Bioactive Properties, Bioavailability Profiles, and Clinical Evidence of the Potential Benefits of Black Pepper (Piper nigrum) and Red Pepper (Capsicum annum) against Diverse Metabolic Complications
Abstract
:1. Introduction
2. General Overview of Black Pepper (Piper nigrum), including Its Metabolism and Bioavailability Profile
3. Red Pepper (Capsicum annum), including Its Metabolism and Bioavailability Profile
4. Traditional Uses and Proposed Pharmacological Properties of Pepper and Its Bioactive Compounds
5. Potential Toxic Effects of Pepper
6. Available Clinical Evidence of the Potential Benefits of Pepper
6.1. Characteristic Features of Clinical Studies
6.2. Evidence of the Effects of Pepper on Overweight and Obese Individuals
6.3. Evidence of the Effects of Pepper on Individuals with Metabolic Syndrome
6.4. Evidence of the Effects of Pepper on Individuals with Metabolic Syndrome
7. Summary and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Malindisa, E.; Balandya, E.; Njelekela, M.; Kidenya, B.R.; Francis, F.; Mmbaga, B.T.; Dika, H.; Lyamuya, E.; Sunguya, B.; Bartlett, J.; et al. Metabolic syndrome among people living with HIV on antiretroviral therapy in Mwanza, Tanzania. BMC Endocr. Disord. 2023, 23, 88. [Google Scholar] [CrossRef]
- Rochlani, Y.; Pothineni, N.V.; Kovelamudi, S.; Mehta, J.L. Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Ther. Adv. Cardiovasc. Dis. 2017, 11, 215–225. [Google Scholar] [CrossRef]
- World Health Organization (WHO). The Leading Causes of Death Globally; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Guembe, M.J.; Fernandez-Lazaro, C.I.; Sayon-Orea, C.; Toledo, E.; Moreno-Iribas, C. Risk for cardiovascular disease associated with metabolic syndrome and its components: A 13-year prospective study in the RIVANA cohort. Cardiovasc. Diabetol. 2020, 19, 195. [Google Scholar] [CrossRef]
- Noubiap, J.J.; Nansseu, J.R.; Lontchi-Yimagou, E.; Nkeck, J.R.; Nyaga, U.F.; Ngouo, A.T.; Tounouga, D.N.; Tianyi, F.L.; Foka, A.J.; Ndoadoumgue, A.L.; et al. Global, regional, and country estimates of metabolic syndrome burden in children and adolescents in 2020: A systematic review and modelling analysis. Lancet Child Adolesc. Health 2022, 6, 158–170. [Google Scholar] [CrossRef]
- Kojta, I.; Chacińska, M.; Błachnio-Zabielska, A. Obesity, Bioactive Lipids, and Adipose Tissue Inflammation in Insulin Resistance. Nutrients 2020, 12, 1305. [Google Scholar] [CrossRef]
- Dludla, P.V.; Nkambule, B.B.; Jack, B.; Mkandla, Z.; Mutize, T.; Silvestri, S.; Orlando, P.; Tiano, L.; Louw, J.; Mazibuko-Mbeje, S.E. Inflammation and Oxidative Stress in an Obese State and the Protective Effects of Gallic Acid. Nutrients 2018, 11, 23. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Nyambuya, T.M.; Dludla, P.V.; Mxinwa, V.; Nkambule, B.B. Obesity-induced inflammation and insulin resistance: A mini-review on T-cells. Metabol. Open 2019, 3, 100015. [Google Scholar] [CrossRef]
- Matacchione, G.; Gurău, F.; Baldoni, S.; Prattichizzo, F.; Silvestrini, A.; Giuliani, A.; Pugnaloni, A.; Espinosa, E.; Amenta, F.; Bonafè, M.; et al. Pleiotropic effects of polyphenols on glucose and lipid metabolism: Focus on clinical trials. Ageing Res. Rev. 2020, 61, 101074. [Google Scholar] [CrossRef]
- Muvhulawa, N.; Dludla, P.V.; Ziqubu, K.; Mthembu, S.X.H.; Mthiyane, F.; Nkambule, B.B.; Mazibuko-Mbeje, S.E. Rutin ameliorates inflammation and improves metabolic function: A comprehensive analysis of scientific literature. Pharmacol. Res. 2022, 178, 106163. [Google Scholar] [CrossRef] [PubMed]
- Dludla, P.V.; Nkambule, B.B.; Nyambuya, T.M.; Ziqubu, K.; Mabhida, S.E.; Mxinwa, V.; Mokgalaboni, K.; Ndevahoma, F.; Hanser, S.; Mazibuko-Mbeje, S.E.; et al. Vitamin C intake potentially lowers total cholesterol to improve endothelial function in diabetic patients at increased risk of cardiovascular disease: A systematic review of randomized controlled trials. Front. Nutr. 2022, 9, 1011002. [Google Scholar] [CrossRef]
- Mokgalaboni, K.; Ntamo, Y.; Ziqubu, K.; Nyambuya, T.M.; Nkambule, B.B.; Mazibuko-Mbeje, S.E.; Gabuza, K.B.; Chellan, N.; Tiano, L.; Dludla, P.V. Curcumin supplementation improves biomarkers of oxidative stress and inflammation in conditions of obesity, type 2 diabetes and NAFLD: Updating the status of clinical evidence. Food Funct. 2021, 12, 12235–12249. [Google Scholar] [CrossRef]
- Ziqubu, K.; Dludla, P.V.; Joubert, E.; Muller, C.J.F.; Louw, J.; Tiano, L.; Nkambule, B.B.; Kappo, A.P.; Mazibuko-Mbeje, S.E. Isoorientin: A dietary flavone with the potential to ameliorate diverse metabolic complications. Pharmacol. Res. 2020, 158, 104867. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.S.; Pasha, I.; Sultan, M.T.; Randhawa, M.A.; Saeed, F.; Ahmed, W. Black pepper and health claims: A comprehensive treatise. Crit. Rev. Food Sci. Nutr. 2013, 53, 875–886. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, K. Biological Activities of Red Pepper (Capsicum annuum) and Its Pungent Principle Capsaicin: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1488–1500. [Google Scholar] [CrossRef]
- Srinivasan, K. Black pepper and its pungent principle-piperine: A review of diverse physiological effects. Crit. Rev. Food Sci. Nutr. 2007, 47, 735–748. [Google Scholar] [CrossRef]
- Azlan, A.; Sultana, S.; Huei, C.S.; Razman, M.R. Antioxidant, Anti-Obesity, Nutritional and Other Beneficial Effects of Different Chili Pepper: A Review. Molecules 2022, 27, 898. [Google Scholar] [CrossRef] [PubMed]
- Burger, W.C. Flora Costaricensis; Field Museum of Natural History: Chicago, IL, USA, 1971. [Google Scholar]
- Sen, S.; Dayanandan, S.; Davis, T.; Ganesan, R.; Jagadish, M.R.; Mathew, P.J.; Ravikanth, G. Origin and evolution of the genus Piper in Peninsular India. Mol. Phylogenet Evol. 2019, 138, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Stevens, P. Angiosperm Phylogeny Website, Version 9; Missouri Botanical Garden: St. Louis, MO, USA, 2001.
- Ravindran, P. Black Pepper: Piper nigrum; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Vasavirama, K.; Upender, M. Piperine: A valuable alkaloid from Piper species. Int. J. Pharm. Pharm. Sci. 2014, 6, 34–38. [Google Scholar]
- Srivastava, S.; Gupta, M.M.; Tripathi, A.K.; Kumar, S. 1,3-Benzodioxole-5-(2,4,8-triene-methyl nonaoate) and 1,3-benzodioxole-5-(2,4,8-triene-isobutyl nonaoate) from Piper mullesua. ChemInform 2000, 32. [Google Scholar] [CrossRef]
- Parthasarathy, U.; Saji, K.; Jayarajan, K.; Parthasarathy, V. Biodiversity of Piper in South India—Application of GIS and cluster analysis. Curr. Sci. 2006, 91, 652–658. [Google Scholar]
- Rohloff, J.; Husøy, T.; Bruzell, E.; Granum, B.; Hetland, R.B.; Wicklund, T.; Steffensen, I.-L. Risk Assessment of “Other Substances”—Piperine. 2018. Available online: https://vkm.no/download/18.645b840415d03a2fe8f25ff2/1502802968337/Risk%2520assessment%2520of%2520%2522other%2520substances%2522%2520%25E2%2580%2593%2520Piperine.pdf (accessed on 2 June 2023).
- Zachariah, T.J.; Parthasarathy, V. Black pepper. In Chemistry of Spices; CABI: Wallingford, UK, 2008; pp. 21–40. [Google Scholar]
- Gorgani, L.; Mohammadi, M.; Najafpour, G.D.; Nikzad, M. Piperine—The bioactive compound of black pepper: From isolation to medicinal formulations. Compr. Rev. Food Sci. Food Saf. 2017, 16, 124–140. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-L.; Luo, R.; Chen, X.-Q.; Ba, Y.-Y.; Zheng, L.; Guo, W.-W.; Wu, X. Identification and simultaneous quantification of five alkaloids in Piper longum L. by HPLC–ESI-MSn and UFLC–ESI-MS/MS and their application to Piper nigrum L. Food Chem. 2015, 177, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Bao, N.; Ochir, S.; Sun, Z.; Borjihan, G.; Yamagishi, T. Occurrence of piperidine alkaloids in Piper species collected in different areas. J. Nat. Med. 2014, 68, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Zaveri, M.; Khandhar, A.; Patel, S.; Patel, A. Chemistry and pharmacology of Piper longum L. Int. J. Pharm. Sci. Rev. Res. 2010, 5, 67–76. [Google Scholar]
- Ørsted, H.C. HC Ørsted’s Theory of Force: An Unpublished Textbook in Dynamical Chemistry; Kgl. Danske Videnskabernes Selskab: Copenhagen, Denmark, 2003; Volume 86. [Google Scholar]
- Oyemitan, I. African medicinal spices of genus Piper. In Medicinal Spices and Vegetables from Africa; Elsevier: Amsterdam, The Netherlands, 2017; pp. 581–597. [Google Scholar]
- Tiwari, A.; Mahadik, K.R.; Gabhe, S.Y. Piperine: A comprehensive review of methods of isolation, purification, and biological properties. Med. Drug Discov. 2020, 7, 100027. [Google Scholar] [CrossRef]
- Bhat, B.G.; Chandrasekhara, N. Studies on the metabolism of piperine: Absorption, tissue distribution and excretion of urinary conjugates in rats. Toxicology 1986, 40, 83–92. [Google Scholar] [CrossRef]
- Suresh, D.; Srinivasan, K. Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats. Indian J. Med. Res. 2010, 131, 682–691. [Google Scholar]
- Li, C.; Wang, Q.; Ren, T.; Zhang, Y.; Lam, C.W.K.; Chow, M.S.; Zuo, Z. Non-linear pharmacokinetics of piperine and its herb-drug interactions with docetaxel in Sprague-Dawley rats. J. Pharm. Biomed. Anal. 2016, 128, 286–293. [Google Scholar] [CrossRef]
- Sahu, P.K.; Sharma, A.; Rayees, S.; Kour, G.; Singh, A.; Khullar, M.; Magotra, A.; Paswan, S.K.; Gupta, M.; Ahmad, I. Pharmacokinetic study of piperine in Wistar rats after oral and intravenous administration. Int. J. Drug Deliv. 2014, 6, 82. [Google Scholar]
- Bhat, B.G.; Chandrasekhara, N. Metabolic disposition of piperine in the rat. Toxicology 1987, 44, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Alugolu, V.; Rentala, S.; Komarraju, A.L.; Parimi, U.D. Docking studies of piperine-iron conjugate with human CYP450 3A4. Bioinformation 2013, 9, 334–338. [Google Scholar] [CrossRef]
- N., H.; C., M.; T. R., M.; S., S.; S., N.; K. E., M.; S. C., S.; Y., N.; P. V., D.; R. N., M. In Vitro Hepatic Models to Assess Herb-Drug Interactions: Approaches and Challenges. Pharmaceuticals 2023, 16, 409. [Google Scholar] [CrossRef]
- Gao, T.; Xue, H.; Lu, L.; Zhang, T.; Han, H. Characterization of piperine metabolites in rats by ultra-high-performance liquid chromatography with electrospray ionization quadruple time-of-flight tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2017, 31, 901–910. [Google Scholar] [CrossRef]
- Shang, Z.; Cai, W.; Cao, Y.; Wang, F.; Wang, Z.; Lu, J.; Zhang, J. An integrated strategy for rapid discovery and identification of the sequential piperine metabolites in rats using ultra high-performance liquid chromatography/high resolution mass spectrometery. J. Pharm. Biomed. Anal. 2017, 146, 387–401. [Google Scholar] [CrossRef]
- Bajad, S.; Singla, A.; Bedi, K. Liquid chromatographic method for determination of piperine in rat plasma: Application to pharmacokinetics. J. Chromatogr. B 2002, 776, 245–249. [Google Scholar] [CrossRef]
- Ren, T.; Wang, Q.; Li, C.; Yang, M.; Zuo, Z. Efficient brain uptake of piperine and its pharmacokinetics characterization after oral administration. Xenobiotica 2018, 48, 1249–1257. [Google Scholar] [CrossRef]
- Kakarala, M.; Dubey, S.K.; Tarnowski, M.; Cheng, C.; Liyanage, S.; Strawder, T.; Tazi, K.; Sen, A.; Djuric, Z.; Brenner, D.E. Ultra-low flow liquid chromatography assay with ultraviolet (UV) detection for piperine quantitation in human plasma. J. Agric. Food Chem. 2010, 58, 6594–6599. [Google Scholar] [CrossRef] [PubMed]
- Hölzel, C.; Spiteller, G. Piperin—Ein Beispiel für individuell unterschiedliche (polymorphe) Metabolisierung einer allgegenwärtigen Nahrungskomponente. Liebigs Ann. Chem. 1984, 1984, 1319–1331. [Google Scholar] [CrossRef]
- Kesarwani, K.; Gupta, R.; Mukerjee, A. Bioavailability enhancers of herbal origin: An overview. Asian Pac. J. Trop. Biomed. 2013, 3, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Rein, M.J.; Renouf, M.; Cruz-Hernandez, C.; Actis-Goretta, L.; Thakkar, S.K.; da Silva Pinto, M. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. Br. J. Clin. Pharmacol. 2013, 75, 588–602. [Google Scholar] [CrossRef] [PubMed]
- Anissian, D.; Ghasemi-Kasman, M.; Khalili-Fomeshi, M.; Akbari, A.; Hashemian, M.; Kazemi, S.; Moghadamnia, A.A. Piperine-loaded chitosan-STPP nanoparticles reduce neuronal loss and astrocytes activation in chemical kindling model of epilepsy. Int. J. Biol. Macromol. 2018, 107, 973–983. [Google Scholar] [CrossRef]
- Baspinar, Y.; Üstündas, M.; Bayraktar, O.; Sezgin, C. Curcumin and piperine loaded zein-chitosan nanoparticles: Development and in-vitro characterisation. Saudi Pharm. J. 2018, 26, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Wang, C.; Wang, Y.; Xu, Y.; Zhao, J.; Gao, M.; Ding, Y.; Peng, J.; Li, L. Development and evaluation of a novel drug delivery: Soluplus®/TPGS mixed micelles loaded with piperine in vitro and in vivo. Drug Dev. Ind. Pharm. 2018, 44, 1409–1416. [Google Scholar] [CrossRef]
- Jin, X.; Zhang, Z.H.; Sun, E.; Tan, X.B.; Li, S.L.; Cheng, X.D.; You, M.; Jia, X.B. Enhanced oral absorption of 20(S)-protopanaxadiol by self-assembled liquid crystalline nanoparticles containing piperine: In vitro and in vivo studies. Int. J. Nanomed. 2013, 8, 641–652. [Google Scholar] [CrossRef]
- Khameneh, B.; Iranshahy, M.; Ghandadi, M.; Ghoochi Atashbeyk, D.; Fazly Bazzaz, B.S.; Iranshahi, M. Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus. Drug Dev. Ind. Pharm. 2015, 41, 989–994. [Google Scholar] [CrossRef]
- Yusuf, M.; Khan, M.; Khan, R.A.; Ahmed, B. Preparation, characterization, in vivo and biochemical evaluation of brain targeted Piperine solid lipid nanoparticles in an experimentally induced Alzheimer’s disease model. J. Drug Target. 2013, 21, 300–311. [Google Scholar] [CrossRef]
- Luo, H.; Li, Z.; Straight, C.R.; Wang, Q.; Zhou, J.; Sun, Y.; Lo, C.Y.; Yi, L.; Wu, Y.; Huang, J.; et al. Black pepper and vegetable oil-based emulsion synergistically enhance carotenoid bioavailability of raw vegetables in humans. Food Chem. 2022, 373, 131277. [Google Scholar] [CrossRef]
- Cherniakov, I.; Izgelov, D.; Barasch, D.; Davidson, E.; Domb, A.J.; Hoffman, A. Piperine-pro-nanolipospheres as a novel oral delivery system of cannabinoids: Pharmacokinetic evaluation in healthy volunteers in comparison to buccal spray administration. J. Control. Release 2017, 266, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Barboza, G.E.; Carrizo García, C.; Leiva González, S.; Scaldaferro, M.; Reyes, X. Four new species of Capsicum (Solanaceae) from the tropical Andes and an update on the phylogeny of the genus. PLoS ONE 2019, 14, e0209792. [Google Scholar] [CrossRef]
- Bosland, P.W.; Votava, E.J.; Votava, E.M. Peppers: Vegetable and Spice Capsicums; Cabi: Wallingford, UK, 2012; Volume 22. [Google Scholar]
- Smith, P.G.; Heiser, C.B., Jr. Taxonomy of Capsicum sinense Jacq. and the geographic distribution of the cultivated Capsicum species. Bull. Torrey Bot. Club 1957, 84, 413–420. [Google Scholar] [CrossRef]
- Zarringhalam, M.; Zaringhalam, J.; Shadnoush, M.; Safaeyan, F.; Tekieh, E. Inhibitory Effect of Black and Red Pepper and Thyme Extracts and Essential Oils on Enterohemorrhagic Escherichia coli and DNase Activity of Staphylococcus aureus. Iran. J. Pharm. Res. 2013, 12, 363–369. [Google Scholar]
- Kirschbaum-Titze, P.; Mueller-Seitz, E.; Petz, M. Pungency in paprika (Capsicum annuum). 2. Heterogeneity of capsaicinoid content in individual fruits from one plant. J. Agric. Food Chem. 2002, 50, 1264–1266. [Google Scholar] [CrossRef]
- Rollyson, W.D.; Stover, C.A.; Brown, K.C.; Perry, H.E.; Stevenson, C.D.; McNees, C.A.; Ball, J.G.; Valentovic, M.A.; Dasgupta, P. Bioavailability of capsaicin and its implications for drug delivery. J. Control. Release 2014, 196, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Khani, M.; Awang, R.M.; Omar, D.; Rahmani, M.; Rezazadeh, S. Tropical medicinal plant extracts against rice weevil, Sitophilus oryzae L. J. Med. Plants Res. 2011, 5, 259–265. [Google Scholar]
- Turini, D.; Beneforti, P.; Spinelli, M.; Malagutti, S.; Lazzeri, M. Heat/burning sensation induced by topical application of capsaicin on perineal cutaneous area: New approach in diagnosis and treatment of chronic prostatitis/chronic pelvic pain syndrome? Urology 2006, 67, 910–913. [Google Scholar] [CrossRef] [PubMed]
- Naseem, Z.; Imran, K.; Sajila, H.; Ali, J.; Inam, S.M.; Malik, S.M.; Farah, A. Estimation of capsaicin in different chilli varieties using different extraction techniques and HPLC method: A review. Pak. J. Food Sci. 2016, 26, 54–60. [Google Scholar]
- Peña-Alvarez, A.; Ramírez-Maya, E.; Alvarado-Suárez, L.Á. Analysis of capsaicin and dihydrocapsaicin in peppers and pepper sauces by solid phase microextraction–gas chromatography–mass spectrometry. J. Chromatogr. A 2009, 1216, 2843–2847. [Google Scholar] [CrossRef]
- Yazawa, S.; Yoneda, H.; Hosokawa, M.; Fushiki, T.; Watanabe, T. Novel capsaicinoid like substances in the fruits of new non-pungent cultivar ‘CH-19 Sweet’ of pepper (Capsicum annuum L.). J. Agric. Food Chem. 1998, 46, 1695–1697. [Google Scholar]
- Kobata, K.; Sutoh, K.; Todo, T.; Yazawa, S.; Iwai, K.; Watanabe, T. Nordihydrocapsiate, a new capsinoid from the fruits of a nonpungent pepper, Capsicum annuum. J. Nat. Prod. 1999, 62, 335–336. [Google Scholar] [CrossRef]
- Snitker, S.; Fujishima, Y.; Shen, H.; Ott, S.; Pi-Sunyer, X.; Furuhata, Y.; Sato, H.; Takahashi, M. Effects of novel capsinoid treatment on fatness and energy metabolism in humans: Possible pharmacogenetic implications. Am. J. Clin. Nutr. 2009, 89, 45–50. [Google Scholar] [CrossRef]
- Suzuki, T.; Iwai, K. Constituents of red pepper species: Chemistry, biochemistry, pharmacology, and food science of the pungent principle of Capsicum species. Alkaloids Chem. Pharmacol. 1984, 23, 227–299. [Google Scholar]
- Bucholz, C. Chemical investigation of dry, ripe Spanish peppers. Alm. Oder Taschenb. Scheidekünstler Apoth. 1816, 37, 1–30. [Google Scholar]
- Jones, P.G.; Fenwick, G.R. The glycoalkaloid content of some edible solanaceous fruits and potato products. J. Sci. Food Agric. 1981, 32, 419–421. [Google Scholar] [CrossRef] [PubMed]
- Shirai, Y.; Ueno, S.; Nakayama, A.; Ikeuchi, K.; Ubukata, K.; Mihara, R.; Bernard, B.K. Studies of the toxicological potential of capsinoids, XII: Pharmacokinetic study of capsinoid-containing CH-19 Sweet extract in rats. Int. J. Toxicol. 2010, 29, 15S–21S. [Google Scholar] [CrossRef] [PubMed]
- Saria, A.; Skofitsch, G.; Lembeck, F. Distribution of capsaicin in rat tissues after systemic administration. J. Pharm. Pharmacol. 1982, 34, 273–275. [Google Scholar] [CrossRef]
- Reilly, C.A.; Ehlhardt, W.J.; Jackson, D.A.; Kulanthaivel, P.; Mutlib, A.E.; Espina, R.J.; Moody, D.E.; Crouch, D.J.; Yost, G.S. Metabolism of capsaicin by cytochrome P450 produces novel dehydrogenated metabolites and decreases cytotoxicity to lung and liver cells. Chem. Res. Toxicol. 2003, 16, 336–349. [Google Scholar] [CrossRef]
- Chanda, S.; Bashir, M.; Babbar, S.; Koganti, A.; Bley, K. In vitro hepatic and skin metabolism of capsaicin. Drug Metab. Dispos. 2008, 36, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Reilly, C.A.; Henion, F.; Bugni, T.S.; Ethirajan, M.; Stockmann, C.; Pramanik, K.C.; Srivastava, S.K.; Yost, G.S. Reactive intermediates produced from the metabolism of the vanilloid ring of capsaicinoids by p450 enzymes. Chem. Res. Toxicol. 2013, 26, 55–66. [Google Scholar] [CrossRef]
- Monsereenusorn, Y. In vitro intestinal absorption of capsaicin. Toxicol. Appl. Pharmacol. 1980, 53, 134–139. [Google Scholar] [CrossRef]
- Kawada, T.; Suzuki, T.; Takahashi, M.; Iwai, K. Gastrointestinal absorption and metabolism of capsaicin and dihydrocapsaicin in rats. Toxicol. Appl. Pharmacol. 1984, 72, 449–456. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.C.; Sul, D.; Hwang, S.W.; Lee, S.H.; Kim, Y.H.; Tae, G. Nanoparticle formulation for controlled release of capsaicin. J. Nanosci. Nanotechnol. 2011, 11, 4586–4591. [Google Scholar] [CrossRef] [PubMed]
- Raza, K.; Shareef, M.A.; Singal, P.; Sharma, G.; Negi, P.; Katare, O.P. Lipid-based capsaicin-loaded nano-colloidal biocompatible topical carriers with enhanced analgesic potential and decreased dermal irritation. J. Liposome Res. 2014, 24, 290–296. [Google Scholar] [CrossRef]
- Sarwa, K.K.; Das, P.J.; Mazumder, B. A nanovesicle topical formulation of Bhut Jolokia (hottest capsicum): A potential anti-arthritic medicine. Expert. Opin. Drug Deliv. 2014, 11, 661–676. [Google Scholar] [CrossRef] [PubMed]
- Sarwa, K.K.; Mazumder, B.; Rudrapal, M.; Verma, V.K. Potential of capsaicin-loaded transfersomes in arthritic rats. Drug Deliv. 2015, 22, 638–646. [Google Scholar] [CrossRef]
- Opanasopit, P.; Sila-On, W.; Rojanarata, T.; Ngawhirunpat, T. Fabrication and properties of capsicum extract-loaded PVA and CA nanofiber patches. Pharm. Dev. Technol. 2013, 18, 1140–1147. [Google Scholar] [CrossRef] [PubMed]
- Contri, R.V.; Katzer, T.; Ourique, A.F.; da Silva, A.L.M.; Beck, R.C.; Pohlmann, A.R.; Guterres, S.S. Combined effect of polymeric nanocapsules and chitosan hydrogel on the increase of capsaicinoids adhesion to the skin surface. J. Biomed. Nanotechnol. 2014, 10, 820–830. [Google Scholar] [CrossRef]
- Selvendiran, K.; Sakthisekaran, D. Chemopreventive effect of piperine on modulating lipid peroxidation and membrane bound enzymes in benzo(a)pyrene induced lung carcinogenesis. Biomed. Pharmacother. 2004, 58, 264–267. [Google Scholar] [CrossRef] [PubMed]
- Umar, S.; Golam Sarwar, A.H.; Umar, K.; Ahmad, N.; Sajad, M.; Ahmad, S.; Katiyar, C.K.; Khan, H.A. Piperine ameliorates oxidative stress, inflammation and histological outcome in collagen induced arthritis. Cell Immunol. 2013, 284, 51–59. [Google Scholar] [CrossRef]
- Hwahng, S.H.; Ki, S.H.; Bae, E.J.; Kim, H.E.; Kim, S.G. Role of adenosine monophosphate-activated protein kinase-p70 ribosomal S6 kinase-1 pathway in repression of liver X receptor-alpha-dependent lipogenic gene induction and hepatic steatosis by a novel class of dithiolethiones. Hepatology 2009, 49, 1913–1925. [Google Scholar] [CrossRef]
- Choi, S.; Choi, Y.; Choi, Y.; Kim, S.; Jang, J.; Park, T. Piperine reverses high fat diet-induced hepatic steatosis and insulin resistance in mice. Food Chem. 2013, 141, 3627–3635. [Google Scholar] [CrossRef]
- Rondanelli, M.; Opizzi, A.; Perna, S.; Faliva, M.; Solerte, S.B.; Fioravanti, M.; Klersy, C.; Cava, E.; Paolini, M.; Scavone, L.; et al. Improvement in insulin resistance and favourable changes in plasma inflammatory adipokines after weight loss associated with two months’ consumption of a combination of bioactive food ingredients in overweight subjects. Endocrine 2013, 44, 391–401. [Google Scholar] [CrossRef]
- Li, S.; Wang, C.; Wang, M.; Li, W.; Matsumoto, K.; Tang, Y. Antidepressant like effects of piperine in chronic mild stress treated mice and its possible mechanisms. Life Sci. 2007, 80, 1373–1381. [Google Scholar] [CrossRef]
- Kirschenbaum, B.; Goldman, S.A. Brain-derived neurotrophic factor promotes the survival of neurons arising from the adult rat forebrain subependymal zone. Proc. Natl. Acad. Sci. USA 1995, 92, 210–214. [Google Scholar] [CrossRef]
- Haq, I.U.; Imran, M.; Nadeem, M.; Tufail, T.; Gondal, T.A.; Mubarak, M.S. Piperine: A review of its biological effects. Phytother. Res. 2021, 35, 680–700. [Google Scholar] [CrossRef]
- Quijia, C.R.; Chorilli, M. Characteristics, Biological Properties and Analytical Methods of Piperine: A Review. Crit. Rev. Anal. Chem. 2020, 50, 62–77. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Ray, A.K.; Mishra, S.K. Molecular and pharmacological aspects of piperine as a potential molecule for disease prevention and management: Evidence from clinical trials. Beni Suef Univ. J. Basic. Appl. Sci. 2022, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Rehman, M.U.; Rashid, S.; Arafah, A.; Qamar, W.; Alsaffar, R.M.; Ahmad, A.; Almatroudi, N.M.; Alqahtani, S.M.A.; Rashid, S.M.; Ahmad, S.B. Piperine Regulates Nrf-2/Keap-1 Signalling and Exhibits Anticancer Effect in Experimental Colon Carcinogenesis in Wistar Rats. Biology 2020, 9, 302. [Google Scholar] [CrossRef] [PubMed]
- Bang, J.S.; Oh, D.H.; Choi, H.M.; Sur, B.J.; Lim, S.J.; Kim, J.Y.; Yang, H.I.; Yoo, M.C.; Hahm, D.H.; Kim, K.S. Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1β-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis Res. Ther. 2009, 11, R49. [Google Scholar] [CrossRef] [PubMed]
- Sunil, P.; Sanjay, Y.; Vinod, S. Pharmacognostical investigation and standardization of Capsicum annum L. Roots. Chem. Pharm. Bull. 1990, 38, 1299. [Google Scholar]
- Magdy Beshbishy, A.; Alghamdi, S.; Onyiche, T.E.; Zahoor, M.; Rivero-Perez, N.; Zaragoza-Bastida, A.; Ghorab, M.A.; Meshaal, A.K.; El-Esawi, M.A.; Hetta, H.F. Biogenesis, biologic function and clinical potential of exosomes in different diseases. Appl. Sci. 2020, 10, 4428. [Google Scholar] [CrossRef]
- Gonzalez, R.; Dunkel, R.; Koletzko, B.; Schusdziarra, V.; Allescher, H.D. Effect of capsaicin-containing red pepper sauce suspension on upper gastrointestinal motility in healthy volunteers. Dig. Dis. Sci. 1998, 43, 1165–1171. [Google Scholar] [CrossRef] [PubMed]
- Sumner, J. The Natural History of Medicinal Plants; Timber Press: Portland, OR, USA, 2000. [Google Scholar]
- Hui, Y.H.; Meunier-Goddik, L.; Josephsen, J.; Nip, W.-K.; Stanfield, P.S. Handbook of Food and Beverage Fermentation Technology; CRC Press: Boca Raton, FL, USA, 2004; Volume 134. [Google Scholar]
- Bortolotti, M.; Porta, S. Effect of red pepper on symptoms of irritable bowel syndrome: Preliminary study. Dig. Dis. Sci. 2011, 56, 3288–3295. [Google Scholar] [CrossRef]
- Winter, J.; Bevan, S.; Campbell, E. Capsaicin and pain mechanisms. Br. J. Anaesth. 1995, 75, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Guedes, V.; Castro, J.P.; Brito, I. Topical capsaicin for pain in osteoarthritis: A literature review. Reumatol. Clín. Engl. Ed. 2018, 14, 40–45. [Google Scholar] [CrossRef]
- Evangelista, S. Novel therapeutics in the field of capsaicin and pain. Expert Rev. Clin. Pharmacol. 2015, 8, 373–375. [Google Scholar] [CrossRef]
- Varghese, S.; Kubatka, P.; Rodrigo, L.; Gazdikova, K.; Caprnda, M.; Fedotova, J.; Zulli, A.; Kruzliak, P.; Büsselberg, D. Chili pepper as a body weight-loss food. Int. J. Food Sci. Nutr. 2017, 68, 392–401. [Google Scholar] [CrossRef]
- Fusco, B.M.; Giacovazzo, M. Peppers and pain: The promise of capsaicin. Drugs 1997, 53, 909–914. [Google Scholar] [CrossRef]
- Lee, C.Y.J.; Kim, M.; Yoon, S.W.; Lee, C.H. Short-term control of capsaicin on blood and oxidative stress of rats in vivo. Phytother. Res. 2003, 17, 454–458. [Google Scholar] [CrossRef]
- Srivastava, S.K. Role of Capsaicin in Oxidative Stress and Cancer; Springer: Berlin/Heidelberg, Germany, 2013; Volume 3. [Google Scholar]
- Abdel-Salam, O.M.; Abdel-Rahman, R.F.; Sleem, A.A.; Farrag, A.R. Modulation of lipopolysaccharide-induced oxidative stress by capsaicin. Inflammopharmacology 2012, 20, 207–217. [Google Scholar] [CrossRef]
- Wahyuni, Y.; Ballester, A.R.; Sudarmonowati, E.; Bino, R.J.; Bovy, A.G. Secondary metabolites of Capsicum species and their importance in the human diet. J. Nat. Prod. 2013, 76, 783–793. [Google Scholar] [CrossRef]
- Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 1997, 389, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Nilius, B.; Owsianik, G. The transient receptor potential family of ion channels. Genome Biol. 2011, 12, 218. [Google Scholar] [CrossRef]
- Tominaga, M.; Julius, D. Capsaicin receptor in the pain pathway. Jpn. J. Pharmacol. 2000, 83, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Caterina, M.J.; Leffler, A.; Malmberg, A.B.; Martin, W.J.; Trafton, J.; Petersen-Zeitz, K.R.; Koltzenburg, M.; Basbaum, A.I.; Julius, D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000, 288, 306–313. [Google Scholar] [CrossRef]
- Gouin, O.; L’Herondelle, K.; Lebonvallet, N.; Le Gall-Ianotto, C.; Sakka, M.; Buhé, V.; Plée-Gautier, E.; Carré, J.L.; Lefeuvre, L.; Misery, L.; et al. TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: Pro-inflammatory response induced by their activation and their sensitization. Protein Cell 2017, 8, 644–661. [Google Scholar] [CrossRef] [PubMed]
- Piyachaturawat, P.; Glinsukon, T.; Toskulkao, C. Acute and subacute toxicity of piperine in mice, rats and hamsters. Toxicol. Lett. 1983, 16, 351–359. [Google Scholar] [CrossRef]
- Makiyah, S.N.N.; Tasminatun, S.; Arsito, P.N.; Fauziah, K.N.; Nugrahanti, D.R.; Putriani, A. Subchronic toxicity of piperine in piper nigrum on the histology of the kidney, liver, and lungs of mice (Mus musculus L.). Bali Med. J. 2021, 10, 1161–1167. [Google Scholar] [CrossRef]
- Malini, T.; Manimaran, R.; Arunakaran, J.; Aruldhas, M.; Govindarajulu, P. Effects of piperine on testis of albino rats. J. Ethnopharmacol. 1999, 64, 219–225. [Google Scholar] [CrossRef]
- Piyachaturawat, P.; Glinsukon, T.; Peugvicha, P. Postcoital antifertility effect of piperine. Contraception 1982, 26, 625–633. [Google Scholar] [CrossRef]
- Daware, M.B.; Mujumdar, A.M.; Ghaskadbi, S. Reproductive toxicity of piperine in Swiss albino mice. Planta Med. 2000, 66, 231–236. [Google Scholar] [CrossRef]
- Chandhoke, N.; Gupta, S.; Dhar, S. Interceptive activity of various species of Piper, their natural amides and semi-synthetic analogs. Indian J. Pharm. Sci. 1978, 40, 113–116. [Google Scholar]
- Glas, B.; Claeson, A.S. Skin sensitivity to capsaicin, perceived stress and burn out among patients with building-related symptoms. Int. Arch. Occup. Env. Health 2021, 94, 791–797. [Google Scholar] [CrossRef]
- Winek, C.L.; Markie, D.C.; Shanor, S.P. Pepper sauce toxicity. Drug Chem. Toxicol. 1982, 5, 89–113. [Google Scholar] [CrossRef] [PubMed]
- Nopanitaya, W. Effects of capsaicin in combination with diets of varying protein content on the duodenal absorptive cells of the rat. Am. J. Dig. Dis. 1974, 19, 439–448. [Google Scholar] [CrossRef]
- Glinsukon, T.; Stitmunnaithum, V.; Toskulkao, C.; Buranawuti, T.; Tangkrisanavinont, V. Acute toxicity of capsaicin in several animal species. Toxicon 1980, 18, 215–220. [Google Scholar] [CrossRef]
- Chudapongse, P.; Janthasoot, W. Studies on the effect of capsaicin on metabolic reactions of isolated rat liver mitochondria. Toxicol. Appl. Pharmacol. 1976, 37, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Szolcsányi, J.; Joó, F.; Jancsó-Gábor, A. Mitochondrial changes in preoptic neurons after capsaicin desensitization of the hypothalamic thermodetectors in rats. Nature 1971, 229, 116–117. [Google Scholar] [CrossRef]
- Makara, G.B. Superficial and deep chemonociception: Differential inhibition by pretreatment with capsaicin. Acta Physiol. Acad. Sci. Hung. 1970, 38, 393–399. [Google Scholar]
- Szolcsányi, J.; Jancśo-Gábor, A.; Joo, F. Functional and fine structural characteristics of the sensory neuron blocking effect of capsaicin. Naunyn Schmiedebergs Arch. Pharmacol. 1975, 287, 157–169. [Google Scholar] [CrossRef]
- Lysy, J.; Sistiery-Ittah, M.; Israelit, Y.; Shmueli, A.; Strauss-Liviatan, N.; Mindrul, V.; Keret, D.; Goldin, E. Topical capsaicin—A novel and effective treatment for idiopathic intractable pruritus ani: A randomised, placebo controlled, crossover study. Gut 2003, 52, 1323–1326. [Google Scholar] [CrossRef] [PubMed]
- Arora, M.; Moser, J.; Phadke, H.; Basha, A.A.; Spencer, S.L. Endogenous replication stress in mother cells leads to quiescence of daughter cells. Cell Rep. 2017, 19, 1351–1364. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Kim, K.N.; Hwang, K.G.; Park, C.J. Capsicum plaster at the Hegu point reduces postoperative analgesic requirement after orthognathic surgery. Anesth. Analg. 2009, 108, 992–996. [Google Scholar] [CrossRef]
- Johnson, W., Jr. Final report on the safety assessment of capsicum annuum extract, capsicum annuum fruit extract, capsicum annuum resin, capsicum annuum fruit powder, capsicum frutescens fruit, capsicum frutescens fruit extract, capsicum frutescens resin, and capsaicin. Int. J. Toxicol. 2007, 26 (Suppl. S1), 3–106. [Google Scholar]
- Gregersen, N.T.; Belza, A.; Jensen, M.G.; Ritz, C.; Bitz, C.; Hels, O.; Frandsen, E.; Mela, D.J.; Astrup, A. Acute effects of mustard, horseradish, black pepper and ginger on energy expenditure, appetite, ad libitum energy intake and energy balance in human subjects. Br. J. Nutr. 2013, 109, 556–563. [Google Scholar] [CrossRef]
- O’Connor, A.; Corbin, K.D.; Nieman, D.C.; Swick, A.G. A randomized, controlled trial to assess short-term black pepper consumption on 24-hour energy expenditure and substrate utilization. Funct. Foods Health Dis. 2013, 3, 377–388. [Google Scholar] [CrossRef]
- Hobbs, T.; Caso, R.; McMahon, D.; Nymark, M. A novel, multi-ingredient supplement to manage elevated blood lipids in patients with no evidence of cardiovascular disease: A pilot study. Altern. Ther. Health Med. 2014, 20, 18–23. [Google Scholar]
- Rofes, L.; Arreola, V.; Martin, A.; Clavé, P. Effect of oral piperine on the swallow response of patients with oropharyngeal dysphagia. J. Gastroenterol. 2014, 49, 1517–1523. [Google Scholar] [CrossRef]
- McCrea, C.E.; West, S.G.; Kris-Etherton, P.M.; Lambert, J.D.; Gaugler, T.L.; Teeter, D.L.; Sauder, K.A.; Gu, Y.; Glisan, S.L.; Skulas-Ray, A.C. Effects of culinary spices and psychological stress on postprandial lipemia and lipase activity: Results of a randomized crossover study and in vitro experiments. J. Transl. Med. 2015, 13, 7. [Google Scholar] [CrossRef]
- Panahi, Y.; Hosseini, M.S.; Khalili, N.; Naimi, E.; Majeed, M.; Sahebkar, A. Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: A randomized controlled trial and an updated meta-analysis. Clin. Nutr. 2015, 34, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Gilardini, L.; Pasqualinotto, L.; Di Pierro, F.; Risso, P.; Invitti, C. Effects of Greenselect Phytosome® on weight maintenance after weight loss in obese women: A randomized placebo-controlled study. BMC Complement. Altern. Med. 2016, 16, 233. [Google Scholar] [CrossRef]
- Zanzer, Y.C.; Plaza, M.; Dougkas, A.; Turner, C.; Ostman, E. Black pepper-based beverage induced appetite-suppressing effects without altering postprandial glycaemia, gut and thyroid hormones or gastrointestinal well-being: A randomized crossover study in healthy subjects. Food Funct. 2018, 9, 2774–2786. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudpour, Z.; Shokri, J.; Kamalinejad, M.; Meftah, N.; Khafri, S.; Mozaffarpur, S.A.; Shirafkan, H. The efficacy of a Persian herbal formulation on functional bloating: A double-blind randomized controlled trial. J. Integr. Med. 2019, 17, 344–350. [Google Scholar] [CrossRef]
- Heidari-Beni, M.; Moravejolahkami, A.R.; Gorgian, P.; Askari, G.; Tarrahi, M.J.; Bahreini-Esfahani, N. Herbal formulation “turmeric extract, black pepper, and ginger” versus Naproxen for chronic knee osteoarthritis: A randomized, double-blind, controlled clinical trial. Phytother. Res. 2020, 34, 2067–2073. [Google Scholar] [CrossRef]
- Oh, E.S.; Petersen, K.S.; Kris-Etherton, P.M.; Rogers, C.J. Spices in a High-Saturated-Fat, High-Carbohydrate Meal Reduce Postprandial Proinflammatory Cytokine Secretion in Men with Overweight or Obesity: A 3-Period, Crossover, Randomized Controlled Trial. J. Nutr. 2020, 150, 1600–1609. [Google Scholar] [CrossRef]
- Pastor, R.F.; Repetto, M.G.; Lairion, F.; Lazarowski, A.; Merelli, A.; Manfredi Carabetti, Z.; Pastor, I.; Pastor, E.; Iermoli, L.V.; Bavasso, C.A.; et al. Supplementation with Resveratrol, Piperine and Alpha-Tocopherol Decreases Chronic Inflammation in a Cluster of Older Adults with Metabolic Syndrome. Nutrients 2020, 12, 3149. [Google Scholar] [CrossRef]
- Lindheimer, J.B.; Loy, B.D.; O’Connor, P.J. Short-term effects of black pepper (Piper nigrum) and rosemary (Rosmarinus officinalis and Rosmarinus eriocalyx) on sustained attention and on energy and fatigue mood states in young adults with low energy. J. Med. Food 2013, 16, 765–771. [Google Scholar] [CrossRef]
- Yoshioka, M.; St-Pierre, S.; Drapeau, V.; Dionne, I.; Doucet, E.; Suzuki, M.; Tremblay, A. Effects of red pepper on appetite and energy intake. Br. J. Nutr. 1999, 82, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Lutgendorf, S.; Logan, H.; Kirchner, H.L.; Rothrock, N.; Svengalis, S.; Iverson, K.; Lubaroff, D. Effects of relaxation and stress on the capsaicin-induced local inflammatory response. Psychosom. Med. 2000, 62, 524–534. [Google Scholar] [CrossRef] [PubMed]
- Belza, A.; Jessen, A.B. Bioactive food stimulants of sympathetic activity: Effect on 24-h energy expenditure and fat oxidation. Eur. J. Clin. Nutr. 2005, 59, 733–741. [Google Scholar] [CrossRef]
- Ahuja, K.D.; Robertson, I.K.; Geraghty, D.P.; Ball, M.J. Effects of chili consumption on postprandial glucose, insulin, and energy metabolism. Am. J. Clin. Nutr. 2006, 84, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Inoue, N.; Matsunaga, Y.; Satoh, H.; Takahashi, M. Enhanced energy expenditure and fat oxidation in humans with high BMI scores by the ingestion of novel and non-pungent capsaicin analogues (capsinoids). Biosci. Biotechnol. Biochem. 2007, 71, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Chaiyasit, K.; Khovidhunkit, W.; Wittayalertpanya, S. Pharmacokinetic and the effect of capsaicin in Capsicum frutescens on decreasing plasma glucose level. J. Med. Assoc. Thai 2009, 92, 108–113. [Google Scholar]
- Josse, A.R.; Sherriffs, S.S.; Holwerda, A.M.; Andrews, R.; Staples, A.W.; Phillips, S.M. Effects of capsinoid ingestion on energy expenditure and lipid oxidation at rest and during exercise. Nutr. Metab. 2010, 7, 65. [Google Scholar] [CrossRef]
- Nieman, D.C.; Cialdella-Kam, L.; Knab, A.M.; Shanely, R.A. Influence of red pepper spice and turmeric on inflammation and oxidative stress biomarkers in overweight females: A metabolomics approach. Plant Foods Hum. Nutr. 2012, 67, 415–421. [Google Scholar] [CrossRef]
- Janssens, P.L.; Hursel, R.; Martens, E.A.; Westerterp-Plantenga, M.S. Acute effects of capsaicin on energy expenditure and fat oxidation in negative energy balance. PLoS ONE 2013, 8, e67786. [Google Scholar] [CrossRef]
- Janssens, P.L.; Hursel, R.; Westerterp-Plantenga, M.S. Capsaicin increases sensation of fullness in energy balance, and decreases desire to eat after dinner in negative energy balance. Appetite 2014, 77, 44–49. [Google Scholar] [CrossRef]
- Galgani, J.E.; Ryan, D.H.; Ravussin, E. Effect of capsinoids on energy metabolism in human subjects. Br. J. Nutr. 2010, 103, 38–42. [Google Scholar] [CrossRef]
- Yuan, L.J.; Qin, Y.; Wang, L.; Zeng, Y.; Chang, H.; Wang, J.; Wang, B.; Wan, J.; Chen, S.H.; Zhang, Q.Y.; et al. Capsaicin-containing chili improved postprandial hyperglycemia, hyperinsulinemia, and fasting lipid disorders in women with gestational diabetes mellitus and lowered the incidence of large-for-gestational-age newborns. Clin. Nutr. 2016, 35, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Joseph, A.; John, F.; Thomas, J.V.; Das, S.; Maliakel, B.; Mohan, R.; Krishnakumar, I.M. Influence of a Novel Food-Grade Formulation of Red Chili Extract (Capsicum annum) on Overweight Subjects: Randomized, Double-Blinded, Placebo-Controlled Study. J. Diet. Suppl. 2021, 18, 387–405. [Google Scholar] [CrossRef]
- Giuriato, G.; Venturelli, M.; Matias, A.; Soares, E.; Gaetgens, J.; Frederick, K.A.; Ives, S.J. Capsaicin and Its Effect on Exercise Performance, Fatigue and Inflammation after Exercise. Nutrients 2022, 14, 232. [Google Scholar] [CrossRef] [PubMed]
- Silva-Santana, N.C.F.E.; Rodrigues, H.C.N.; Pereira Martins, T.F.; Braga, C.C.; Silva, M.A.C.; Carlos da Cunha, L.; de Souza Freitas, A.T.V.; Costa, N.A.; Peixoto, M. Turmeric supplementation with piperine is more effective than turmeric alone in attenuating oxidative stress and inflammation in hemodialysis patients: A randomized, double-blind clinical trial. Free Radic. Biol. Med. 2022, 193, 648–655. [Google Scholar] [CrossRef]
- Ntamo, Y.; Jack, B.; Ziqubu, K.; Mazibuko-Mbeje, S.E.; Nkambule, B.B.; Nyambuya, T.M.; Mabhida, S.E.; Hanser, S.; Orlando, P.; Tiano, L.; et al. Epigallocatechin gallate as a nutraceutical to potentially target the metabolic syndrome: Novel insights into therapeutic effects beyond its antioxidant and anti-inflammatory properties. Crit. Rev. Food Sci. Nutr. 2022. [Google Scholar] [CrossRef]
- Mathur, P.; Pillai, R. Overnutrition: Current scenario & combat strategies. Indian J. Med. Res. 2019, 149, 695–705. [Google Scholar] [CrossRef]
- Ziqubu, K.; Mazibuko-Mbeje, S.E.; Mthembu, S.X.H.; Mabhida, S.E.; Jack, B.U.; Nyambuya, T.M.; Nkambule, B.B.; Basson, A.K.; Tiano, L.; Dludla, P.V. Anti-Obesity Effects of Metformin: A Scoping Review Evaluating the Feasibility of Brown Adipose Tissue as a Therapeutic Target. Int. J. Mol. Sci. 2023, 24, 2227. [Google Scholar] [CrossRef] [PubMed]
- Dludla, P.V.; Nkambule, B.B.; Tiano, L.; Louw, J.; Jastroch, M.; Mazibuko-Mbeje, S.E. Uncoupling proteins as a therapeutic target to protect the diabetic heart. Pharmacol. Res. 2018, 137, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Shabalala, S.C.; Johnson, R.; Basson, A.K.; Ziqubu, K.; Hlengwa, N.; Mthembu, S.X.H.; Mabhida, S.E.; Mazibuko-Mbeje, S.E.; Hanser, S.; Cirilli, I.; et al. Detrimental Effects of Lipid Peroxidation in Type 2 Diabetes: Exploring the Neutralizing Influence of Antioxidants. Antioxidants 2022, 11, 2071. [Google Scholar] [CrossRef]
- National Library of Medicine, Pepper. Available online: https://pubmed.ncbi.nlm.nih.gov/?term=pepper (accessed on 22 June 2022).
- Gong, T.; Wang, H.; Liu, S.; Zhang, M.; Xie, Y.; Liu, X. Capsaicin regulates lipid metabolism through modulation of bile acid/gut microbiota metabolism in high-fat-fed SD rats. Food Nutr. Res. 2022, 66. [Google Scholar] [CrossRef]
- Zeng, H.; Shi, N.; Peng, W.; Yang, Q.; Ren, J.; Yang, H.; Chen, L.; Chen, Y.; Guo, J. Effects of Capsaicin on Glucose Uptake and Consumption in Hepatocytes. Molecules 2023, 28, 5258. [Google Scholar] [CrossRef]
- Song, J.X.; Ren, H.; Gao, Y.F.; Lee, C.Y.; Li, S.F.; Zhang, F.; Li, L.; Chen, H. Dietary Capsaicin Improves Glucose Homeostasis and Alters the Gut Microbiota in Obese Diabetic ob/ob Mice. Front. Physiol. 2017, 8, 602. [Google Scholar] [CrossRef]
- Kawada, T.; Hagihara, K.; Iwai, K. Effects of capsaicin on lipid metabolism in rats fed a high fat diet. J. Nutr. 1986, 116, 1272–1278. [Google Scholar] [CrossRef] [PubMed]
- Gong, T.; Zhou, Y.; Zhang, L.; Wang, H.; Zhang, M.; Liu, X. Capsaicin combined with dietary fiber prevents high-fat diet associated aberrant lipid metabolism by improving the structure of intestinal flora. Food Sci. Nutr. 2023, 11, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ma, X.; Zhang, L.; Sun, H.; Liu, X. Capsaicin Reduces Blood Glucose by Increasing Insulin Levels and Glycogen Content Better than Capsiate in Streptozotocin-Induced Diabetic Rats. J. Agric. Food Chem. 2017, 65, 2323–2330. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Country | Study Population | Intervention | Comparator (If Any) | Main Findings |
---|---|---|---|---|---|
Gregerse et al., 2013 [137] | Denmark | Individuals subjected to diet-induced thermogenesis (n = 22), with an average age of 25 years | Brunch meal with black pepper at 1.3 g, ginger (20 g), horseradish (8.3 g), and mustard (21 g) for 4 h | Placebo | Did not affect diet-induced thermogenesis; measurements of appetite and energy balance were also not affected |
O’Connor et al., 2013 [138] | United States | Overweight women (n = 17), with an average age between 52–69 years | Black pepper at 1.5 g for 24 h | Placebo | Did not affect energy expenditure or respiratory quotient, including levels of glucose, insulin, catecholamines, and gut peptides |
Rondanelli et al., 2013 [91] | Italy | Overweight individuals (n = 41), with an average age between 25 and 45 years | Two capsules per day, mainly containing Camellia sinensis decaffeinated dried extract (150 mg/cpr), microencapsulated oleoresin of Capsicum annum (7.5 mg/cpr), and piper nigrum dry extract, (3 mg/cpr) for 8 weeks | Placebo | Reduced obesity-related inflammatory metabolic dysfunction by ameliorating insulin resistance, improving the leptin/adiponectin ratio, respiratory quotient, and low-density lipoprotein (LDL) cholesterol levels |
Hobbs et al., 2014 [139] | United States | Individuals with hypercholesterolemia (n = 19), with an average age between 18 and 80 years | Softgel that contained different active ingredients (such as bioflavonoids, vitamins, omega-3 fatty acids, and black pepper) for 30 days | Placebo | Reduced total cholesterol, low-density lipopolysaccharide, and triglyceride levels |
Rofes et al., 2014 [140] | Spain | Individuals with oropharyngeal dysphagia (n = 40), with an average age between 74 and 78 years | Piperine at 1 mM or 150 μM during oropharyngeal swallow response | None | Alleviated oropharyngeal dysphagia by improving swallowing, with the time of laryngeal vestibule closure shortened at both concentrations |
McCrea et al., 2015 [141] | United States | Overweight individuals given a high-fat meal (1000 kcal, 45 g fat) (n = 20), with an average age between 30 and 36 years | Capsule with a combination of spices (black pepper, cinnamon, cloves, garlic, ginger, oregano, paprika, rosemary, and turmeric) at 14.5 g for up to 210 min | Placebo | Reduced triglyceride levels, but did not have effects on glucose or insulin levels |
Panahi et al., 2015 [142] | Iran | Individuals with metabolic syndrome (n = 50), with an average age between 36 and 53 years | Curcuminoids at 1 g, co-administered with piperine at 10 mg daily for 8 weeks | Placebo | Improved oxidative and inflammatory status by enhancing serum levels of superoxide dismutase (SOD) while reducing that of malonaldehyde (MDA), together with C-reactive protein |
Gilardini et al., 2016 [143] | Italy | Obese females (n = 20), with an average age between 40 and 60 years | Formulation containing Camellia sinensis, titrated as > 60% polyphenols and > 40% in epigallocatechin-O-gallate, complexed with soy distearoylphosphatidylcholine and pure piperine (15 mg/dose) for 3 months | Placebo | Reduced body weight and fat mass |
Zanzer et al., 2018 [144] | Sweden | Individuals receiving a meal rich in carbohydrates (n = 16), with an average age between 25 and 27 years | Black pepper-based beverage at 220 mL (20 mg gallic acid equivalent) up to 180 min | Placebo | Did not affect metabolic status. Also, the was no observed effects in the gastrointestinal well-being. However, there was suppression of hunger and improved satiety. |
Mahmoudpour et al., 2019 [145] | Iran | Individuals with functional bloating (n = 36), with an average age between 20 and 50 years | Formulation containing Trachyspermum ammi (L.) Sprague seed, Zingiber officinale Roscoe. Rhizome, and Piper nigrum L. berry at 500 mg three times a day for 2 weeks | Placebo | Improved bloating status, including eructation, defecation, and borborygmus, better than dimethicone |
Heidari-Beni et al., 2020 [146] | Iran | Individuals with chronic knee osteoarthritis (n = 30), with an average age between 35 and 75 years | Herbal formulation containing curcumin (300 mg), gingerols (7.5 mg), and piperine (3.75 mg), taken twice a day for 4 weeks | Naproxen at 250 mg | Potentially protected against chronic knee osteoporosis by reducing levels of prostaglandin E2 |
Oh et al., 2020 [147] | United States | Overweight or obese subjects (n = 12) given a high-fat meal (1000 kcal) (n = 20), with an average age between 40 and 65 years | Combination of spices (basil, bay leaf, black pepper, cinnamon, coriander, cumin, ginger, oregano, parsley, red pepper, rosemary, thyme, and turmeric) at 2 g for up to 4 h | Placebo | Alleviated high-fat-meal-induced postprandial interleukin (IL)-1β secretion |
Pastor et al., 2020 [148] | Argentina | Individuals with metabolic syndrome (n = 22), with an average age between 63 and 73 years | Formulation containing resveratrol at 50 mg, piperine at 5 mg, and alpha tocopherol a 25 mg, with habitual treatment for 3 months | Placebo | Ameliorated inflammation by reducing levels of ferritin, ultrasensitive C-reactive protein, and oxygen consumption |
Lindheimer et al., 2023 [149] | United States | Young adults with low energy (n = 40), with an average age between 18 and 34 years | Black pepper capsules twice a day at 0.504 g for 2 days | Rosemary at 0.425 g | Did not affect energy levels or fatigue feelings; however, rosemary induced a reduction in false alarm errors and mental fatigue at different time periods |
Author, Year | Country | Study Population | Intervention | Comparator | Main Findings |
---|---|---|---|---|---|
Yoshioka et al., 1999 [150] | Canada | Healthy individuals given high-fat and high-carbohydrate meals (n = 23), with an average age between 23 and 41 years | Breakfast with red pepper at 10 g | None | Reduced appetite and subsequent protein and fat intake while also limiting energy intake |
Lutgendorf et al., 2000 [151] | Denmark | Healthy individuals subjected to stressful conditions, with an average age between 21 and 33 years | Capsaicin at 510 mg for 10 days | Placebo | Ameliorated stressful related inflammation by enhancing relaxation; this was related to amendments in norepinephrine, heart rate, and systolic blood pressure during the experimental task |
Belza and Jessen, 2005 [152] | Denmark | Overweight and obese individuals (n = 19), with an average age between 28 and 54 years | A tablet containing green tea extract at 250 mg, tyrosine at 203 mg, anhydrous caffeine at 25.4 mg, and capsaicin at 0.2 mg for 7 days | Placebo | Promoted a thermogenic effect through enhanced energy expenditure without raising the heart rate |
Ahuja et al., 2006 [153] | Australia | Overweight individuals (n = 36), with an average age between 22 and 70 years | Chili blend (30 g/d; 55% cayenne chili) diet supplement for 4 weeks | None | Attenuated postprandial hyperinsulinemia |
Inoue et al., 2007 [154] | Japan | Overweight individuals (n = 29), with an average age between 30 and 65 years | Capsinoids at 3 or 10 mg/kg for 4 weeks | Placebo | Promoted fat oxidation, and this positively correlated with the body mass index; further analysis showed that treatment enhanced energy expenditure and oxygen consumption |
Snitker et al., 2008 [70] | United States | Overweight subjects (n = 41), with an average age between 30 and 60 years | Capsinoids at 6 mg for 12 weeks | Placebo | Safe and promoted fat oxidation |
Chaiyasit et al., 2009 [155] | Thailand | Individuals subjected to oral glucose tolerance tests (n = 12), with an average age of 20–23 years | Capsaicin at 5 g for up to 120 min | None | Reduced plasma glucose levels and maintained insulin levels |
Josse et al., 2010 [156] | Canada | Healthy subjects cycling at 55% VO2 peak, and for 30 min into recovery (n = 12), with an age between 21 and 27 years | Capsules of purified capsinoids at 10 mg, 30 min prior to exercise | None | Enhanced adrenergic activity, and energy expenditure, leading to a shift in substrate utilization toward lipid at rest but had little effect during exercise or recovery |
Nieman et al., 2012 [157] | United States | Overweight and obese females (n = 31), with an average age between 40 and 75 years | A combination of red pepper spice at 1 g daily for 4 weeks | Received turmeric at 2.8 g | Did not affect inflammation and oxidative stress |
Janssens et al., 2013 [158] | Netherlands | Healthy individuals subjected to 25% negative energy balance (n = 15), with an average age between 18 and 50 years | Capsaicin at 2.56 mg (1.03 g of red chili pepper, 39,050 SHU) with every meal for 36 h | Placebo | Supported negative energy balance by counteracting the unfavorable negative energy balance concomitant with a reduction in energy expenditure |
Janssens et al., 2014 [159] | Netherlands | Healthy individuals (n = 15), with an average age between 18 and 50 years | Red chili pepper (containing capsaicin 2484 µ/g, nordihydrocapsaicin 278 µ/g, and dihydrocapsaicin 1440 µ/g) at 2.56 mg with every meal, mounting to daily total dose of 7.68 mg | None | Increased satiety and fullness, and partially prevented overeating when food intake was ad libitum; after dinner, treatment prevented the negative energy balance and desire to eat |
Galgani et al., 2015 [160] | United States | Healthy subjects (n = 13), with an average age between 27 and 30 years | Gel capsules (containing capsinoids at 1, 3, 6 and 12 mg) up to 72 h | Placebo | Did not affect metabolic rate, non-protein respiratory quotient, blood pressure, or axillary temperature |
Yuan et al., 2016 [161] | China | Women with gestational diabetes (n = 20), with an average age between 27 and 34 years | Capsaicin at 5 mg daily for 4 weeks | Placebo | Improved postprandial hyperglycemia and hyperinsulinemia, as well as fasting lipid metabolic disorders; in addition, the fasting serum levels of apolipoprotein B and calcitonin gene-related peptide increased compared to changes in glucose and insulin in the plasma |
Joseph et al., 2021 [162] | India | Overweight subjects (n = 12), with an average age between 35 and 41 years | Capsifen (with 4 mg capsaicinoids/day) at 200 mg for 28 days | Placebo | Reduced body weight, body mass index, and appetite; results also affirmed the safety and tolerability of capsifen at the investigational dosage |
Giuriato et al., 2022 [163] | Italy | Healthy males subjected to constant-load cycling exercise time-to-exhaustion trials (n = 10), with an average age between 19 and 26 years | Two capsules of capsaicin at 390 mg, during 72 h between sessions | Placebo | Alleviated neuromuscular fatigue through alterations in afferent signaling or neuromuscular relaxation kinetics |
Silva-Santana et al., 2022 [164] | Brazil | Patients undergoing hemodialysis (n = 24), with an average age between 20 and 75 years | A combination of turmeric at 3 g and piperine at 2 mg daily for 12 weeks | Turmeric at 3 g/day | Combination treatment was superior in effectively modulating the status of oxidation and inflammation by reducing malonaldehyde and ferritin levels |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dludla, P.V.; Cirilli, I.; Marcheggiani, F.; Silvestri, S.; Orlando, P.; Muvhulawa, N.; Moetlediwa, M.T.; Nkambule, B.B.; Mazibuko-Mbeje, S.E.; Hlengwa, N.; et al. Bioactive Properties, Bioavailability Profiles, and Clinical Evidence of the Potential Benefits of Black Pepper (Piper nigrum) and Red Pepper (Capsicum annum) against Diverse Metabolic Complications. Molecules 2023, 28, 6569. https://doi.org/10.3390/molecules28186569
Dludla PV, Cirilli I, Marcheggiani F, Silvestri S, Orlando P, Muvhulawa N, Moetlediwa MT, Nkambule BB, Mazibuko-Mbeje SE, Hlengwa N, et al. Bioactive Properties, Bioavailability Profiles, and Clinical Evidence of the Potential Benefits of Black Pepper (Piper nigrum) and Red Pepper (Capsicum annum) against Diverse Metabolic Complications. Molecules. 2023; 28(18):6569. https://doi.org/10.3390/molecules28186569
Chicago/Turabian StyleDludla, Phiwayinkosi V., Ilenia Cirilli, Fabio Marcheggiani, Sonia Silvestri, Patrick Orlando, Ndivhuwo Muvhulawa, Marakiya T. Moetlediwa, Bongani B. Nkambule, Sithandiwe E. Mazibuko-Mbeje, Nokulunga Hlengwa, and et al. 2023. "Bioactive Properties, Bioavailability Profiles, and Clinical Evidence of the Potential Benefits of Black Pepper (Piper nigrum) and Red Pepper (Capsicum annum) against Diverse Metabolic Complications" Molecules 28, no. 18: 6569. https://doi.org/10.3390/molecules28186569
APA StyleDludla, P. V., Cirilli, I., Marcheggiani, F., Silvestri, S., Orlando, P., Muvhulawa, N., Moetlediwa, M. T., Nkambule, B. B., Mazibuko-Mbeje, S. E., Hlengwa, N., Hanser, S., Ndwandwe, D., Marnewick, J. L., Basson, A. K., & Tiano, L. (2023). Bioactive Properties, Bioavailability Profiles, and Clinical Evidence of the Potential Benefits of Black Pepper (Piper nigrum) and Red Pepper (Capsicum annum) against Diverse Metabolic Complications. Molecules, 28(18), 6569. https://doi.org/10.3390/molecules28186569