Advances in Extraction, Purification, and Analysis Techniques of the Main Components of Kudzu Root: A Comprehensive Review
Abstract
:1. Introduction
2. Sample Pretreatment Methods
2.1. Extraction Methods of Pueraria Isoflavone
2.1.1. Solvent Extraction
2.1.2. Microwave-Assisted Extraction (MAE)
2.1.3. Ultrasound-Assisted Extraction (UAE)
2.1.4. Enzyme-Assisted Extraction (EAE)
2.1.5. Extraction Techniques Summary
2.2. Purification Techniques for Preparing Pueraria Isoflavone
2.2.1. Column Chromatography
2.2.2. High-Speed Countercurrent Chromatography (HSCCC)
2.2.3. Solid-Phase Extraction (SPE)
2.2.4. Cloud Point Extraction (CPE)
2.2.5. Purification Techniques Summary
3. Analytical Methods
3.1. LC Coupled with UV
3.2. LC Coupled with MS
3.3. Pressurized Capillary Electrochromatography (pCEC)
3.4. Analytical Methods Summary
4. Outlook
4.1. Application Value and Health Benefits of KR
4.2. Current Trends and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maciejewska-Turska, M.; Pecio, Ł.; Zgórka, G. Isolation of Mirificin and Other Bioactive Isoflavone Glycosides from the Kudzu Root Lyophilisate Using Centrifugal Partition and Flash Chromatographic Techniques. Molecules 2022, 27, 6227. [Google Scholar] [CrossRef] [PubMed]
- Su, G.; He, D.; Xie, W. Response Surface Optimization of Radix Pueraria and Yam Noodle Production Process. Food Ind. 2020, 41, 117–121. [Google Scholar]
- Zhu, D. Study on the preparation of puerarin enzyme by yeast fermentation. Anhui Agric. Sci. Bull. 2021, 82–87. [Google Scholar] [CrossRef]
- Qiao, D.; Chen, Y.; Duan, X.; Chen, C. Preparation and Antioxidant Properties of Pueraria Lobata Juice and Pueraria Beverage. Farm Prod. Process. 2018, 8, 1–6. [Google Scholar] [CrossRef]
- Xu, L.; Liu, J. Research of Ribes nigrum and Pueraria Drinks and Its Anti-fatigue Function. Food Res. Dev. 2017, 38, 132–137. [Google Scholar] [CrossRef]
- Zhu, Z.; Luo, Y.; Xue, J.; Guo, M.; Wang, X. Acute Toxicity Test and Sober and Hepatoproctive Efficacy Evaluation of Radix Puerariae Functional Beverage. Food Res. Dev. 2016, 37, 160–163. [Google Scholar] [CrossRef]
- Zeng, W.; Huang, D.; Xie, S.; Du, B.; Li, P. Research Progress on the Composition, Structure and Efficacy Mechanism of Pueraria Isoflavones. Food Sci. 2023, 44, 353–361. [Google Scholar]
- Mu, P.; An, Q.; Zhang, Y.; Guo, L.; Guo, M.; Zheng, Y.; Zhang, D. The content of 9 isoflavone components in Kudzu herbs was determined by one test and multiple evaluations. China J. Chin. Mater. Medica 2019, 44, 4888–4895. [Google Scholar] [CrossRef]
- Song, W.; Li, Y.; Qiao, X.; Qian, Y.; Ye, M. Chemistry of the Chinese herbal medicine Puerariae Radix (Ge-Gen): A review. J. Chin. Pharm. Sci. 2014, 23, 347–360. [Google Scholar]
- Kinjo, J.; Furusawa, J.; Baba, J.; Takeshita, T.; Yamasaki, M.; Nohara, T. Studies on the Constituents of Pueraria Lobata. III. Isoflavonoids and Related Compounds in the Roots and the Voluble Stems. Chem. Pharm. Bull. 1987, 35, 4846–4850. [Google Scholar] [CrossRef]
- Ji, P.; Zhang, L.; Li, M. Study on the Chemical Constituents in Puerarialobata. China Pharm. 2020, 23, 1184–1188. [Google Scholar]
- Prasain, J.K.; Reppert, A.; Jones, K.; Moore, D.R.; Barnes, S.; Lila, M.A. Identification of Isoflavone Glycosides in Pueraria Lobata Cultures by Tandem Mass Spectrometry. Phytochem. Anal. PCA 2007, 18, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Kayano, S.; Matsumura, Y.; Kitagawa, Y.; Kobayashi, M.; Nagayama, A.; Kawabata, N.; Kikuzaki, H.; Kitada, Y. Isoflavone C-Glycosides Isolated from the Root of Kudzu (Pueraria Lobata) and Their Estrogenic Activities. Food Chem. 2012, 134, 282–287. [Google Scholar] [CrossRef]
- Seong, S.H.; Roy, A.; Jung, H.A.; Jung, H.J.; Choi, J.S. Protein Tyrosine Phosphatase 1B and α-Glucosidase Inhibitory Activities of Pueraria Lobata Root and Its Constituents. J. Ethnopharmacol. 2016, 194, 706–716. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Mi, Q.; Zhang, F.; Yang, Y.; Chen, J.; Li, Y.; Zhang, C.; Yang, G.; Hu, F.; Liu, Z. Two New Isoflavones from Pueraria Lobata and Their Bioactivities. Chem. Nat. Compd. 2018, 54, 851–855. [Google Scholar] [CrossRef]
- Zhang, F.M.; Jing, L.; Mi, Q.L.; Tang, S.Y.; Li, X.M. Three New Isoflavones from the Root of Pueraria Lobata and Their Bioactivities. Heterocycles Int. J. Rev. Commun. Heterocycl. Chem. 2017, 94, 1582–1588. [Google Scholar] [CrossRef]
- Hu, Q.; Xiang, H.; Shan, J.; Jiao, Q.; Lou, H. Two Pairs of Diastereoisomeric Isoflavone Glucosides from the Roots of Pueraria Lobata. Fitoterapia 2020, 144, 104594. [Google Scholar] [CrossRef]
- Zhao, Y.Z.; Zhang, L.; Gupta, P.K.; Tian, F.R.; Mao, K.L.; Qiu, K.Y.; Yang, W.; Lv, C.Z.; Lu, C.T. Using PG-Liposome-Based System to Enhance Puerarin Liver-Targeted Therapy for Alcohol-Induced Liver Disease. AAPS PharmSciTech 2016, 17, 1376–1382. [Google Scholar] [CrossRef]
- Liu, C.-M.; Ma, J.-Q.; Liu, S.-S.; Feng, Z.-J.; Wang, A.-M. Puerarin Protects Mouse Liver against Nickel-Induced Oxidative Stress and Inflammation Associated with the TLR4/P38/CREB Pathway. Chem. Biol. Interact. 2016, 243, 29–34. [Google Scholar] [CrossRef]
- Chen, X.; Huang, C.; Sun, H.; Hong, H.; Jin, J.; Bei, C.; Lu, Z.; Zhang, X. Puerarin Suppresses Inflammation and ECM Degradation through Nrf2/HO-1 Axis in Chondrocytes and Alleviates Pain Symptom in Osteoarthritic Mice. Food Funct. 2021, 12, 2075–2089. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, Y.; Zheng, Y.; Song, J.; Yang, X.; Bi, C.; Zhang, D.; Zhang, Q. In Vitro and in Vivo Anticancer Activity of a Novel Puerarin Nanosuspension against Colon Cancer, with High Efficacy and Low Toxicity. Int. J. Pharm. 2013, 441, 728–735. [Google Scholar] [CrossRef]
- Jia, L.; Hu, Y.; Yang, G.; Li, P. Puerarin Suppresses Cell Growth and Migration in HPVpositive Cervical Cancer Cells by Inhibiting the PI3K/MTOR Signaling Pathway. Exp. Ther. Med. 2019, 18, 543–549. [Google Scholar] [CrossRef]
- Yu, Z.; Li, W. Induction of Apoptosis by Puerarin in Colon Cancer HT-29 Cells. Cancer Lett. 2006, 238, 53–60. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Y.; Tang, G.; Ma, Y. Puerarin Inhibits the Osteoclastogenesis by Inhibiting RANKL-Dependent and -Independent Autophagic Responses. BMC Complement. Altern. Med. 2019, 19, 269. [Google Scholar] [CrossRef]
- Liu, L.J.; Liu, L.Q.; Bo, T.; Li, S.J.; Zhu, Z.; Cui, R.R.; Mao, D.A. Puerarin Suppress Apoptosis of Human Osteoblasts via ERK Signaling Pathway. Int. J. Endocrinol. 2013, 2013, 786574. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Shangguan, Z.; Liu, Y.; Wang, J.; Li, X.; Yang, S.; Liu, S. Puerarin Protects Pancreatic β-Cell Survival via PI3K/Akt Signaling Pathway. J. Mol. Endocrinol. 2014, 53, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Liu, D.; Yi, X.; Xu, T.; Liu, Y.; Luo, Y.; Yin, D.; He, M. The Protective Effects of Puerarin in Cardiomyocytes from Anoxia/Reoxygenation Injury Are Mediated by PKC. Cell Biochem. Funct. 2014, 32, 378–386. [Google Scholar] [CrossRef]
- Wan, H.; Zhu, H.; Tian, M.; Hu, X.; Yang, J.; Zhao, C.; Zhang, H. Protective Effect of Chuanxiongzine-Puerarin in a Rat Model of Transient Middle Cerebral Artery Occlusion-Induced Focal Cerebral Ischemia. Nucl. Med. Commun. 2008, 29, 1113. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Ning, H.; Cai, S.A.; Liu, X.W.; Li, A.Q.; Cheng, C.F.; Yin, H.; Li, L.R.; Mai, Y.P.; Liu, S.M. Contributions of Nrf2 to Puerarin Prevention of Cardiac Hypertrophy and Its Metabolic Enzymes Expression in Rats. J. Pharmacol. Exp. Ther. 2018, 366, 458–469. [Google Scholar] [CrossRef]
- Lin, Y.H.; Ni, X.B.; Zhang, J.W.; Ou, C.W.; Chen, M.S. Effect of Puerarin on Action Potential and Sodium Channel Activation in Human Hypertrophic Cardiomyocytes. Biosci. Rep. 2020, 40, BSR20193369. [Google Scholar] [CrossRef]
- Deng, Y.; Lei, T.; Li, H.; Mo, X.; Wang, Z.; Ou, H. ERK5/KLF2 Activation Is Involved in the Reducing Effects of Puerarin on Monocyte Adhesion to Endothelial Cells and Atherosclerotic Lesion in Apolipoprotein E-Deficient Mice. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 2590. [Google Scholar] [CrossRef] [PubMed]
- Li, C.H.; Gong, D.; Chen, L.Y.; Zhang, M.; Tang, C.K. Puerarin Promotes ABCA1-Mediated Cholesterol Efflux and Decreases Cellular Lipid Accumulation in THP-1 Macrophages. Eur. J. Pharmacol. 2017, 811, 74. [Google Scholar] [CrossRef]
- Li, X.; Lin, Y.; Zhou, H.; Yao, L.; Zhou, M.S. Puerarin Protects against Endothelial Dysfunction and End-Organ Damage in Ang II-Induced Hypertension. Clin. Exp. Hypertens. 2017, 39, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Yuan, R.; Chen, X.; Xin, Q.; Wang, Y.; Shang, X.; Cong, W.; Chen, K. Puerarin Reduces Blood Pressure in Spontaneously Hypertensive Rats by Targeting ENOS. Am. J. Chin. Med. 2019, 47, 19–38. [Google Scholar] [CrossRef]
- Jin, F.; Qi, H. Protective effect of genistein on monocrotaline induced pulmonary hypertension in rats by inhibiting oxidative stress. Drug Eval. Res. 2020, 43, 695–699. [Google Scholar]
- Beavers, D.P.; Beavers, K.M.; Miller, M.; Stamey, J.; Messina, M.J. Exposure to Isoflavone-Containing Soy Products and Endothelial Function: A Bayesian Meta-Analysis of Randomized Controlled Trials. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Min, E.; Wang, B.; Sun, L. Effects of Pueraria mirifica extract on blood pressure and intestinal flora in mice on a high-salt diet. Acta Nutr. Sin. 2020, 42, 491–496, 504. [Google Scholar] [CrossRef]
- Yang, Q.; Fu, Y.; Ren, J.; Wang, C.; Gao, L.; Ding, L. Research progress on application and mechanisms of Puerariae Lobatae Radix in treatment of physical disease comorbid with depression. Chung Ts′ao Yao 2023, 54, 4701–4712. [Google Scholar]
- Szulc, M.; Kujawski, R.; Baraniak, J.; Kania-Dobrowolska, M.; Kamińska, E.; Gryszczyńska, A.; Czora-Poczwardowska, K.; Winiarska, H.; Mikołajczak, P.Ł. Differential Influence of Pueraria Lobata Root Extract and Its Main Isoflavones on Ghrelin Levels in Alcohol-Treated Rats. Pharmaceuticals 2021, 15, 25. [Google Scholar] [CrossRef]
- Chen, K.; Wei, P.; Shi, L. Research progress on the pharmacological effects of pueraria isoflavones. Drug Eval. Res. 2022, 45, 2602–2610. [Google Scholar]
- Zhou, B.-G.; Zhao, H.-M.; Lu, X.-Y.; Zhou, W.; Liu, F.-C.; Liu, X.-K.; Liu, D.-Y. Effect of Puerarin Regulated MTOR Signaling Pathway in Experimental Liver Injury. Front. Pharmacol. 2018, 9, 1165. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Ye, Y.; Zhao, X.; Sun, X. Research Progress into Multiple Uses for Puerariae lobatae and Its Application in Food. Food Res. Dev. 2021, 42, 197–205. [Google Scholar]
- Wathon, M.H.; Beaumont, N.; Rayner, C.M.; Blackburn, R.S. Extraction of Anthocyanins from Aronia Melanocarpa Skin Waste as A Sustainable Source of Natural Colorants. In Proceedings of the BIOColours Conference 2018, Breda, The Netherlands, 28 May 2018. [Google Scholar]
- Zhou, Y.; Staniszewska, I.; Liu, Z.L.; Zielinska, D.; Zielińska, M. Microwave-Vacuum-Assisted Drying of Pretreated Cranberries: Drying Kinetics, Bioactive Compounds and Antioxidant Activity. LWT-Food Sci. Technol. 2021, 146, 111464. [Google Scholar] [CrossRef]
- Álvarez, A.; Terreros, S.; Cocero, M.J.; Mato, R.B. Microwave Pretreatment for the Extraction of Anthocyanins from Saffron Flowers: Assessment of Product Quality. Antioxidants 2021, 10, 1054. [Google Scholar] [CrossRef] [PubMed]
- Thapa, P.; Kim, H.M.; Hong, J.P.; Kim, R.; Paudel, S.B.; Choi, H.; Jang, D.S.; Nam, J.W. Absolute Quantification of Isoflavones in the Flowers of by QHNMR. Plants 2022, 11, 548. [Google Scholar] [CrossRef]
- Zhu, J.; Cheng, H.; Zhou, M.; Li, S.; Tang, T.; Feng, J. Determining Three Isoflavones from Pueraria Lobata Using Magnetic ZIF-8 Nanoparticle-Based Solid-Phase Extraction and Pressurized Capillary Electrochromatography. J. Pharm. Biomed. Anal. 2022, 212, 114592. [Google Scholar] [CrossRef]
- Xu, Z.; Talpur, Z.H.; Yang, W.; Xiong, Y.; Wu, T.; Zhang, Y.; Shen, X.; Du, Y. Dual-Spectrum Online Monitoring of Puerarin and Total Flavonoids Contents during the Extraction Process of Pueraria Lobata. Talanta 2022, 248, 123608. [Google Scholar] [CrossRef]
- Ahn, S.-J.; Kim, H.J.; Lee, A.; Min, S.-S.; In, S.; Kim, E. Determination of 12 Herbal Compounds for Estimating the Presence of Angelica Gigas Root, Cornus Fruit, Licorice Root, Pueraria Root, and Schisandra Fruit in Foods by LC-MS/MS. Food Addit. Contam. Part Chem. Anal. Control Expo. Risk Assess. 2020, 37, 1437–1448. [Google Scholar] [CrossRef]
- Huang, Z.-Y.; Shen, Q.-N.; Li, P.; Su, L.-L.; Chen, L.-H.; Lu, T.-L.; Mao, C.-Q. Quality research of Puerariae Lobatae Radix from different habitats with UPLC fingerprint and determination of multi-component content. Zhongguo Zhong Yao Za Zhi Zhongguo Zhongyao Zazhi China J. Chin. Mater. Medica 2019, 44, 2051–2058. [Google Scholar] [CrossRef]
- Qu, L.; Song, K.; Zhang, Q.; Guo, J.; Huang, J. Puerariae Lobatae Simultaneous Determination of Six Isoflavones from Radix by CPE-HPLC and Effect of Puerarin on Tyrosinase Activity. Molecules 2020, 25, 344. [Google Scholar] [CrossRef]
- Mocan, A.; Carradori, S.; Locatelli, M.; Secci, D.; Cesa, S.; Mollica, A.; Riga, S.; Angeli, A.; Supuran, C.T.; Celia, C.; et al. Bioactive Isoflavones from Pueraria Lobata Root and Starch: Different Extraction Techniques and Carbonic Anhydrase Inhibition. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2018, 112, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, Y. Determination of Puerarin and Daidzein in Puerariae Radix by Non-aqueous Capillary Electrophoresis. China Pharm. 2020, 1632, 588–590. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, W.; Wang, J.; Liu, Q.; Chen, Q. Extraction and Bioactivity Analysis of Puerarin. Food Res. Dev. 2022, 43, 107–112. [Google Scholar]
- Cui, Y.; Liu, X.; Cai, F. Study on the Ultrasonic Extraction Process of Puerarin and Daidzein in Puerariae Lobatae Radix. China Pharm. 2018, 27, 7–9. [Google Scholar]
- Wang, R.; Ou, T.; Li, Z. Study on the Technology of Ultrasonic-Assisted Total Flavonoids Extraction of Pueraria lobata. J. Zhaotong Univ. 2019, 41, 19–22. [Google Scholar]
- Hu, Y.; Shan, Y.; Yao, Z.; Li, G.; Zhong, Y. Microwave-assisted Extraction of Flavonoids from Radix Pueraria in Dabie Mountains. Guangzhou Chem. Ind. 2019, 47, 92–95. [Google Scholar]
- Liu, Y.; Yin, M.; Xu, T.; Duan, H.; Cheng, M. Comparison of the Content of Six Isoflavones in the Mealy-like Roots and the Wooden-like Roots of Pueraria lobata from Anhui Province, China. J. Anhui Univ. Chin. Med. 2019, 38, 77–81. [Google Scholar] [CrossRef]
- Wang, L.; Guo, S.; Zou, H.; Song, Y.; Xie, C. Content Determination of Puerarin in Kudzu. Guangzhou Chem. Ind. 2021, 49, 73–75. [Google Scholar] [CrossRef]
- Tan, Z.; Wu, F.; Zhang, M.; Shang, X.; Yan, H.; Wang, Y.; Xiao, L. Determination of Germplasm Resources Total Flavonoids in Pueraria Lobata and P. Thomsonii from Different Areas of Guangxi. Guangdong Chem. Ind. 2021, 48, 159–161. [Google Scholar]
- Zhang, N.; Wang, Y.; Zhao, Y. Determination of nine isoflavones in pueraria foods by pressurized capillary electrochromatography. China Food Addit. 2022, 33, 204–210. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Ling, X. Application of Polydopamine Graphene Oxide Modified Electrode in the Analysis of Puerarin and Daidzein in Pueraria. J. Hubei Univ. Med. 2021, 40, 446–453. [Google Scholar] [CrossRef]
- Zeng, H.; Li, J.; Chen, C.; He, X.; Chen, X.; Yu, J.; Wang, X. Optimization of Extraction Technology and Content Determination of Total Flavonoids in Aerial Parts of Three Kinds of Pueraria Lobate from Jiangxi Province. Pract. Clin. J. Integr. Tradit. Chin. West. Med. 2019, 19, 173–176. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Zhang, C.; Wang, X.; Liu, X.; Liu, H.; Ye, Q.; Guo, L. Study on microwave extraction process of total flavonoids from Pueraria lobata and its antioxidant activity. Lishizhen Med. Mater. Medica Res. 2020, 31, 68–72. [Google Scholar]
- Yu, W.; Zhao, N.; Zhang, Y. Determination the extraction process of puerarin from pueraria iobata by response surface methodology. Cereals Oils 2021, 34, 108–111, 116. [Google Scholar] [CrossRef]
- Yang, J.; Nie, Y.; Chen, S.; Li, P.; Li, Z.; Li, X. Determination and Extraction of Puerarin in Gegen by Microwave-Assisted Extraction Process Optimized by Response Surface Methodology. Contemp. Chem. Ind. 2018, 47, 64–67. [Google Scholar] [CrossRef]
- Gong, P.; Zhai, P.; Zhang, M.; Chen, X.; Wang, X.; Chen, F. Optimization of extraction process of total flavonoids from Pueraria lobata and its antioxidant activity. China Brew. 2022, 41, 172–176. [Google Scholar]
- Xu, W.; Du, C.; Xu, S.; Li, Q.; Su, L.; Yang, G.; Jiang, H. Quantitative determination of 4 isoflavones of Pueraria lobata and Pueraria thomsonii from Zitong in Sichuan province by HPLC. Hubei Agric. Sci. 2019, 5, 114–116, 167. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhao, Y.; Che, Y.; Wang, Z. Simultaneous determination of isoflavonoids in Radix Puerariae Lobatae from different habitats and different drying methods by HPLC. J. Yunnan Minzu Univ. Sci. Ed. 2022, 31, 157–161. [Google Scholar]
- Zhou, L.; Pan, X.; Qiu, W.; Wang, Y.; Zou, L.; Li, C.; Lu, M. Determination of 6 isoflavones in Puerariae lobatae Radix and Puerariae thomsonii Radix by HPLC. J. Chin. Med. Mater. 2021, 44, 2374–2378. [Google Scholar] [CrossRef]
- Xu, G.; Xiong, X.; Wu, C.; Zhang, Z.; Sha, J. Simultaneous determination of 5 isoflavones in Radix puerariae by HPLC. Northwest Pharm. J. 2020, 35, 29–32. [Google Scholar] [CrossRef]
- Wang, S.; Wen, Z.; Chen, Q.; Chen, L.; Zheng, Z. β-cyclodextrin-sensitized Three-dimensional Fluorescence Spectra of Puerarin and Its Application to Determination of Puerarin in Radix Puerariae Foods. J. Chin. Inst. Food Sci. Technol. Hydrolys. Soybean Isoflavones Catalyzed Cell 2018, 18, 219–224. [Google Scholar] [CrossRef]
- Tang, T.; Zhu, J.; Zhou, M.; Huang, F.; Huang, H.; Cheng, H. Component Analysis of Volatile Oils from Pueraria lobata Stems and Study on Extraction Technology of Total Flavonoids from Pueraria lobata Roots. China Condiment 2022, 47, 182–187. [Google Scholar] [CrossRef]
- Bu, D.; Zhang, D.; Wang, C. Optimization of the Extraction Process of Pueraria Lobata and Rhizoma Chuanxiong by Response Surface Methodology. J. Liaoning Univ. Tradit. Chin. Med. 2019, 21, 54–57, 225. [Google Scholar] [CrossRef]
- Li, L.; Yu, D.; Su, S.; Wang, G. Process of Microwave-Assisted Ionic Liquid Extraction of Puerarin from Pueraria lobata Radix. Food Ind. 2020, 41, 131–135. [Google Scholar]
- Wang, X.; Li, S.; Song, A.; Han, F. Determination of four kinds of Isoflavonoids in Puerariae Radix. Yunnan Chem. Technol. 2021, 48, 61–63. [Google Scholar]
- Li, H.; Yang, C. Determination of Total Flavonoids and Puerarin in Pueraria Lobata from Four Main Producing Areas. J. Shaanxi Univ. Chin. Med. 2018, 41, 61–64. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Yang, Y.; Xiao, J.; Zhou, H. Optimization of Microwave-assisted Enzymatic Extraction Technology of Puerarin from Radix Puerariae by Response Surface Methodology. Food Ferment. Sci. Technol. 2018, 54, 13–17. [Google Scholar]
- Tan, H. Extraction Method of Effective Components of Pueraria. Foreign Med. Pharm. 1975, 1, 55. [Google Scholar]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef]
- Aboushanab, S.A.; Shevyrin, V.A.; Slesarev, G.P.; Melekhin, V.V.; Shcheglova, A.V.; Makeev, O.G.; Kovaleva, E.G.; Kim, K.H. Antioxidant and Cytotoxic Activities of Kudzu Roots and Soy Molasses against Pediatric Tumors and Phytochemical Analysis of Isoflavones Using HPLC-DAD-ESI-HRMS. Plants 2022, 11, 741. [Google Scholar] [CrossRef]
- Fan, J.-P.; Cao, J.; Zhang, X.-H.; Huang, J.-Z.; Kong, T.; Tong, S.; Tian, Z.-Y.; Xie, Y.-L.; Xu, R.; Zhu, J.-H. Optimization of Ionic Liquid Based Ultrasonic Assisted Extraction of Puerarin from Radix Puerariae Lobatae by Response Surface Methodology. Food Chem. 2012, 135, 2299–2306. [Google Scholar] [CrossRef] [PubMed]
- Duru, K.C.; Slesarev, G.P.; Aboushanab, S.A.; Kovalev, I.S.; Zeidler, D.M.; Kovaleva, E.G.; Bhat, R. An Eco-Friendly Approach to Enhance the Extraction and Recovery Efficiency of Isoflavones from Kudzu Roots and Soy Molasses Wastes Using Ultrasound-Assisted Extraction with Natural Deep Eutectic Solvents (NADES). Ind. Crops Prod. 2022, 182, 114886. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, J.; Zhao, Y.; Yu, L.; He, Y.; Wan, H.; Li, C. Screening, Optimization, and Bioavailability Research of Natural Deep Eutectic Solvent Extracts from Radix Pueraria. Molecules 2021, 26, 729. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Kuang, M.; Tian, H.; Wang, H.; Zhang, T.; Yang, F.; Hou, Z.; Li, Z. Optimization of Puerarin Extraction Process in Pueraria and Antioxidant Activity of Its Extract. Chin. Tradit. Pat. Med. 2018, 40, 2430–2436. [Google Scholar]
- Song, Y.; Guan, H.; Liu, B.; Gong, D.; Zhang, N. Study on Ionic Liquid-Ultrasound-Assisted Extraction of Pueraria Flavonoids and Antioxidant Activity. Food Res. Dev. 2020, 41, 97–100, 107. [Google Scholar]
- Yoshiara, L.Y.; Madeira, T.B.; Delaroza, F.; da Silva, J.B.; Ida, E.I. Optimization of Soy Isoflavone Extraction with Different Solvents Using the Simplex-Centroid Mixture Design. Int. J. Food Sci. Nutr. 2012, 63, 978–986. [Google Scholar] [CrossRef]
- Kazlauskaite, J.A.; Ivanauskas, L.; Bernatoniene, J. Novel Extraction Method Using Excipients to Enhance Yield of Genistein and Daidzein in Trifolium Pratensis L. Pharmaceutics 2021, 13, 777. [Google Scholar] [CrossRef]
- Eskilsson, C.S.; Björklund, E. Analytical-Scale Microwave-Assisted Extraction. J. Chromatogr. A 2000, 902, 227–250. [Google Scholar] [CrossRef]
- Shi, X.; He, Z.; Gu, J.; Wang, J.; Tan, R. Applying the Grading Methods of Five Kudzu Root Isoflavones on Optimizing the Extraction Process. Res. Pract. Chin. Med. 2016, 30, 49–52. [Google Scholar]
- Cai, J.; Zhou, X.; Xiong, J.; Sun, S.; Liang, X.; Zho, C.; Wei, K. Study on the Microwave-Assisted Extraction Technology of Genistein and Genistin from Flemingia Macrophylla with Uniform Design and Orthogonal Design. Appl. Chem. Ind. 2016, 45, 402–405, 411. [Google Scholar] [CrossRef]
- Li, Y.; Niu, J.; Cao, R.; Yan, X. Optimization of Microwave Processing Method for Hedysari by Orthogonal Test. Chin. J. Hosp. Pharm. 2017, 37, 1475–1478. [Google Scholar]
- Liu, X.; Liao, Y.; Wang, Y.; Tian, Q.; Xie, K.; Ou, H. Research progress on application of ultrasound hyphenated technique in extraction of active phytochemicals. Food Ferment. Ind. 2022, 48, 319–327. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, X.; Fan, E. Optimisation of Ultrasound-Assisted Extraction of Puerarin and Total Isoflavones from Puerariae Lobatae Radix (Pueraria Lobata (Wild.) Ohwi) with Response Surface Methodology. Phytochem. Anal. PCA 2012, 23, 513–519. [Google Scholar] [CrossRef]
- Li, Z.; Wang, M.; Yang, Y.; Zhao, J. The Response Surface Method Optimized the Extraction Process and Antioxidant Activity of Two Pueraria Lobata Flavonoids. Liquor Mak. 2023, 50, 43–51. [Google Scholar]
- Ismail, B.; Hayes, K. β-Glycosidase Activity toward Different Glycosidic Forms of Isoflavones. J. Agric. Food Chem. 2005, 53, 4918–4924. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Lin, H.; Miao, S.; Lu, X. Advances in Enzymatic Extraction of Polysaccharides. Sci. Technol. Food Ind. 2021, 42, 351–358. [Google Scholar] [CrossRef]
- Huang, J.; Liang, Y.; Wei, H.; Ruan, B. Optimizeation of Enzymatic-Ultrasonic Extraction Technique of Puerarin from Pueraria Lobata Using Plackett-Burman Combined with Response Surface Methodology. Storage Process 2023, 23, 37–44. [Google Scholar]
- Guo, M.; Yang, X.; Duan, Z. Investigation on the Hydrolysis of Soybean Isoflavones Catalyzed by Cellulase. China Oils Fats 2023, 48, 110–115, 139. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, S.; Gao, J.; Feng, C.; Chen, Y.; Yong, X.; Zhou, J.; Liu, X.; Xie, X.; Zheng, T. Study on Separation and Purification Process of Puerarin and Daidzein. Jiangsu Agric. Sci. 2016, 44, 297–300. [Google Scholar]
- Wang, H.; Zhang, H. Influence of Macroporous Adsorption Resin on Purification of Total Flavonoids from GeGen. West. J. Tradit. Chin. Med. 2015, 28, 27–29. [Google Scholar] [CrossRef]
- Pan, J.; Xu, T. Coordination Chromatography Separates Genistein and Soy Glycoside Monomers. Food Sci. 2005, 26, 353–355. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Wang, Y.; Li, R.; Niu, H.; Liu, C.; Zhang, Y. Ionic-Liquid-Based Ultrasound-Assisted Extraction Combined with Countercurrent Chromatography and Semipreparative LC for the Preparation of Monoamine Oxidase B Inhibitors from Pueraria Thomsonii. J. Sep. Sci. 2022, 45, 1116–1127. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Sandlin, J.; Bowers, W.G. High-Speed Preparative Counter-Current Chromatography with a Coil Planet Centrifuge. J. Chromatogr. A 1982, 244, 247–258. [Google Scholar] [CrossRef]
- Yang, Y.; Muhammad, K.B.; Zhang, X.; Zhao, Y.; Kit-Leong, C.; Liu, Y. Advances in Separation and Purification of Bioactive Polysaccharides through High-Speed Counter-Current Chromatography. J. Chromatogr. Sci. 2020, 58, 992–1000. [Google Scholar] [CrossRef]
- Wu, T.; Liu, C.; Huang, Y.; Li, S.; Wang, Y. Simultaneous Screening and Isolation of Activated Constituents from Puerariae Flos by Ultrafiltration with Liquid Chromatography and Mass Spectrometry Combined with High-Speed Counter-Current Chromatography. J. Sep. Sci. 2018, 41, 4458–4468. [Google Scholar] [CrossRef]
- He, T.; Wang, W.; Xu, S.; Du, N.; Xi, X.; Lan, T. Development of Puerarin Reference Material. Anal. Instrum. 2018, 217, 82–89. [Google Scholar]
- Pan, C.; Wang, H.; Shan, H.; Lü, H. Preparative Isolation and Purification of Calycosin and Formononetin from Astragali Radix Using Hydrolytic Extraction Combined with High Speed Countercurrent Chromatography. J. Chromatogr. Sci. 2021, 59, 412–418. [Google Scholar] [CrossRef]
- Hou, J.; Xie, W.; Shi, Y.; Li, J.; Wang, P.; Mao, R.; Zhang, W. The Contents of 11 Flavone Glycosides in Kudzu Were Simultaneously Determined by Solid Phase Extraction-Liquid Chromatography-Tandem Mass Spectrometry. Phys. Test. Chem. Anal. BChemical Anal. 2021, 57, 865–872. [Google Scholar]
- Qiao, C.; Yang, X.; Gao, X. Determination of Puerarin in Qinggan Jiangya Capsule by Solid Phase Extraction-High Performance Liquid Chromatography. Chin. Med. Mod. Distance Educ. China 2021, 19, 143–145. [Google Scholar]
- Yan, L.; Mao, Q.; Shi, H.; Zhu, Y.; Li, X.; Chen, Y. Overview of sample pretreatment technology in high performance liquid chromatography. Chem. Anal. Meterage 2022, 31, 93–99. [Google Scholar]
- Jiang, L.; Zhou, G.; Li, Y. Simultaneous Determination of Isoflavonoids in Kudzu Powder by High Performance Liquid Chromatography Coupled with Micelle-Mediated Extraction. Food Sci. 2011, 32, 186–190. [Google Scholar]
- Chi, R.; Zhan, S.; Zhang, Y.; Chen, Z.; Liu, Z.; Li, Y. Extraction of Pueraria Total Flavonoids in Ethanol-Inorganic Salt Aqueous Systems. J. Wuhan Inst. Technol. 2014, 36, 1–7. [Google Scholar]
- Xu, T. Simplified Quantification of Representative Bioactives in Food Through TLC Image Analysis. Food Anal. Methods 2019, 12, 2886–2894. [Google Scholar] [CrossRef]
- Hu, L.; Zhou, C.; Huang, Y.; Wang, Y.; Wei, G.; Liang, Z.; Zhou, C. HPLC Coupled with Electrospray Ionization Multi-stage Tandem MS and TLC Analysis of Flavones-C-glycosides and Bibenzyl of Dendrobium Hercoglossum. J. Sep. Sci. 2020, 43, 3885–3901. [Google Scholar] [CrossRef]
- Fang, C.; Wan, X.; Tan, H.; Jiang, C. Separation and Determination of Isoflavonoids in Several Kudzu Samples by High-Performance Capillary Electrophoresis (HPCE). Ann. Chim. 2006, 96, 117–124. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, N.; Wang, J.; Zhao, S. Determination of Four Isoflavones in Red Clover Extract by High-Performance Liquid Chromatography. China Feed. 2022, 24, 45–51. [Google Scholar] [CrossRef]
- Lin, S.-J.; Qiu, F.-B.; Xue, R.-X.; Huang, C.; Lu, L.-M.; Liu, G.-P.; Huang, Y.-S.; Chen, H.-Y. Determination for 3 Kinds of Isoflavones in Soybean by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Food Saf. Qual. 2020, 11, 6006–6011. [Google Scholar]
- Shen, Q.; Shen, X.; Liu, X. Qualitative Analysis and Determination of Four Components in Ganmao Qingre Granules by LC-MS/MS and HPLC. Chin. J. Mod. Appl. Pharm. 2021, 38, 2245–2249. [Google Scholar]
- Wu, Y.; Wan, H.; Li, C.; Wan, H.; Yang, J. Composition Analysis and Fingerprint Establishment of Tongmai Jiangtang Capsule Based on HPLC-Q-Exactive-MS and HPLC. Chin. Tradit. Herb. Drugs 2022, 53, 6686–6697. [Google Scholar] [CrossRef]
- Wang, B.; Cheng, F.; Gao, S.; Ge, W.; Zhang, M. Double Enzymatic Hydrolysis Preparation of Heme from Goose Blood and Microencapsulation to Promote Its Stability and Absorption. Food Chem. 2017, 217, 699–704. [Google Scholar] [CrossRef]
- Hao, J.W.; Liu, X.Q.; Zang, Y.J.; Chen, N.D.; Shi, M.Z. Simultaneous Determination of 16 Important Biologically Active Phytohormones in Dendrobium Huoshanese by Pressurized Capillary Electrochromatography. J. Chromatogr. B 2021, 1171, 122612. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Ma, L.; Zhou, Z.; Liang, Q.; Xie, Q.; Ou, K.; Liu, Y.; Su, Y. Starch and Mineral Element Accumulation during Root Tuber Expansion Period of Pueraria Thomsonii Benth. Food Chem. 2021, 343, 128445. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Guo, Y.; Chen, S.; Ma, W.; Xu, X.; Hu, S.; Jin, L.; Sun, J.; Mao, J.; Shen, C. The Positive Influence of Polyphenols Extracted From Pueraria Lobata Root on the Gut Microbiota and Its Antioxidant Capability. Front. Nutr. 2022, 9, 868188. [Google Scholar] [CrossRef]
- Song, X.; Dong, H.; Zang, Z.; Wu, W.; Zhu, W.; Zhang, H.; Guan, Y. Kudzu Resistant Starch: An Effective Regulator of Type 2 Diabetes Mellitus. Oxid. Med. Cell Longev. 2021, 2021, 4448048. [Google Scholar] [CrossRef]
- Duan, X.; Guan, Y.; Dong, H.; Yang, M.; Chen, L.; Zhang, H.; Naeem, A.; Zhu, W. Study on Structural Characteristics and Physicochemical Properties of Starches Extracted from Three Varieties of Kudzu Root (Pueraria Lobata Starch). J. Food Sci. 2023, 88, 1048–1059. [Google Scholar] [CrossRef]
- Bihlet, A.R.; Byrjalsen, I.; Andersen, J.R.; Simonsen, S.F.; Mundbjerg, K.; Helmer, B.; Riis, B.J.; Karsdal, M.A.; Christiansen, C. The Efficacy and Safety of Multiple Dose Regimens of Kudzu (Pueraria Lobata) Root Extract on Bone and Cartilage Turnover and Menopausal Symptoms. Front. Pharmacol. 2021, 12, 760629. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Zong, J.; Zhou, H.; Bian, Z.-Y.; Deng, W.; Dai, J.; Gan, H.-W.; Yang, Z.; Li, H.; Tang, Q.-Z. Puerarin Attenuates Pressure Overload-Induced Cardiac Hypertrophy. J. Cardiol. 2014, 63, 73–81. [Google Scholar] [CrossRef]
- Martínez-Riera, R.; Pérez-Mañá, C.; Papaseit, E.; Fonseca, F.; de la Torre, R.; Pizarro, N.; Torrens, M.; Farré, M. Soy Isoflavone Extract Does Not Increase the Intoxicating Effects of Acute Alcohol Ingestion in Human Volunteers. Front. Pharmacol. 2019, 10, 131. [Google Scholar] [CrossRef]
- Zhang, X.-L.; Cao, X.-Y.; Lai, R.-C.; Xie, M.-X.; Zeng, W.-A. Puerarin Relieves Paclitaxel-Induced Neuropathic Pain: The Role of Nav1.8 Β1 Subunit of Sensory Neurons. Front. Pharmacol. 2018, 9, 1510. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, S.; Wang, S.; Gao, P.; Dai, L. A Comprehensive Review on Pueraria: Insights on Its Chemistry and Medicinal Value. Biomed. Pharmacother. 2020, 131, 110734. [Google Scholar] [CrossRef]
- Zhou, H.; Li, X.; Shang, Y.; Chen, K. Radical Scavenging Activity of Puerarin: A Theoretical Study. Antioxidants 2019, 8, 590. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Li, Y.; Wang, Z.; Li, J.; Liang, Y.; Li, M. Puerarin Mitigates Symptoms of Depression in Ovariectomized Female Rats by Regulating Hippocampal CAMP-CREB-BDNF Signaling Pathway. Trop. J. Pharm. Res. 2021, 20, 1403–1409. [Google Scholar] [CrossRef]
- Yu, Z.-M.; Wan, X.-M.; Xiao, M.; Zheng, C.; Zhou, X.-L. Puerarin Induces Nrf2 as a Cytoprotective Mechanism to Prevent Cadmium-Induced Autophagy Inhibition and NLRP3 Inflammasome Activation in AML12 Hepatic Cells. J. Inorg. Biochem. 2021, 217, 111389. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-Y.; Fan, R.-F.; Yang, D.-B.; Zhang, D.; Wang, L. Puerarin Reverses Cadmium-Induced Lysosomal Dysfunction in Primary Rat Proximal Tubular Cells via Inhibiting Nrf2 Pathway. Biochem. Pharmacol. 2019, 162, 132–141. [Google Scholar] [CrossRef]
- Guo, C.-J.; Xie, J.-J.; Hong, R.-H.; Pan, H.-S.; Zhang, F.-G.; Liang, Y.-M. Puerarin Alleviates Streptozotocin (STZ)-Induced Osteoporosis in Rats through Suppressing Inflammation and Apoptosis via HDAC1/HDAC3 Signaling. Biomed. Pharmacother. Biomed. Pharmacother. 2019, 115, 108570. [Google Scholar] [CrossRef]
- Han, P.; Liu, L.; Liu, J.; Zhang, H.; Wu, Y.; Wu, Y.; Yu, F.; Wu, D. Determination of copper, zinc, iron, calcium and magnesium in Pueraria lobata ohwi by FAAS. Guang Pu Xue Yu Guang Pu Fen Xi Guang Pu 2005, 25, 1507–1509. [Google Scholar]
Name | Chemical Formula | Structural Formula | Content (μg/g) |
---|---|---|---|
Puerarin | C21H20O9 | 4.28–76.10 | |
Daidzein | C15H19O4 | 0.36–16.48 | |
Daidzin | C21H12O9 | 0.05–6.74 | |
3′ hydroxyPuerarin | C21H20O10 | 0.20–20.61 | |
Genistein | C15H10O5 | - | |
Genistin | C21H20O10 | 7.63–51.43 | |
Formononetin | C16H12O4 | - | |
6″-O-Malonylgenistin | C24H22O13 | - |
Analytes | Extraction Method | Extraction Solvent | Condition | Separation and Purification | Analysis Method | Productive Rate (%) | References |
---|---|---|---|---|---|---|---|
Isoflavones | Sonication extract (PLs) and reflux extract (PLr) | Methanol | Ultrasonic bath (frequency of 40 kHz; Power Sonic 520 W, at room temperature for 2 h.) | Semi-preparative reversed-phase HPLC | HPLC | 7.99–10.57 | [46] |
Puerarin, daidzin, daidzein | Refluxing extraction | 80% ethanol | Refluxed in a water bath at 80 °C for 2 h | MSPE Magnetic solid-phase extraction | ZIF-8-pressurized capillary electrochromatography (pCEC) | - | [47] |
Puerarin and total flavonoids | Immersion method | 30% ethanol | Water bath (70 °C) | - | UPLC-MS, NIR, and UV-Vis portable | - | [48] |
Nine isoflavones | Ultrasonic-assisted extraction | Methanol | Sonicated at 40 °C for 20 min | - | HPLC | - | [8] |
puerarin | SPE | 80% methanol | Sonicated for 30 min | SPE | LC-MS/MS | - | [49] |
Six isoflavones | Refluxing extraction and ultrasonic-assisted extraction | 50% methanol | Ultrasonic bath (frequency of 40 kHz; Power Sonic 120 W) | - | UPLC | - | [50] |
Isoflavones | Ultrasonic-assisted extraction based on NADES | NADESs: choline chloride and citric acid at a 1:2 molar ratio | Ultrasonic bath (frequency of 37 kHz; Power Sonic 580 W, at 60 °C for 3 h.) | Reversed stationary phase column | HPLC-DAD | 1.09 ± 0.006 | [51] |
Isoflavone | Ultrasonic-assisted extraction | Water or ethanol 65° | Amplitude = 65% nominal power, cycle = 1, 40 °C ± 1 °C | - | HPLC-PDA | - | [52] |
Puerarin and daidzein | Ultrasonic-assisted extraction | Methanol-glacial acetic acid (100:1) | Ultrasonic bath (frequency of 40 kHz; Power Sonic 100 W) | - | Non-aqueous capillary electrophoresis (NCAE) | - | [53] |
Puerarin | Ultrasonic-assisted extraction | 70% ethanol | Ultrasonic bath (Power Sonic 350 W at 60 °C for 3 h.) | Acid hydrolysis | HPLC-IR | - | [54] |
Puerarin and daidzein | Ultrasonic-assisted extraction | Water | - | - | HPLC | - | [55] |
Total flavonoids | Ultrasonic-assisted extraction | 35% ethanol | Ultrasonic bath (frequency of 53 kHz; Power Sonic 200 W) | - | UV | 2.76 | [56] |
Flavonoids | Microwave-assisted extraction | 60% ethanol, | Microwave power 340 W for 4 min | - | UV | - | [57] |
Six isoflavones | Refluxing extraction | 30% ethanol | - | - | HPLC | - | [58] |
Puerarin | Ultrasonic-assisted extraction | 70% ethanol | Ultrasonic bath (frequency of 42 kHz; Power Sonic 70 W) | - | UV | - | [59] |
Flavonoids | Ultrasonic-assisted extraction | 75% ethanol | Ultrasonic extraction 30 min | - | UV | - | [60] |
Nine isoflavones | SPE | 20% ethanol solution (containing 0.1% formic acid) | - | - | pCEC | - | [61] |
Puerarin and daidzein | Ultrasonic-assisted extraction | Ethanol | - | - | Differential pulse voltammetry | - | [62] |
flavonoids | Refluxing extraction | 60% ethanol | Reflux extraction 1.5 h | - | UV-Vis | - | [63] |
Flavonoids | Microwave-assisted extraction | 42% ethanol | Microwave power 828 W for 23 min | - | UV | 11.74 | [64] |
Puerarin | Ultrasonic-assisted extraction | 58% ethanol | Ultrasonic bath at 70 °C for 32 min | - | UV-Vis | - | [65] |
Puerarin | Microwave-assisted extraction | 70% ethanol | Mrowave 9.7 min | column C18 | HPLC | - | [66] |
flavonoids | Immersion method | 40% ethanol | Water bath at 80 °C for 2 h | - | UV | 3.06 | [67] |
Four isoflavones | Ultrasonic-assisted extraction | 30% ethanol | Ultrasonic extraction 1 h | - | HPLC | - | [68] |
Three isoflavones | Ultrasonic-assisted extraction | 50% ethanol | Ultrasonic extraction 40 min | - | HPLC | - | [69] |
Six isoflavones | Ultrasonic-assisted extraction | 70% methanol | Ultrasonic bath (frequency of 40 kHz; Power Sonic 250 W, for 3 h.) | - | HPLC | - | [70] |
Five isoflavones | Ultrasonic-assisted extraction | 70% methanol | Ultrasonic extraction 1 h | - | HPLC | - | [71] |
Puerarin | Ultrasonic-assisted extraction | 0.6 mg/mL β-CD | Ultrasonic extraction at 40 °C for 1 h | - | Three-dimensional fluorescence spectrum | - | [72] |
Flavonoids | Ultrasonic-assisted extraction | 40% ethanol | Ultrasonic bath (Power Sonic 300 W for 20 min) | - | GC/MS | - | [73] |
Puerarin and daidzein | Refluxing extraction | 80% ethanol | - | - | HPLC | - | [74] |
Puerarin | Microwave-assisted ionic liquid extraction | 1.0 mol/L ionic liquids | Microwave power 400 W for 8 min | - | UV | - | [75] |
Four isoflavones | Immersion method | 30% ethanol | - | - | HPLC | - | [76] |
Total flavonoids and puerarin | Refluxing extraction | Methanol | Heat reflux extraction 1 h | - | UV-Vis and HPLC | - | [77] |
Puerarin | Microwave-assisted enzymatic extraction technology | Cellulose dose 190 U/g | Microwave power 450 W for 7 s | - | UV | 8.87 | [78] |
Title Compounds | Species | Composition | Auxiliary Extraction | Extraction Effect | References |
---|---|---|---|---|---|
Daidzein, genistein, puerarin | NADESs | ChCl/citric acid | - | NADESs extract had higher antioxidant activity than methanol extract and significantly reduced the degradation of isoflavones. | [83] |
Puerarin | NADESs | L-Pro/malic acid | - | The extraction amount of NADESs was 2.2 times higher than that of water and also significantly higher than that of methanol. The bioavailability of the extract was 323% of the aqueous extract. | [84] |
Puerarin | IL | 1-normal-butyl-3- methylimidazolium chloride | MAE | The extraction rate of puerarin was 4.201%, which was three times higher than that of the traditional extraction method. | [75,85] |
Flavonoids | IL | 1-Butyl-3-methylimidazolium bromide | UAE | The extraction amount of pueraria flavonoids was 774.95 mg/g. | [86] |
Puerarin isoflavones | NADESs | Choline chloride to citric acid of 1:2 | - | The amount of isoflavones in KR was measured to be 1.09 ± 0.006% overall. | [81] |
Puerarin | IL | 1-butyl-3-methylimidazolium bromide aqueous solution | UAE | The proposed ILUAE offered shorter extraction time and remarkably higher efficiencies | [82] |
Sample Matrix/Source | Analytes | Instrument Type | Stationary Phase | Mobile Phase | Flow Rate; Injection | Determination | LOD/LOQ | Recovery (%) | RSD (%) | References |
---|---|---|---|---|---|---|---|---|---|---|
PuerariaeFlos | Isoflavones | HPLC | C18-column-column (4.6 × 250 mm, 5 μm) | A:water B:acetonitrile | 1 mL/min; 20 µL | 245 nm | LOD:0.0014 mg/600 µL LOQ:0.0036 mg/600 µL | 98.41 | 0.79 | [46] |
Pueraria lobata | Puerarin, daidzin, daidzein | pCEC | EP-100–20/45–3-C18 capillary column | A:45%methanol B:55% 17.5 mM sodium dihydrogen phosphate (pH 4.0) | 0.08 mL/min | 250 nm | LOD:0.02–0.03 µg/mL | 98.5–100.3 | <4.0 | [47] |
PuerariaeLobatae Radix | Nine isoflavones | HPLC | ZORBAX Eclipse XDB-C18 column (4.6 mm × 250 mm, 5 µm) | A:0.1% formic acid-water B:acetonitrile | 1 mL/min; 10 µL | 100.3–101.1 | 0.33–1.3 | [8] | ||
Kudzu food | Puerarin | LC-MS/MS | Cadenza CL-C18 column (3 × 100 mm, 3 µm) | A:ammonium formate in 0.2% formic acid B:2 mM ammonium formate and 0.2% formic acid in 95% acetonitrile | 0.5 mL/min; 5 µL | LOD:0.013 µg/mL LOQ:0.063 µg/mL | 83.3–108.2 | [49] | ||
PuerariaeLobatae Radix | Six isoflavones | UPLC | BEH C18 column (2.1 mm × 50 mm, 1.7 µm) | A:acetonitrile B:0.05% formic acid | 0.2 mL/min; 2 µL | 250 nm | 97.78–99.63 | 1.0–2.3 | [50] | |
Kudzu roots (KR) | Isoflavones | HPLC-DAD | Poroshell 120 EC-C18-column (3.0 mm × 100 mm, 2.7 µm) | A:containing 0.1% (v/v) acetic acid in the water B:containing 0.1% acetic acid (v/v) | 0.7 mL/min; 5 µL | 245 nm | [51] | |||
Pueraria lobata | Puerarin and daidzein | NCAE | Uncoated fused silica capillary column 50 cm × 75 µm ID | 90 mmol/L-1 sodium cholate-3.0% acetic acid-15% acetonitrile in methanol | Injection pressure: 50 mbar Injection time: 5 s | 254 nm | LOD:0.4 µg/mL LOQ:0.2 µg/mL | 96.72; 97.26 | 1.94; 2.17 | [53] |
Pueraria lobata | Puerarin | HPLC-IR | Pgrandsil C18 column (5 µm, 4.6 mm × 250 mm) | Methanol: 36% acetic acid:water = 25:3:72 (v/v) | 1.0 mL/min; 10 µL | 250 nm | [54] | |||
Pueraria lobata | Puerarin and daidzein | HPLC | Spherigel C18 column (250 mm × 4.6 mm, 5 µm) | A:methanol B:wate | 1.0 mL/min; 10 mL | 250 nm | 99.87; 100.32 | 0.70; 1.80 | [55] | |
Pueraria lobata and Pueraria thomsonii | Six isoflavones | HPLC | C18 column (250 mm × 4.6 mm, 3.5 µm), | A:methanol B:0.2% acetic acid | 0.8 mL/min, 10 µL | 250 nm | 98.0–103.4 | [58] | ||
Pueraria lobata | Puerarin | UV | A:phosphoric acid-water B:acetonitrile | 99.56 | 1.14 | [59] | ||||
Pueraria lobata and Pueraria thomsonii | Flavonoids | UV | 250 nm | 103.29 | 2.90 | [60] | ||||
Kudzu food | Nine isoflavones | pCEC | C18 column (100 µm × 45 cm, 3 μm); | Acetonitrile-15 mmol/L buffer solution of potassium phosphate (15:85, v/v) | 40 µL | 230 nm | LOD:0.5~1.0 mg/kg LOQ:2.0~5.0 mg/kg | 86.2~98.6 | 1.9~5.3 | [61] |
Pueraria lobata | Puerarin and daidzein | Differential pulse voltammetry | Ep = 0.600 V | 75.31–87.24 | [62] | |||||
Roots, stems, leaves and flowers of pueraria lobata | Flavonoids | UV-Vis | 250 nm | 99.96 | 0.89 | [63] | ||||
Pueraria lobata | Puerarin | HPLC | C18 column (150 mm × 4.6 mm × 5 µm) | A:methanol B:water | 1 mL/min | 250 nm | 97.3–99.2 | 3.72–6.21 | [66] | |
Pueraria lobata and Pueraria thomsonii | Four isoflavones | HPLC | YMC-Pack ODS-A C18-column (250 mm × 4.6 mm, 5 µm) | A:water B:methanol | 1.0 mL/min; 10 µL | 254 nm | 96.52–100.22 | 0.75–1.84 | [68] | |
Pueraria lobata | Three isoflavones | HPLC | Symmetry C18 column (4.6 mm × 250 mm, 5 µm) | A:methanol B:water | 0.7 mL/min | 250 nm | 99.0–109.1 | 0.99–1.93 | [69] | |
Pueraria lobata and Pueraria thomsonii | Six isoflavones | HPLC | Poroshell 120 EC-C18 (150 mm × 4.6 mm, 4 µm) | A:0.1% phosphoric acid B:acetonitrile | 1.0 mL/min; 10 µL | 250 nm | 97.40~101.93 | 1.40~2.85 | [70] | |
Pueraria lobata | Five isoflavones | HPLC | Phenomenex C18 column (250 mm × 4.6 mm, 5 µm) | A:methanol B:water | 1.0 mL/min | 260 nm | 96.0–100.1 | 0.68–1.17 | [71] | |
Kudzu food | Puerarin | Three-dimensional fluorescence spectrum | λex/λem = 340 nm/466 nm | LOD: 1.27 × 10−3 µg/mL | 95.82~100.33 | [72] | ||||
Pueraria lobata | Flavonoids | GC/MS | HP-5 (30 m × 0.25 mm × 0.25 µm) | Helium gas | 1.0 mL/min; 1 µL | 510 nm | 98.60 | 1.86 | [73] | |
Pueraria lobata | Puerarin and daidzein | HPLC | Agilent chromatographic column (4.6 mm × 250 mm) | A:phosphoric acid-water B:acetonitrile | 1 mL/min; 10 µL | 203 nm | 99.56–100.96 | 1.98–2.13 | [74] | |
Pueraria lobata | Four isoflavones | HPLC | C18 column (250 mm × 4.6 mm, 5 µm) | A:acetonitrile B:0.1% formic acid-water | 0.8 mL/min; 10 µL | 254 nm | 97.6~103.6 | <2.0 | [76] | |
Pueraria lobata | Total flavonoids and puerarin | UV-Vis and HPLC | Methanol-water (25:75) | 1.0 mL/min | 250 nm | 94.16–98.4 | 1.42–2.38 | [77] |
Name | Detecting Wavelength (nm) | Retention Time (min) |
---|---|---|
Puerarin | 222.8 | 39.790 |
Daidzein | 206.3 | 58.684 |
Daidzin | 226.3 | 52.262 |
3′ hydroxyPuerarin | 222.8 | 29.208 |
Genistein | 229.8 | 115.292 |
Genistin | 226.3 | 76.748 |
Formononetin | 253.5 | 112.505 |
Name |
Retention Time (min) | Theoretical Molecular Weight | Precise Molecular Weight | Fragment Ions |
---|---|---|---|---|
Puerarin | 11.71 | 547.1437 | 547.1437 | 415.1007, 325.0706, 295.0600, 267.0662, 233.3677, 189.0642 |
Daidzein | 19.83 | 253.0506 | 253.0510 | 224.0472, 208.0538, 196.0535, 135.0113 241.0444, 217.0496 |
Daidzin | 9.59 | 415.1034 | 415.1023 | 295.0602, 227.0499, 267.0659 |
3′ hydroxyPuerarin | 9.18 | 431.0983 | 431.0968 | 331.0552, 269.0448 |
Genistein | 20.715 | 269.0455 | 269.0457 | 241.0497, 213.0521, 199.0390, 197.0624, 185.0614, 141.0770, 181.0660, 169.0658 |
Genistin | 15.42 | 431.0983 | 431.0971 | 311.0564, 269.0439, 241.0495 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xuan, T.; Liu, Y.; Liu, R.; Liu, S.; Han, J.; Bai, X.; Wu, J.; Fan, R. Advances in Extraction, Purification, and Analysis Techniques of the Main Components of Kudzu Root: A Comprehensive Review. Molecules 2023, 28, 6577. https://doi.org/10.3390/molecules28186577
Xuan T, Liu Y, Liu R, Liu S, Han J, Bai X, Wu J, Fan R. Advances in Extraction, Purification, and Analysis Techniques of the Main Components of Kudzu Root: A Comprehensive Review. Molecules. 2023; 28(18):6577. https://doi.org/10.3390/molecules28186577
Chicago/Turabian StyleXuan, Tong, Yuhan Liu, Rui Liu, Sheng Liu, Jiaqi Han, Xinyu Bai, Jie Wu, and Ronghua Fan. 2023. "Advances in Extraction, Purification, and Analysis Techniques of the Main Components of Kudzu Root: A Comprehensive Review" Molecules 28, no. 18: 6577. https://doi.org/10.3390/molecules28186577
APA StyleXuan, T., Liu, Y., Liu, R., Liu, S., Han, J., Bai, X., Wu, J., & Fan, R. (2023). Advances in Extraction, Purification, and Analysis Techniques of the Main Components of Kudzu Root: A Comprehensive Review. Molecules, 28(18), 6577. https://doi.org/10.3390/molecules28186577