Identification of Antioxidative Hydrolyzable Tannins in Water Chestnut
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation and Characterization of Phenolic Constituents
2.2. DPPH Radical Scavenging Activity
3. Experimental Section
3.1. General
3.2. Materials
3.3. Extraction and Isolation
3.4. Methylation of Compound 1 Followed by Methanolysis
3.5. Determination of the Sugar Configuration of Compound 1
3.6. DPPH Radical Scavenging Activities of Compounds 1–23
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Shindo, K.; Kuroki, E.; Toyoda, M. Antioxidative compounds contained in the seed with hard shell of Trapa japonica flerov. and its herbal tea. Nippon Kasei Gakkaishi 2013, 64, 353–359. [Google Scholar]
- Ministry of Education, Culture, Sports, Science and Technology. Standard Tables of Composition in Japan 2015, 7th Revised Version; Ministry of Education, Culture, Sports, Science and Technology: Tokyo, Japan, 2015. [Google Scholar]
- Kawabe, S.; Ganeko, N.; Ito, H. Ellagitannin dimers from the pericarps of Trapa japonica. Shouyakugaku Zasshi 2017, 71, 53–54. [Google Scholar]
- Nonaka, G.; Matsumoto, Y.; Nishioka, I. Trapain, a new hydrolyzable tannin from Trapa japonica Flerov. Chem. Pharm. Bull. 1981, 29, 1184–1187. [Google Scholar] [CrossRef]
- Iwaoka, Y.; Suzuki, S.; Kato, N.; Hayakawa, C.; Kawabe, S.; Ganeko, N.; Uemura, T.; Ito, H. Characterization and identification of bioactive polyphenols in the Trapa bispinosa Roxb. pericarp extract. Molecules 2021, 26, 5802. [Google Scholar] [CrossRef]
- Lee, D.; Lee, O.-H.; Choi, G.; Kim, J.D. Antioxidant and anti-adipogenic activities of Trapa japonica shell extract cultivated in Korea. Prev. Nutr. Food Sci. 2017, 22, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.-J.; Lee, S.-K.; Song, J.-H.; Kim, M.-E.; Kim, M.-J.; Jang, J.-S.; Lee, J.-H.; Kim, J.-I. Water chestnut (Trapa japonica Flerov) exerts inhibitory effect on postprandial glycemic response in rats and free radical scavenging activity in vitro. Food Sci. Biotechnol. 2009, 18, 808–812. [Google Scholar]
- Kang, H.-G.; Bashir, K.M.I.; Kim, K.-Y.; Shin, S.; Choi, M.-W.; Hong, E.-J.; Choi, S.-H.; Kim, J.-W.; Choi, J.-S.; Ku, S.-K. Evaluation of dose-dependent obesity and diabetes-related complications of water chestnut (fruit of Trapa japonica) extracts in type II obese diabetic mice induced by 45% kcal high-fat diet. Medicina 2022, 58, 189. [Google Scholar] [CrossRef]
- Park, S.-J.; Lee, M.; Kim, K.-Y.; Shin, S.; Choi, M.-W.; Hong, E.-J.; Lee, J. Trapa japonica Flerov extract prevents obesity by regulating adipogenesis and lipolysis in differentiated 3T3-L1 cells. Appl. Sci. 2022, 12, 290. [Google Scholar] [CrossRef]
- Kim, M.J.; Im, K.R.; Yoon, K.-S. Trapa japonica Flerov extract attenuates lipid accumulation through downregulation of adipogenic transcription factors in 3T3-L1 cells. Am. J. Mol. Biol. 2015, 5, 32–41. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Hwang, J.-W.; Jang, J.-H.; Son, S.; Seo, I.-B.; Jeong, J.-H.; Kim, E.-H.; Moon, S.H.; Jeon, B.-T.; Park, P.-J. Trapa japonica pericarp extract reduces LPS-induced inflammation in macrophages and acute lung injury in mice. Molecules 2016, 21, 392. [Google Scholar] [CrossRef]
- Kim, B.; Kim, J.E.; Choi, B.-K.; Kim, H.-S. Anti-inflammatory effects of water chestnut extract on cytokine responses via nuclear factor-κB-signaling pathway. Biomol. Ther. 2015, 23, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-S.; Kim, E.-K.; Hwang, J.-W.; Seo, I.-B.; Jang, J.-H.; Son, S.; Jeong, J.-H.; Moon, S.H.; Jeon, B.-T.; Park, P.-J. Characterization of the antioxidant fraction of Trapa japonica pericarp and its hepatic protective effects in vitro and in vivo. Food Funct. 2016, 7, 1689–1699. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, M.; Yasutake, K.; Hino, M.; Ohwatari, H.; Ohmagari, N.; Takedomi, K.; Tanaka, T.; Nonaka, G. Inhibitory effects of polyphenols from water chestnut (Trapa japonica) husk on glycolytic enzymes and postprandial blood glucose elevation in mice. Food Chem. 2014, 165, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Nam, G.-H.; Kawk, H.-W.; Kim, S.-Y.; Kim, Y.-M. Solvent fractions of fermented Trapa japonica fruit extract stimulate collagen synthesis through TGF-β1/GSK-3β/β-catenin pathway in human dermal fibroblasts. J. Cosmet. Dermatol. 2020, 19, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Nam, G.-H.; Jo, K.-J.; Park, Y.-S.; Kawk, H.W.; Yoo, J.-G.; Jang, J.D.; Kang, S.M.; Kim, S.-Y.; Kim, Y.-M. Bacillus/Trapa japonica fruit extract ferment filtrate enhances human hair follicle dermal papilla cell proliferation via the Akt/ERK/GSK-3β signaling pathway. BMC Complement. Altern. Med. 2019, 19, 104. [Google Scholar] [CrossRef]
- Bešlo, R.; Golubić, N.; Rastija, V.; Agić, D.; Karnaš, M.; Šubarić, D.; Lučić, B. Antioxidant activity, metabolism, and bioavailability of polyphenols in the diet of animals. Antioxidants 2023, 12, 1141. [Google Scholar] [CrossRef]
- Puruteanu, L.L.; Bailey, D.S.; Grádinaru, A.C.; Jäntschi, L. The biochemistry and effectiveness of antioxidants in food, fruits, and marine algae. Antioxidants 2023, 12, 860. [Google Scholar] [CrossRef]
- SDBSWeb. National Institute of Advanced Industrial Science and Technology. Available online: https://sdbs.db.aist.go.jp (accessed on 10 February 2023).
- Saijyo, R.; Nonaka, G.; Nishioka, I. Tannins and related compounds. LΧΧΧVII. Isolation and characterization of four new hydrolyzable tannins from the leaves of Mallotus repandus. Chem. Pharm. Bull. 1989, 37, 2624–2630. [Google Scholar] [CrossRef]
- Bai, N.; He, K.; Roller, M.; Zheng, B.; Chen, X.; Shao, Z.; Peng, T.; Zheng, Q. Active compounds from Lagerstroemia speciosa, insulin-like glucose uptake-stimulatory/inhibitory and adipocyte differentiation-inhibitory activities in 3T3-L1 cells. J. Agric. Food Chem. 2008, 56, 11668–11674. [Google Scholar] [CrossRef]
- Ito, H.; Iguchi, A.; Hatano, T. Identification of urinary and intestinal bacterial metabolites of ellagitannin geraniin in rats. J. Agric. Food Chem. 2008, 56, 393–400. [Google Scholar] [CrossRef]
- Ishimatsu, M.; Tanaka, T.; Nonaka, G.; Nishioka, I.; Nishizawa, M.; Yamagishi, T. Tannins and related compounds. LXXV. Isolation and characterization of novel diastereoisomeric ellagitannins, nupharins A and B, and their homologues from Nuphar japonicum DC. Chem. Pharm. Bull. 1989, 37, 129–134. [Google Scholar] [CrossRef]
- Kashiwada, Y.; Nonaka, G.; Nishioka, I.; Yamagishi, T. Galloyl and hydroxycinnamoyl glucoses from rhubarb. Phytochemistry 1988, 27, 1473–1477. [Google Scholar] [CrossRef]
- Nonaka, G.; Nishioka, I. Tannins and related compounds. X. Rhubarb (2): Isolation and structures of a glycerol gallate, gallic acid glucoside gallates, galloylglucoses and isolindleyin. Chem. Pharm. Bull. 1983, 31, 1652–1658. [Google Scholar] [CrossRef]
- Yoshida, T.; Hatano, T.; Okuda, T.; Memon, M.U.; Shingu, T.; Inoue, K. Spectral and chromatographic analyses of tannins. I. 13C Nuclear magnetic resonance spectra of hydrolysable tannins. Chem. Pharm. Bull. 1984, 32, 1790–1799. [Google Scholar] [CrossRef]
- Kiss, A.K.; Derwińska, M.; Dawidowska, A.; Naruszewicz, M. Novel biological properties of Oenothera paradoxa defatted seed extracts: Effects on metallopeptidase activity. J. Agric. Food Chem. 2008, 56, 7845–7852. [Google Scholar] [CrossRef]
- Huang, H.-C.; Chao, C.-L.; Liaw, C.-C.; Hwang, S.-Y.; Kuo, Y.-H.; Chang, T.-C.; Chao, C.H.; Chen, C.-J.; Kuo, Y.-H. Hypoglycemic constituents isolated from Trapa natans L. pericarps. J. Agric. Food Chem. 2016, 64, 3794–3803. [Google Scholar] [CrossRef]
- Hatano, T.; Yoshida, T.; Shingu, T.; Okuda, T. 13C Nuclear magnetic resonance spectra of hydrolyzable tannins. II. Tannins forming anomer mixtures. Chem. Pharm. Bull. 1988, 36, 2925–2933. [Google Scholar] [CrossRef]
- Hatano, T.; Ogawa, N.; Kira, R.; Yasuhara, T.; Okuda, T. Tannins of Cornaceous plants. I. Cornusiins A, B and C, dimeric monomeric and trimeric hydrolyzable tannins from Cornus officinalis, and orientation of valoneoyl group in related tannins. Chem. Pharm. Bull. 1989, 37, 2083–2090. [Google Scholar] [CrossRef]
- Hatano, T.; Ogawa, N.; Shingu, T.; Okuda, T. Tannins of Rosaceous plants. IX. Rugosins D, E, F and G, dimeric and trimeric hydrolyzable tannins with valoneoyl group(s), from flower petals of Rosa rugosa THUNB. Chem. Pharm. Bull. 1990, 38, 3341–3346. [Google Scholar] [CrossRef]
- Yoshida, T.; Chou, T.; Nitta, A.; Okuda, T. Woodfordins A, B and C, dimeric hydrolyzable tannins from Woodfordia fruticose flowers. Hetelocycles 1989, 29, 2267–2271. [Google Scholar]
- Hatano, T.; Yasuhara, T.; Abe, R.; Okuda, T. A galloylated monoterpene glucoside and dimeric hydrolysable tannin from Cornus officinalis. Phytochemistry 1990, 29, 2975–2978. [Google Scholar] [CrossRef]
- Okuda, T.; Yoshida, T.; Hatano, T.; Koga, T.; Toh, N.; Kuriyama, K. Circular dichroism of hydrolysable tannins-I ellagitannins and gallotannins. Tetrahedron Lett. 1982, 23, 3937–3940. [Google Scholar] [CrossRef]
- Tanaka, T.; Nakashima, T.; Ueda, T.; Tomii, K.; Kouno, I. Facile discrimination of aldose enantiomers by reversed-phase HPLC. Chem. Pharm. Bull. 2007, 55, 899–901. [Google Scholar] [CrossRef] [PubMed]
- Hatano, T.; Ogawa, N.; Yasuhara, T.; Okuda, T. Tannins of Rosaceous plants. VIII. Hydrolyzable tannins monomers having a valoneoyl group from flower petals of Rosa rugosa Thunb. Chem. Pharm. Bull. 1990, 38, 3308–3313. [Google Scholar] [CrossRef]
- Ito, H.; Yamaguchi, K.; Kim, T.-H.; Khennouf, S.; Gharzouli, K.; Yoshida, T. Dimeric and trimeric hydrolyzable tannins from Quercus coccifera and Quercus suber. J. Nat. Prod. 2002, 65, 339–345. [Google Scholar] [CrossRef]
- Shimamura, T.; Matsuura, R.; Tokuda, T.; Sugumoto, N.; Yamazaki, T.; Matsufuji, H.; Matsui, T.; Matsumoto, K.; Ukeda, H. Comparison of conventional antioxidants assays for evaluating potencies of natural antioxidants as food additives by collaborative srudy. Nippon Shokuhin Kagaku Kogaku Kaishi 2007, 54, 482–487. [Google Scholar] [CrossRef]
- Shimamura, T.; Sumikura, Y.; Yamazaki, T.; Tada, A.; Kashiwagi, T.; Ishikawa, H.; Matsui, T.; Sugimoto, N.; Akiyama, H.; Ukeda, H. Applicability of the DPPH assay for evaluating the antioxidant capacity of food additives-Inter-laboratory evaluation study. Anal. Sci. 2014, 30, 717–721. [Google Scholar] [CrossRef]
- Uchikura, T.; Kitano, T.; Yoshimura, M.; Amakura, Y. Characterization of phenolic constituents in hazelnut kernels. Biosci. Biotechnol. Biochem. 2023, 87, 688–695. [Google Scholar] [CrossRef]
Position | δH (J in Hz) | δC |
---|---|---|
Glucose I | ||
H-1 | 6.03 (d, J = 8.0) | 94.2 |
H-2 | 5.48 (dd, J = 8.0, 9.5) | 72.4 |
H-3 | 5.63 (t, J = 9.5) | 73.9 |
H-4 | 5.09 (t, J = 9.5) | 71.7 |
H-5 | 4.41 (m) | 73.5 |
H-6 | 5.38 (m), 3.87 (br d, J = 12.5) | 63.9 |
Glucose II | ||
H-1 | 6.04 (d, J = 8.0) | 93.8 |
H-2 | 5.39 (dd, J = 8.0, 9.5) | 72.7 |
H-3 | 5.51 (t, J = 9.5) | 76.7 |
H-4 | 3.65 (t, J = 9.5) | 69.7 |
H-5 | 3.90 (m) | 76.9 |
H-6 | 4.68 (dd, J = 2.0, 12.5), 4.37 (dd, J = 7.0, 12.5) | 65.0 |
Compounds | EC50 (µM) |
---|---|
Trapadin A (1) | 3.14 |
Gallic acid (2) | 10.8 |
Methyl gallate (3) | 21.1 |
Vanillic acid (4) | >100 |
Brevifolincarboxylic acid (5) | 31.5 |
Ellagic acid (6) | 15.7 |
Urolithin A (7) | >100 |
Isourolithin A (8) | >100 |
Urolithin B (9) | >100 |
Urolithin M6 (10) | 23.3 |
1,2-Di-O-galloyl-β-d-glucose (11) | 12.5 |
1,6-Di-O-galloyl-β-d-glucose (12) | 12.3 |
1,2,3-Tri-O-galloyl-β-d-glucose (13) | 7.63 |
1,2,6-Tri-O-galloyl-β-d-glucose (14) | 7.79 |
1,2,3,6-Tetra-O-galloyl-β-d-glucose (15) | 6.55 |
1,2,3,4,6-Penta-O-galloyl-β-d-glucose (16) | 5.06 |
1,6-Di-O-galloyl-2-O-p-coumaroyl-β-d-glucose (17) | 12.0 |
1,6-Di-O-galloyl-2-O-caffeoyl-β-d-glucose (18) | 9.53 |
Tellimagrandin I (19) | 5.75 |
Tellimagrandin II (20) | 5.91 |
Cornusiin A (21) | 3.48 |
Rugosin D (22) | 3.91 |
(7′S,8′R)-Dihydrodehydrodiconiferyl alcohol-9′-O-β-d-glucose (23) | >100 |
Trolox | 26.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uchikura, T.; Miura, Y.; Yoshimura, M.; Ito, H.; Amakura, Y. Identification of Antioxidative Hydrolyzable Tannins in Water Chestnut. Molecules 2023, 28, 6563. https://doi.org/10.3390/molecules28186563
Uchikura T, Miura Y, Yoshimura M, Ito H, Amakura Y. Identification of Antioxidative Hydrolyzable Tannins in Water Chestnut. Molecules. 2023; 28(18):6563. https://doi.org/10.3390/molecules28186563
Chicago/Turabian StyleUchikura, Takashi, Yuka Miura, Morio Yoshimura, Hideyuki Ito, and Yoshiaki Amakura. 2023. "Identification of Antioxidative Hydrolyzable Tannins in Water Chestnut" Molecules 28, no. 18: 6563. https://doi.org/10.3390/molecules28186563
APA StyleUchikura, T., Miura, Y., Yoshimura, M., Ito, H., & Amakura, Y. (2023). Identification of Antioxidative Hydrolyzable Tannins in Water Chestnut. Molecules, 28(18), 6563. https://doi.org/10.3390/molecules28186563