying processes and extraction procedures strongly affect the phenolic fraction of rosemary leaves: An HPLC/DAD/MS study. Talanta 2011, 85, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Psarrou, I.; Oreopoulou, A.; Tsimogiannis, D.; Oreopoulou, V. Extraction kinetics of phenolic antioxidants from the hydro distillation residues of rosemary and effect of pretreatment and extraction parameters. Molecules 2020, 25, 4520. [Google Scholar] [CrossRef]
- Nguyen-Kim, M.-T.; Truong, Q.-C.; Nguyen, M.-T.; Cao-Thi, B.-H.; Tong, T.-D.; Dao, T.P.; Tran, T.H.; Van Tan, L.; Le, X.-T. Optimized extraction of polyphenols from leaves of Rosemary (Rosmarinus officinalis L.) grown in Lam Dong province, Vietnam, and evaluation of their antioxidant capacity. Open Chem. 2021, 19, 1043–1051. [Google Scholar] [CrossRef]
- Bicchi, C.; Binello, A.; Rubiolo, P. Determination of phenolic diterpene antioxidants in rosemary (Rosmarinus officinalis L.) with different methods of extraction and analysis. Phytochem. Anal. 2000, 11, 236–242. [Google Scholar] [CrossRef]
- Erkan, N.; Ayranci, G.; Ayranci, E. Antioxidant activities of rosemary (Rosmarinus officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol. Food Chem. 2008, 110, 76–82. [Google Scholar] [CrossRef]
- Roldán-Gutiérrez, J.M.; Ruiz-Jiménez, J.; Luque de Castro, M.D. Ultrasound-assisted dynamic extraction of valuable compounds from aromatic plants and flowers as compared with steam distillation and superheated liquid extraction. Talanta 2008, 75, 1369–1375. [Google Scholar] [CrossRef]
- Bousbia, N.; Abert Vian, M.; Ferhat, M.A.; Petitcolas, E.; Meklati, B.Y.; Chemat, F. Comparison of two isolation methods for essential oil from rosemary leaves: Hydrodistillation and microwave hydrodiffusion and gravity. Food Chem. 2009, 114, 355–362. [Google Scholar] [CrossRef]
- Rodríguez-Rojo, S.; Visentin, A.; Maestri, D.; Cocero, M.J. Assisted extraction of rosemary antioxidants with green solvents. J. Food Eng. 2012, 109, 98–103. [Google Scholar] [CrossRef]
- Carvalho, R.N.; Moura, L.S.; Rosa, P.T.V.; Meireles, M.A.A. Supercritical fluid extraction from rosemary (Rosmarinus officinalis): Kinetic data, extract’s global yield, composition, and antioxidant activity. J. Supercrit. Fluids 2005, 35, 197–204. [Google Scholar] [CrossRef]
- Herrero, M.; Plaza, M.; Cifuentes, A.; Ibáñez, E. Green processes for the extraction of bioactives from Rosemary: Chemical and functional characterization via ultra-performance liquid chromatography-tandem mass spectrometry and in-vitro assays. J. Chromatogr. A 2010, 1217, 2512–2520. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.B.; Barry-Ryan, C.; Martin-Diana, A.B.; Brunton, N.P. Optimisation of accelerated solvent extraction of antioxidant compounds from rosemary (Rosmarinus officinalis L.), marjoram (Origanum majorana L.) and oregano (Origanum vulgare L.) using response surface methodology. Food Chem. 2011, 126, 339–346. [Google Scholar] [CrossRef]
- Miljanovic, A.; Dent, M.; Grbin, D.; Pedisic, S.; Zoric, Z.; Marijanovic, Z.; Jerkovic, I.; Bielen, A. Sage, rosemary, and bay laurel hydrodistillation by-products as a source of bioactive compounds. Plants 2023, 12, 2394. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.d.A.R.; de Oliveira, A.E.; da Conceição, E.C.; Leles, M.I.G. Multiresponse optimization of an extraction procedure of carnosol and rosmarinic and carnosic acids from rosemary. Food Chem. 2016, 211, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Beatrix Sik, B.; Hanczné, E.L.; Kapcsándi, V.; Ajtony, Z. Conventional and nonconventional extraction techniques for optimal extraction processes of rosmarinic acid from six Lamiaceae plants as determined by HPLC-DAD measurement. J. Pharm. Biomed. Anal. 2020, 184, 113173. [Google Scholar]
- Ziani, I.; Bouakline, H.; Yahyaoui, M.I.; Belbachir, Y.; Fauconnier, M.-L.; Asehraou, A.; Tahani, A.; Talhaoui, A.; Ali El Bachiri, A.E. The effect of ethanol/water concentration on phenolic composition, antioxidant, and antimicrobial activities of Rosmarinus tournefortii de Noé hydrodistillation solid residues. J. Food Meas. Charact. 2023, 17, 1602–1615. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F.; Ashraf, M. Effect of Extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 2009, 4, 2167–2180. [Google Scholar] [CrossRef]
- Xia, E.-Q.; Cui, B.; Xu, X.-R.; Song, Y.; Ai, X.-X.; Li, H.-B. Microwave-Assisted Extraction of Oxymatrine from sophora flavescens. Molecules 2011, 16, 7391–7400. [Google Scholar] [CrossRef]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef]
- Stalikas, C.D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 2007, 30, 3268–3295. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Zu, G.; Zhang, R.; Yang, L.; Ma, C.; Zu, Y.; Wang, W.; Zhao, C. Ultrasound-Assisted extraction of carnosic acid and rosmarinic acid using ionic liquid solution from Rosmarinus officinalis. Int. J. Mol. Sci. 2012, 13, 11027–11043. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, S.; Pellegrini, M.; Ricci, A.; Compagnone, D.; Lo Sterzo, C. Chemical composition and antioxidant activity of thyme, hemp and coriander extracts: A comparison study of maceration, soxhlet, UAE and RSLDE techniques. Foods 2020, 9, 1221. [Google Scholar] [CrossRef]
- Patial, P.K.; Sharma, A.; Kaur, I.; Cannoo, D.S. Correlation study among the extraction techniques, phytochemicals, and antioxidant activity of Nepeta spicata aerial part. Biocatal. Agric. Biotechnol. 2019, 20, 101275. [Google Scholar] [CrossRef]
- Rodríguez-Solana, R.; Salgado, J.M.; Domínguez, J.M.; Cortés-Diéguez, S. Comparison of Soxhlet, accelerated solvent and supercritical fluid extraction techniques for volatile (GC-MS and GC/FID) and phenolic compounds (HPLC-ESI/MS/MS) from Lamiaceae species. Phytochem. Anal. 2015, 26, 61–71. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Carvalho, R.H.R.; Galvão, E.L.; Barros, J.Â.C.; Conceição, M.M.d.; Sousa, E. Extraction, fatty acid profile and antioxidant activity of sesame extract (Sesamum Indicum L.). Braz. J. Chem. Eng. 2012, 29, 409–420. [Google Scholar] [CrossRef]
- Karami, Z.; Emam-Djomeh, Z.; Mirzaee, H.A.; Khomeiri, M.; Mahoonak, A.S.; Aydani, E. Optimization of microwave assisted extraction (MAE) and soxhlet extraction of phenolic compound from licorice root. J. Food Sci. Technol. 2015, 52, 3242–3253. [Google Scholar] [CrossRef]
- Chen, F.; Zu, Y.; Yang, L. A novel approach for isolation of essential oil from fresh leaves of Magnolia sieboldii using microwave-assisted simultaneous distillation and extraction. Sep. Purif. Technol. 2015, 154, 271–280. [Google Scholar] [CrossRef]
- Irakli, M.; Bouloumpasi, E.; Christaki, S.; Skendi, A.; Chatzopoulou, P. Modeling and optimization of phenolic compounds from sage (Salvia fruticosa L.) post-distillation residues: Ultrasound- versus microwave-assisted extraction. Antioxidants 2023, 12, 549. [Google Scholar] [CrossRef] [PubMed]
Process | Regression Equation in Uncoded Units | R2 (%) | R2adj (%) | R2pred (%) | Lack-of-Fit | |||
---|---|---|---|---|---|---|---|---|
F | p | |||||||
UAE | EY | = | 23.900 − 0.1285 X1 + 0.03167 X2 + 0.0500 X3 + 0.000528 X12 + 0.00547 X1X3 | 98.1 | 97.0 | 93.5 | 1.72 | 0.417 |
RMA | = | 26.23 + 0.3786 X1 + 4.98 X3 − 0.262 X32 − 0.0262 X1X3 | 88.0 | 83.1 | 70.4 | 1.51 | 0.458 | |
CARO | = | − 60.2 + 0.6521 X1 + 3.782 X2 * + 6.36 X3 * − 0.0418 X22 − 0.467 X32 | 96.8 | 95.1 | 91.2 | 1.09 | 0.558 | |
CARA | = | 121.7 + 1.251 X1 + 4.20 X3 | 88.1 | 86.1 | 79.9 | 9.54 | 0.099 | |
MAE | EY | = | 23.541 − 0.09500 X1 + 0.0355 X2 + 0.2146 X3 | 94.6 | 93.2 | 89.4 | 3.98 | 0.217 |
RMA | = | 27.96 + 0.1594 X1 + 0.701 X2 * − 0.00554 X22 | 94.8 | 93.4 | 90.0 | 1.25 | 0.522 | |
CARO | = | 22.39 + 2.198 X1 + 1.238 X3 − 0.01526 X12 | 95.4 | 94.2 | 90.9 | 17.14 | 0.056 | |
CARA | = | 40.7 + 5.267 X1 + 0.959 X2 * − 11.03 X3 * + 0.939 X32 − 0.02559 X1X2 − 0.0876 X1X3 | 97.8 | 96.1 | 87.6 | 10.93 | 0.086 | |
ASE | EY | = | 31.91 − 0.0996 X1 + 0.837 X3 | 89.1 | 87.3 | 80.8 | 9.54 | 0.099 |
RMA | = | 45.95 + 0.11058 X1 + 0.0418 X2 | 94.3 | 93.4 | 90.3 | 4.18 | 0.208 | |
CARO | = | 86.6 + 1.885 X1 − 1.062 X2 * + 6.84 X3 * − 0.020859 X12 + 0.00716 X22 − 1.391 X32 − 0.00728 X1X2 + 0.1926 X1X3 | 99.4 | 98.6 | 94.5 | 9.36 | 0.099 | |
CARA | = | 221.1 + 2.567 X1 − 2.66 X2 − 0.02196 X12 + 0.01642 X22 + 0.01295 X1X2 | 98.8 | 98.1 | 97.3 | 1.08 | 0.561 |
Process | X1 | X2 | X3 | Composite Desirability | EY (%) | RMA (mg/g) | CARO (mg/g) | CARA (mg/g) | |
---|---|---|---|---|---|---|---|---|---|
Predicted | ASE | 59.0 | 125.0 | 7 | 0.72 | 31.90 ± 0.58 (3.56) | 57.78 ± 0.43 (4.66) | 109.83 ± 2.31 (6.51) | 315.96 ± 6.81 (8.92) |
MAE | 67.4 | 69.8 | 15 | 0.75 | 22.83 ± 0.42 (3.65) | 60.63 ± 0.60 (2.01) | 119.77 ± 4.04 (8.19) | 299.40 ± 11.40 (1.79) | |
UAE | 80.0 | 50.6 | 10 | 0.79 | 23.48 ± 0.27 (5.74) | 59.19 ± 2.69 (6.60) | 93.18 ± 3.06 (0.99) | 263.8 ± 8.93 (8.75) | |
Experimental | ASE | 33.55 ± 2.29 2 | 54.10 ± 3.67 1,2 | 100.16 ± 1.54 1,2 | 278.46 ± 4.24 1 | ||||
MAE | 24.04 ± 1.57 1 | 58.93 ± 1.65 2 | 106.65 ± 3.50 2 | 307.08 ± 30.21 1 | |||||
UAE | 25.47 ± 1.27 1 | 53.91 ± 3.85 1,2 | 94.50 ± 5.57 1 | 298.59 ± 25.52 1 | |||||
Soxhlet | 23.18 ± 0.23 1 | 51.40 ± 0.50 1 | 102.39 ± 1.21 2 | 306.17 ± 16.49 1 |
Extraction Method | Input Power (KW/g Extract) | Extraction Time (min) | Energy Consumption (KWh/g Extract) | CO2 Emissions (kg/g Extract) |
---|---|---|---|---|
UAE | 3.14 | 10 | 0.52 | 0.42 |
MAE | 9.98 | 15 | 2.45 | 2.00 |
ASE | 1.49 | 32 | 0.80 | 0.64 |
Soxhlet | 1.94 | 240 | 7.78 | 6.21 |
Coded Values | |||
---|---|---|---|
−1 | 0 | +1 | |
UAE | |||
Ethanol concentration (%) | 0 | 40 | 80 |
Extraction temperature (°C) | 30 | 45 | 60 |
Extraction time (min) | 2 | 6 | 10 |
MAE | |||
Ethanol concentration (%) | 0 | 40 | 80 |
Extraction temperature (°C) | 40 | 65 | 90 |
Extraction time (min) | 3 | 9 | 15 |
ASE | |||
Ethanol concentration (%) | 0 | 40 | 80 |
Extraction temperature (°C) | 65 | 95 | 125 |
Extraction time (min) | 3 | 5 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irakli, M.; Skendi, A.; Bouloumpasi, E.; Christaki, S.; Biliaderis, C.G.; Chatzopoulou, P. Sustainable Recovery of Phenolic Compounds from Distilled Rosemary By-Product Using Green Extraction Methods: Optimization, Comparison, and Antioxidant Activity. Molecules 2023, 28, 6669. https://doi.org/10.3390/molecules28186669
Irakli M, Skendi A, Bouloumpasi E, Christaki S, Biliaderis CG, Chatzopoulou P. Sustainable Recovery of Phenolic Compounds from Distilled Rosemary By-Product Using Green Extraction Methods: Optimization, Comparison, and Antioxidant Activity. Molecules. 2023; 28(18):6669. https://doi.org/10.3390/molecules28186669
Chicago/Turabian StyleIrakli, Maria, Adriana Skendi, Elisavet Bouloumpasi, Stamatia Christaki, Costas G. Biliaderis, and Paschalina Chatzopoulou. 2023. "Sustainable Recovery of Phenolic Compounds from Distilled Rosemary By-Product Using Green Extraction Methods: Optimization, Comparison, and Antioxidant Activity" Molecules 28, no. 18: 6669. https://doi.org/10.3390/molecules28186669