Effect of Fermented Matrix on the Color and Stability of Strawberry and Blueberry Anthocyanins during the Storage of Fruit Yogurts and Soy-Based and Bean-Based Fruit Yogurt Alternatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Composition of Fruit Preparations, Yogurt, and Plant-Based Yogurt Alternatives
2.2. Content of Isoflavone-Aglycones, Anthocyanins, and Phenolic Acid in Plant-Based Yogurt Alternatives
2.3. Changes in Anthocyanin Content during Storage of Strawberry and Blueberry Yogurts and Plant-Based Yogurt Alternatives
2.4. Changes in Color Parameters during Storage of Strawberry and Blueberry Yogurts and Plant-Based Yogurt Alternatives
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Strawberry and Blueberry Preparations Production
3.3. Yogurts and Plant-Based Yogurts Alternatives Production
3.4. Physicochemical Analysis
3.5. Determination of Soluble Carbohydrates
3.6. Determination of Organic Acid
3.7. Determination of Ascorbic Acid and Dehydroascorbic Acid
3.8. Determination of Isoflavone Aglycone
3.9. Determination of Phenolic Acids
3.10. Determination of Anthocyanins
3.11. Degradation Kinetics of Anthocyanins as Affected by Storage Time
3.12. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Oliveira, A.; Alexandre, E.M.C.; Coelho, M.; Lopes, C.; Almeida, D.P.F.; Pintado, M. Incorporation of Strawberries Preparation in Yoghurt: Impact on Phytochemicals and Milk Proteins. Food Chem. 2015, 171, 370–378. [Google Scholar] [CrossRef]
- Chung, S.W.; Yu, D.J.; Lee, H.J. Changes in Anthocyanidin and Anthocyanin Pigments in Highbush Blueberry (Vaccinium corymbosum Cv. Bluecrop) Fruits during Ripening. Hortic. Environ. Biotechnol. 2016, 57, 424–430. [Google Scholar] [CrossRef]
- Gris, E.F.; Ferreira, E.A.; Falcão, L.D.; Bordignon-Luiz, M.T. Influence of Ferulic Acid on Stability of Anthocyanins from Cabernet Sauvignon Grapes in a Model System and a Yogurt System. Int. J. Food Sci. Technol. 2007, 42, 992–998. [Google Scholar] [CrossRef]
- Silva, V.L.M.; Silva, A.C.O.; Costa-Lima, B.R.C.; Carneiro, C.S.; Conte-Junior, C.A. Stability of Polyphenols from Blueberry (Vaccinium corymbosum L.) in Fermented Dairy Beverage. J. Food Process Preserv. 2017, 41, e13305. [Google Scholar] [CrossRef]
- Mojica, L.; Berhow, M.; Gonzalez de Mejia, E. Black Bean Anthocyanin-Rich Extracts as Food Colorants: Physicochemical Stability and Antidiabetes Potential. Food Chem. 2017, 229, 628–639. [Google Scholar] [CrossRef]
- Ertan, K.; Türkyılmaz, M.; Özkan, M. Effect of Sweeteners on Anthocyanin Stability and Colour Properties of Sour Cherry and Strawberry Nectars during Storage. J. Food Sci. Technol. 2018, 55, 4346–4355. [Google Scholar] [CrossRef]
- Avula, B.; Katragunta, K.; Osman, A.G.; Ali, Z.; John Adams, S.; Chittiboyina, A.G.; Khan, I.A. Advances in the Chemistry, Analysis and Adulteration of Anthocyanin Rich-Berries and Fruits: 2000–2022. Molecules 2023, 28, 560. [Google Scholar] [CrossRef] [PubMed]
- Torskangerpoll, K.; Andersen, Ø.M. Colour Stability of Anthocyanins in Aqueous Solutions at Various PH Values. Food Chem. 2005, 89, 427–440. [Google Scholar] [CrossRef]
- Kabakcı, S.A.; Türkyılmaz, M.; Özkan, M. Changes in the Quality of Kefir Fortified with Anthocyanin-Rich Juices during Storage. Food Chem. 2020, 326, 126977. [Google Scholar] [CrossRef]
- Özkan, M. Degradation of Anthocyanins in Sour Cherry and Pomegranate Juices by Hydrogen Peroxide in the Presence of Added Ascorbic Acid. Food Chem. 2002, 78, 499–504. [Google Scholar] [CrossRef]
- Baria, B.; Singh, A.K.; Panjagari, N.R.; Arora, S.; Minz, P.S. Colouring Properties and Stability of Black Carrot Anthocyanins in Yoghurt. J. Food Sci. Technol. 2021, 58, 3953–3962. [Google Scholar] [CrossRef]
- Dias, S.; Castanheira, E.M.S.; Gil Fortes, A.; Pereira, D.M.; Sameiro, M. Natural Pigments of Anthocyanin and Betalain for Coloring Soy-Based Yogurt Alternative. Foods 2020, 9, 771. [Google Scholar] [CrossRef]
- Granito, M.; Álvarez, G. Lactic Acid Fermentation of Black Beans (Phaseolus Vulgaris): Microbiological and Chemical Characterization. J. Sci. Food Agric. 2006, 86, 1164–1171. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Yu, R.-C.; Yang, H.-Y.; Chou, C.-C. Sugar and Acid Contents in Soymilk Fermented with Lactic Acid Bacteria Alone or Simultaneously with Bifidobacteria. Food Microbiol. 2003, 20, 333–338. [Google Scholar] [CrossRef]
- Elghali, S.; Mustafa, S.; Amid, M.; Yazid, M.; Manap, A.; Ismail, A.; Abas, F.; Rastilantie, M. Variations on Soymilk Components during Fermentation by Lactobacillus and Bifidobacterium Strains. J. Food Agric. Environ. 2005, 12, 1–5. [Google Scholar]
- Li, M.; He, Z.; He, L.; Li, C.; Tao, H.; Ye, C.; Liu, L.; Zeng, X.; Ran, G. Effect of Fermentation Parameters on the Anthocyanin Content, Sensory Properties, and Physicochemical Parameters of Potato Blueberry Yogurt. Fermentation 2022, 8, 489. [Google Scholar] [CrossRef]
- Leialohilani, A.; de Boer, A. EU Food Legislation Impacts Innovation in the Area of Plant-Based Dairy Alternatives. Trends Food Sci. Technol. 2020, 104, 262–267. [Google Scholar] [CrossRef]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef]
- Wallace, T.C.; Giusti, M.M. Determination of Color, Pigment, and Phenolic Stability in Yogurt Systems Colored with Nonacylated Anthocyanins from Berberis boliviana L. as Compared to Other Natural/Synthetic Colorants. J. Food Sci. 2008, 73, C241–C248. [Google Scholar] [CrossRef] [PubMed]
- Ścibisz, I.; Ziarno, M.; Mitek, M.; Zareba, D. Effect of Probiotic Cultures on the Stability of Anthocyanins in Blueberry Yoghurts. LWT 2012, 49, 208–212. [Google Scholar] [CrossRef]
- Kumar, V.; Jain, S.K.; Amitabh, A.; Chavan, S.M. Effect of Ohmic Heating on Physicochemical, Bioactive Compounds, and Shelf Life of Watermelon Flesh-Rind Drinks. J. Food Process Eng. 2022, 45, e13818. [Google Scholar] [CrossRef]
- Mehmood, Z.; Zeb, A.; Ayub, M.; Bibi, N.; Badshah, A.; Ihsanullah, I. Effect of Pasteurization and Chemical Preservatives on the Quality and Shelf Stability of Apple Juice. Am. J. Food Technol. 2008, 3, 147–153. [Google Scholar] [CrossRef]
- Holzwarth, M.; Korhummel, S.; Carle, R.; Kammerer, D.R. Impact of Enzymatic Mash Maceration and Storage on Anthocyanin and Color Retention of Pasteurized Strawberry Purées. Eur. Food Res. Technol. 2012, 234, 207–222. [Google Scholar] [CrossRef]
- Li, J.; Zhang, C.; Liu, H.; Liu, J.; Jiao, Z. Profiles of Sugar and Organic Acid of Fruit Juices: A Comparative Study and Implication for Authentication. J. Food Qual. 2020, 2020, 7236534. [Google Scholar] [CrossRef]
- Nadulski, R.; Masłowski, A.; Mazurek, A.; Sobczak, P.; Szmigielski, M.; Żukiewicz-Sobczak, W.; Niedziółka, I.; Mazur, J. Vitamin C and Lutein Content of Northern Highbush Blueberry (Vaccinium corymbosum L.) Juice Processed Using Freezing and Thawing. J. Food Meas. Charact. 2019, 13, 2521–2528. [Google Scholar] [CrossRef]
- Cordenunsi, B.R.; Genovese, M.I.; Oliveira Do Nascimento, J.R.; Aymoto Hassimotto, N.M.; José Dos Santos, R.; Lajolo, F.M. Effects of Temperature on the Chemical Composition and Antioxidant Activity of Three Strawberry Cultivars. Food Chem. 2005, 91, 113–121. [Google Scholar] [CrossRef]
- Madsen, S.K.; Priess, C.; Wätjen, A.P.; Øzmerih, S.; Mohammadifar, M.A.; Heiner Bang-Berthelsen, C. Development of a Yoghurt Alternative, Based on Plant-Adapted Lactic Acid Bacteria, Soy Drink and the Liquid Fraction of Brewers’ Spent Grain. FEMS Microbiol. Lett. 2021, 368, fnab093. [Google Scholar] [CrossRef]
- Cui, Y.; Xu, T.; Qu, X.; Hu, T.; Jiang, X.; Zhao, C. New Insights into Various Production Characteristics of Streptococcus Thermophilus Strains. Int. J. Mol. Sci. 2016, 17, 1701. [Google Scholar] [CrossRef]
- Shahbandari, J.; Golkar, A.; Taghavi, S.M.; Amiri, A. Effect of Storage Period on Physicochemical, Textural, Microbial and Sensory Characteristics of Stirred Soy Yogurt. Int. J. Farm. Allied Sci. 2016, 5, 476–484. [Google Scholar]
- Mei, J.; Feng, F.; Li, Y. Effective of Different Homogeneous Methods on Physicochemical, Textural and Sensory Characteristics of Soybean (Glycine max L.) Yogurt. CyTA J. Food 2017, 15, 21–26. [Google Scholar] [CrossRef]
- Raikos, V.; Grant, S.B.; Hayes, H.; Ranawana, V. Use of β-Glucan from Spent Brewer’s Yeast as a Thickener in Skimmed Yogurt: Physicochemical, Textural, and Structural Properties Related to Sensory Perception. J. Dairy Sci. 2018, 101, 5821–5831. [Google Scholar] [CrossRef] [PubMed]
- Granito, M.; Champ, M.; Guerra, M.; Frias, J. Effect of Natural and Controlled Fermentation on Flatus-Producing Compounds of Beans (Phaseolus vulgaris). J. Sci. Food Agric. 2003, 83, 1004–1009. [Google Scholar] [CrossRef]
- Alvarado, U.; Zamora, A.; Arango, O.; Saldo, J.; Castillo, M. Prediction of Riboflavin and Ascorbic Acid Concentrations in Skimmed Heat-Treated Milk Using Front-Face Fluorescence Spectroscopy. J. Food Eng. 2022, 318, 110869. [Google Scholar] [CrossRef]
- Ng, E.W.; Yeung, M.; Tong, P.S. Effects of Yogurt Starter Cultures on the Survival of Lactobacillus Acidophilus. Int. J. Food Microbiol. 2011, 145, 169–175. [Google Scholar] [CrossRef]
- Xue, Z.; Wang, C.; Zhai, L.; Yu, W.; Chang, H.; Kou, X.; Zhou, F. Bioactive Compounds and Antioxidant Activity of Mung Bean (Vigna radiata L.), Soybean (Glycine max L.) and Black Bean (Phaseolus vulgaris L.) during the Germination Process. Czech J. Food Sci. 2016, 34, 68–78. [Google Scholar] [CrossRef]
- Liggins, J.; Bluck, L.J.C.; Runswick, S.; Atkinson, C.; Coward, W.A.; Bingham, S.A. Daidzein and Genistein Contents of Vegetables. Br. J. Nutr. 2000, 84, 717–725. [Google Scholar] [CrossRef]
- Moa, H.; Kariluoto, S.; Piironen, V.; Zhu, Y.; Sanders, M.G.; Vincken, J.P.; Wolkers-Rooijackers, J.; Nout, M.J.R. Effect of Soybean Processing on Content and Bioaccessibility of Folate, Vitamin B12 and Isoflavones in Tofu and Tempe. Food Chem. 2013, 141, 2418–2425. [Google Scholar] [CrossRef]
- Guajardo-Flores, D.; García-Patiño, M.; Serna-Guerrero, D.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Characterization and Quantification of Saponins and Flavonoids in Sprouts, Seed Coats and Cotyledons of Germinated Black Beans. Food Chem. 2012, 134, 1312–1319. [Google Scholar] [CrossRef]
- Salinas-Moreno, Y.; Rojas-Herrera, L.; Sosa Montes, E.; Pérez-Herrera, P. Anthocyanin Composition in Black Bean (Phaseolus vulgaris L.) Varieties Grown in Mexico. ARTÍCULO En Agrociencia 2005, 39, 385–394. [Google Scholar]
- Takeoka, G.R.; Dao, L.T.; Full, G.H.; Wong, R.Y.; Harden, L.A.; Edwards, R.H.; Berrios, J.J. Characterization of Black Bean (Phaseolus vulgaris L.) Anthocyanins. J. Agric. Food Chem. 1997, 45, 3395–3400. [Google Scholar] [CrossRef]
- James, S.; Nwabueze, T.U.; Ndife, J.; Onwuka, G.I.; Ata’Anda Usman, M. Influence of Fermentation and Germination on Some Bioactive Components of Selected Lesser Legumes Indigenous to Nigeria. J. Agric. Food Res. 2020, 2, 100086. [Google Scholar] [CrossRef]
- Kim, J.A.; Jung, W.S.; Chun, S.C.; Yu, C.Y.; Ma, K.H.; Gwag, J.G.; Chung, I.M. A Correlation between the Level of Phenolic Compounds and the Antioxidant Capacity in Cooked-with-Rice and Vegetable Soybean (Glycine max L.) Varieties. Eur. Food Res. Technol. 2006, 224, 259–270. [Google Scholar] [CrossRef]
- Xu, B.; Chang, S.K.C. Total Phenolics, Phenolic Acids, Isoflavones, and Anthocyanins and Antioxidant Properties of Yellow and Black Soybeans as Affected by Thermal Processing. J. Agric. Food Chem. 2008, 56, 7165–7175. [Google Scholar] [CrossRef] [PubMed]
- Huber, K. Phenolic Acid, Flavonoids and Antioxidant Activity of Common Brown Beans (Phaseolus vulgaris L.) Before and After Cooking. J. Nutr. Food Sci. 2016, 6, 5. [Google Scholar] [CrossRef]
- da Silva, F.L.; Escribano-Bailón, M.T.; Pérez Alonso, J.J.; Rivas-Gonzalo, J.C.; Santos-Buelga, C. Anthocyanin Pigments in Strawberry. LWT 2007, 40, 374–382. [Google Scholar] [CrossRef]
- Kelebek, H.; Selli, S. Characterization of Phenolic Compounds in Strawberry Fruits by RP-HPLC-DAD and Investigation of Their Antioxidant Capacity. J. Liq. Chromatogr. Relat. Technol. 2011, 34, 2495–2504. [Google Scholar] [CrossRef]
- Holzwarth, M.; Korhummel, S.; Carle, R.; Kammerer, D.R. Evaluation of the Effects of Different Freezing and Thawing Methods on Color, Polyphenol and Ascorbic Acid Retention in Strawberries (Fragaria × ananassa Duch.). Food Res. Int. 2012, 48, 241–248. [Google Scholar] [CrossRef]
- Sadilova, E.; Stintzing, F.C.; Carle, R. Thermal Degradation of Acylated and Nonacylated Anthocyanins. J. Food Sci. 2006, 71, C504–C512. [Google Scholar] [CrossRef]
- Giovanelli, G.; Buratti, S. Comparison of Polyphenolic Composition and Antioxidant Activity of Wild Italian Blueberries and Some Cultivated Varieties. Food Chem. 2009, 112, 903–908. [Google Scholar] [CrossRef]
- Sarkis, J.R.; Jaeschke, D.P.; Tessaro, I.C.; Marczak, L.D.F. Effects of Ohmic and Conventional Heating on Anthocyanin Degradation during the Processing of Blueberry Pulp. LWT 2013, 51, 79–85. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, J.; Yang, D. In Situ Stability of Anthocyanins in Lycium Ruthenicum Murray. Molecules 2021, 26, 7073. [Google Scholar] [CrossRef] [PubMed]
- Stamatovska, V.; Karakasova, L.; Babanovska-Milenkovska, F.; Nakov, G.; Blazevska, T.; Durmishi, N. Production and Characterization of Plum Jams with Different Sweeteners. J. Hyg. Eng. Des. 2017, 19, 67–77. [Google Scholar]
- Pang, Z.; Safdar, B.; Wang, Y.; Sun, M.; Liu, X. Improvement of Tribo-Rheological Properties of Acid Soymilk Gels by Reinforcement of 7S or 11S Proteins. Food Hydrocoll. 2021, 110, 106173. [Google Scholar] [CrossRef]
- Hsiao, Y.H.; Hsieh, J.F. The Conversion and Deglycosylation of Isoflavones and Anthocyanins in Black Soymilk Process. Food Chem. 2018, 261, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Talcott, S.T.; Peele, J.E.; Brenes, C.H. Red Clover Isoflavonoids as Anthocyanin Color Enhancing Agents in Muscadine Wine and Juice. Food Res. Int. 2005, 38, 1205–1212. [Google Scholar] [CrossRef]
- Fan, L.; Wang, Y.; Xie, P.; Zhang, L.; Li, Y.; Zhou, J. Copigmentation Effects of Phenolics on Color Enhancement and Stability of Blackberry Wine Residue Anthocyanins: Chromaticity, Kinetics and Structural Simulation. Food Chem. 2019, 275, 299–308. [Google Scholar] [CrossRef]
- Sotelo-González, A.M.; Pérez-Ramírez, I.F.; Soto-Infante, J.H.; de Jesús Gómez-Velázquez, H.D.; Vázquez-Barrios, M.E.; Escobar-Ortíz, A.; Reynoso-Camacho, R. Improved Phenolic Profile, Sensory Acceptability, and Storage Stability of Strawberry Decoction Beverages Added with Blueberry Decoctions. Molecules 2023, 28, 2496. [Google Scholar] [CrossRef] [PubMed]
- Gamage, V.G.C.; Lim, Y.Y.; Choo, W.S. Sources and Relative Stabilities of Acylated and Nonacylated Anthocyanins in Beverage Systems. J. Food Sci. Technol. 2022, 59, 831–845. [Google Scholar] [CrossRef]
- Mokrzycki, W.; Tatol, M. Color Difference Delta E-A Survey Colour Difference ∆E-A Survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Chudy, S.; Bilska, A.; Kowalski, R.; Teichert, J. Colour of Milk and Milk Products in CIE L*a*b* Space. Med. Weter. 2020, 76, 77–81. [Google Scholar] [CrossRef]
- Gonzaíez-Martínez, C.; Becerra, M.; Cha’fer, M.C.; Albors, A.; Carot, J.M.; Chiralt, A. Influence of Substituting Milk Powder for Whey Powder on Yoghurt Quality. Trends Food Sci. Technol. 2002, 13, 334–340. [Google Scholar] [CrossRef]
- Caldas, G.V.; Blair, M.W. Inheritance of Seed Condensed Tannins and Their Relationship with Seed-Coat Color and Pattern Genes in Common Bean (Phaseolus vulgaris L.). Theor. Appl. Genet. 2009, 119, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Li, B.; Han, F.; Yan, S.; Wang, L.; Sun, J. Evaluation of the Chemical Quality Traits of Soybean Seeds, as Related to Sensory Attributes of Soymilk. Food Chem. 2015, 173, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Blagden, T.D.; Gilliland, S.E. Reduction of Levels Volatile Components with the “Beany” Flavor in Soymilk by Lactobacilli and Streptococci. J. Food Sci. 2005, 70, M186–M189. [Google Scholar] [CrossRef]
- Ziarno, M.; Zaręba, D.; Maciejak, M.; Veber, A. The Impact of Dairy Starter Cultures on Selected Qualitative Properties of Functional Fermented Beverage Prepared from Germinated White Kidney Beans. J. Food Nutr. Res. 2019, 58, 167–176. [Google Scholar]
- AOAC—Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Official Analytical Chemists, 17th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2000. [Google Scholar]
- AOAC—Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; AOAC: Arlington, VA, USA, 1990. [Google Scholar]
- ISO 14156:2001; Milk and Milk Products—Extraction Methods for Lipids and Liposoluble Compounds. ISO: Geneva, Switzerland, 2001.
- Gao, X.; Ohlander, M.; Jeppsson, N.; Björk, L.; Trajkovski, V. Changes in Antioxidant Effects and Their Relationship to Phytonutrients in Fruits of Sea Buckthorn (Hippophae rhamnoides L.) during Maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef] [PubMed]
- Amirdivani, S.; Baba, A.S.H. Green Tea Yogurt: Major Phenolic Compounds and Microbial Growth. J. Food Sci. Technol. 2015, 52, 4652–4660. [Google Scholar] [CrossRef]
- Usenik, V.; Fabčič, J.; Štampar, F. Sugars, Organic Acids, Phenolic Composition and Antioxidant Activity of Sweet Cherry (Prunus avium L.). Food Chem. 2008, 107, 185–192. [Google Scholar] [CrossRef]
- Flores, P.; Hellín, P.; Fenoll, J. Determination of Organic Acids in Fruits and Vegetables by Liquid Chromatography with Tandem-Mass Spectrometry. Food Chem. 2012, 132, 1049–1054. [Google Scholar] [CrossRef]
- Chebrolu, K.K.; Jayaprakasha, G.K.; Yoo, K.S.; Jifon, J.L.; Patil, B.S. An Improved Sample Preparation Method for Quantification of Ascorbic Acid and Dehydroascorbic Acid by HPLC. LWT 2012, 47, 443–449. [Google Scholar] [CrossRef]
- Chotyakul, N.; Pateiro-Moure, M.; Martínez-Carballo, E.; Saraiva, J.A.; Torres, J.A.; Pérez-Lamela, C. Development of an Improved Extraction and HPLC Method for the Measurement of Ascorbic Acid in Cows’ Milk from Processing Plants and Retail Outlets. Int. J. Food Sci. Technol. 2014, 49, 679–688. [Google Scholar] [CrossRef]
- da Costa César, I.; Braga, F.C.; Soares, C.D.V.; de Aguiar Nunan, E.; Pianetti, G.A.; Condessa, F.A.; Barbosa, T.A.F.; Campos, L.M.M. Development and Validation of a RP-HPLC Method for Quantification of Isoflavone Aglycones in Hydrolyzed Soy Dry Extracts. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2006, 836, 74–78. [Google Scholar] [CrossRef]
- Kirca, A.; Özkan, M.; Cemeroǧlu, B. Effects of Temperature, Solid Content and PH on the Stability of Black Carrot Anthocyanins. Food Chem. 2007, 101, 212–218. [Google Scholar] [CrossRef]
Isoflavone-Aglycones [mg/100 g of Freeze-Dried Sample] | ||||
---|---|---|---|---|
Daidzein | Glycitein | Genistein | ||
Soy-based yogurt alternatives | 73.6 a ± 4.4 | 18.2 ± 1.4 | 62.8 a ± 3.4 | |
White bean-based yogurt alternatives | 1.2 c ± 0.2 | nd | 0.08 b ± 0.00 | |
Black bean-based yogurt alternatives | 9.54 b ± 0.7 | nd | 0.67 b ± 0.03 | |
Anthocyanins [mg/100 g x] | ||||
Delphinidin-3-O-glucoside | Petunidin-3-O-glucoside | Malvidin-3-O-glucoside | Total | |
Black bean-based yogurt alternatives | 0.12 ± 0.01 | 0.04 ± 0.00 | 0.06 ± 0.01 | 0.22 ± 0.01 |
Phenolic acids [mg/100 g] | ||||
Chlorogenic acid | p-coumaric acid | Ferulic acid | Sinapic acid | |
Soy-based yogurt alternatives | 4.12 a ± 0.3 | 3.40 a ± 0.6 | 3.37 a ± 0.6 | nd |
White bean-based yogurt alternatives | 1.28 c ± 0.05 | 0.22 b ± 0.02 | 0.83 b ± 0.09 | 0.11 a ± 0.03 |
Black bean-based yogurt alternatives | 1.74 b ± 0.09 | 0.39 b ± 0.05 | 1.05 b ± 0.05 | 0.14 a ± 0.07 |
Anthocyanins | Product | Anthocyanin Content [mg/100 g] | Kinetic Parameters | |||||
---|---|---|---|---|---|---|---|---|
Storage Time [Weeks] | −k [Week−1] | T1/2 [Week] | ||||||
0 | 2 | 4 | 6 | 8 | ||||
Cyanidin-3-O-glucoside | Yogurts | 0.16 aA | 0.13 aB | 0.12 aBC | 0.11 aC | 0.11 aC | 0.044 v | 15.9 y |
Soy-based yogurt alternatives | 0.15 aA | 0.13 aB | 0.13 aB | 0.12 aB | 0.12 aB | 0.030 y | 23.3 v | |
White bean-based yogurt alternatives | 0.15 aA | 0.13 aB | 0.12 aBC | 0.12 aBC | 0.11 aC | 0.038 x | 18.2 x | |
Black bean-based yogurt alternatives | 0.15 aA | 0.13 aB | 0.12 aBC | 0.12 aBC | 0.11 aC | 0.039 x | 17.6 x | |
Pelargonidin-3-O-glucoside | Yogurts | 7.45 aA | 6.11 bB | 5.56 cC | 5.12 cD | 4.86 dE | 0.053 v | 13.0 z |
Soy-based yogurt alternatives | 7.08 cA | 6.37 aB | 6.12 aC | 5.87 aD | 5.76 aD | 0.026 z | 26.9 v | |
White bean-based yogurt alternatives | 7.23 bA | 6.15 bB | 5.78 bC | 5.43 bD | 5.21 cE | 0.041 x | 16.9 y | |
Black bean-based yogurt alternatives | 7.30 bA | 6.36 aB | 6.04 aC | 5.74 aD | 5.51 bE | 0.035 y | 19.7 x | |
Pelargonidin-3-O-rutinoside | Yogurts | 0.25 aA | 0.21 aB | 0.19 bBC | 0.18 bC | 0.18 cC | 0.041 v | 16.9 z |
Soy-based yogurt alternatives | 0.24 aA | 0.22 aB | 0.21 aBC | 0.20 aC | 0.20 aC | 0.023 x | 30.4 v | |
White bean-based yogurt alternatives | 0.24 aA | 0.21 aB | 0.20 abBC | 0.19 abCD | 0.18 cD | 0.036 y | 19.3 x | |
Black bean-based yogurt alternatives | 0.24 aA | 0.21 aB | 0.20 abBC | 0.20 aBC | 0.19 abC | 0.029 y | 23.7 y | |
Pelargonidin 3-malonyl-glucoside | Yogurts | 1.62 aA | 1.36 aB | 1.25 aC | 1.16 cD | 1.11 cE | 0.047 v | 14.7 z |
Soy-based yogurt alternatives | 1.54 cA | 1.37 abB | 1.31 bC | 1.25 aD | 1.22 aD | 0.029 z | 23.8 v | |
White bean-based yogurt alternatives | 1.60 abA | 1.38 bB | 1.30 bC | 1.22 bD | 1.17 bE | 0.039 x | 17.7 y | |
Black bean-based yogurt alternatives | 1.57 bcA | 1.38 bB | 1.31 bC | 1.25 aD | 1.20 abE | 0.034 y | 20.6 x | |
Total | Yogurts | 9.48 aA | 7.81 bB | 7.13 cC | 6.58 dD | 6.25 dE | 0.052 v | 13.3 z |
Soy-based yogurt alternatives | 9.01 cA | 8.10 aB | 7.77 aC | 7.45 aD | 7.30 aD | 0.026 z | 26.3 v | |
White bean-based yogurt alternatives | 9.23 bA | 7.87 bB | 7.40 bC | 6.95 cD | 6.68 cE | 0.040 x | 17.1 y | |
Black bean-based yogurt alternatives | 9.27 bA | 8.08 aB | 7.68 aC | 7.30 bD | 7.01 bE | 0.034 y | 19.8 x |
Anthocyanidin Derivatives | Product | Anthocyanidin-Derivatives Content [mg/100 g] | Kinetic Parameters | |||||
---|---|---|---|---|---|---|---|---|
Storage Time [Weeks] | −k [Week−1] | T1/2 [Week] | ||||||
0 | 2 | 4 | 6 | 8 | ||||
Delphinidin derivatives 1 | Yogurts | 3.00 aA | 2.70 bB | 2.59 cC | 2.51 cCD | 2.46 cD | 0.025 v | 27.9 y |
Soy-based yogurt alternatives | 2.94 aA | 2.74 bB | 2.65 bC | 2.60 bCD | 2.58 bD | 0.016 y | 42.5 v | |
White bean-based yogurt alternatives | 3.00 aA | 2.73 bB | 2.63 b cC | 2.58 bCD | 2.55 bD | 0.020 x | 34.1 x | |
Black bean-based yogurt alternatives | 3.10 aA | 2.85 aB | 2.77 aBC | 2.71 aCD | 2.68 aD | 0.018 y | 38.1 v | |
Cyanidin derivatives 2 | Yogurts | 1.14 aA | 1.03 aB | 0.99 aB | 0.97 bBC | 0.96 bC | 0.021 v | 32.3 y |
Soy-based yogurt alternatives | 1.10 aA | 1.06 aAB | 1.03 aB | 1.01 abB | 1.00 abB | 0.012 y | 58.2 v | |
White bean-based yogurt alternatives | 1.12 aA | 1.06 aAB | 1.01 aB | 1.00 abB | 1.00 abB | 0.014 x | 48.9 x | |
Black bean-based yogurt alternatives | 1.14 aA | 1.08 aB | 1.05 aBC | 1.04 aBC | 1.03 aC | 0.013 y | 54.6 v | |
Petunidin derivatives 3 | Yogurts | 2.90 abA | 2.76 bB | 2.68 bBC | 2.65 bC | 2.64 bC | 0.012 x | 59.0 x |
Soy-based yogurt alternatives | 2.85 bA | 2.76 bAB | 2.71 abB | 2.67 abB | 2.66 bB | 0.009 y | 80.4 v | |
White bean-based yogurt alternatives | 2.88 bA | 2.70 bB | 2.59 cC | 2.54 cC | 2.53 cC | 0.016 v | 42.8 y | |
Black bean-based yogurt alternatives | 3.00 aA | 2.85 aB | 2.79 aBC | 2.77 aBC | 2.75 aC | 0.011 x y | 63.7 x | |
Malvidin derivatives 4 | Yogurts | 13.56 aA | 12.75 cB | 12.50 bC | 12.25 cD | 12.21 cD | 0.013 v | 52.9 z |
Soy-based yogurt alternatives | 13.43 bA | 13.03 aB | 12.90 aC | 12.77 aD | 12.75 aD | 0.006 y | 106.7 v | |
White bean-based yogurt alternatives | 13.43 bA | 12.89 bB | 12.50 bC | 12.38 bD | 12.34 bD | 0.011 x | 65.5 y | |
Black bean-based yogurt alternatives | 13.50 abA | 12.96 abB | 12.83 aC | 12.71 aD | 12.69 aD | 0.007 y | 89.6 x | |
Acylated anthocyanins 5 | Yogurts | 3.83 aA | 3.67 bB | 3.64 bBC | 3.60 cBC | 3.59 cC | 0.008 v | 85.7 x |
Soy-based yogurt alternatives | 3.79 aA | 3.71 abAB | 3.68 abB | 3.66 bB | 3.65 bB | 0.005 y | 147.3 x | |
White bean-based yogurt alternatives | 3.83 aA | 3.74 abB | 3.70 abB | 3.67 bB | 3.65 bB | 0.006 x | 115.2 y | |
Black bean-based yogurt alternatives | 3.83 aA | 3.79 aAB | 3.75 aBC | 3.74 aC | 3.73 aC | 0.003 z | 209.6 v | |
Total | Yogurts | 24.46 aA | 22.92 cB | 22.39 cC | 21.98 dD | 21.86 dE | 0.014 v | 49.3 z |
Soy-based yogurt alternatives | 24.11 bA | 23.29 bB | 22.96 bC | 22.70 bD | 22.65 bD | 0.008 y | 88.8 y | |
White bean-based yogurt alternatives | 24.26 abA | 23.12 bcB | 22.45 cC | 22.17 cD | 22.07 cD | 0.012 x | 58.6 x | |
Black bean-based yogurt alternatives | 24.56 aA | 23.53 aB | 23.18 aC | 22.96 aD | 22.88 aD | 0.009 y | 78.3 y |
Color Parameters | Product | Storage Time [Weeks] | ||||
---|---|---|---|---|---|---|
0 | 2 | 4 | 6 | 8 | ||
L* | Yogurts | 69.4 aD | 70.2 aCD | 71.4 aC | 73.4 aB | 74.1 aA |
Soy-based yogurt alternatives | 64.5 bA | 64.4 bA | 64.3 bA | 64.2 bA | 64.5 bA | |
White bean-based yogurt alternatives | 57.8 cB | 57.9 cB | 58.3 cAB | 58.3 cAB | 58.6 cA | |
Black bean-based yogurt alternatives | 38.4 dB | 39.5 dAB | 39.6 dAB | 40.3 dA | 40.6 dA | |
a* | Yogurts | 13.6 bA | 10.5 bB | 10.4 bB | 10.3 bB | 9.8 bC |
Soy-based yogurt alternatives | 14.4 aA | 12.6 aB | 12.6 aB | 12.6 aB | 12.1 aC | |
White bean-based yogurt alternatives | 11.9 cA | 10.1 bB | 9.5 cC | 9.5 cC | 9.4 bC | |
Black bean-based yogurt alternatives | 10.3 dA | 9.9 cAB | 9.7 cB | 9.3 cC | 8.5 cD | |
b* | Yogurts | 6.0 aBC | 5.7 aC | 4.8 aD | 6.3 aB | 7.6 aA |
Soy-based yogurt alternatives | 4.7 bA | 4.6 bA | 4.2 bB | 4.8 bA | 4.9 bA | |
White bean-based yogurt alternatives | 4.2 cA | 4.2 bA | 4.2 bA | 4.3 cA | 4.4 cA | |
Black bean-based yogurt alternatives | 4.5 bcAB | 3.6 cC | 3.1 cD | 4.2 cB | 4.7 bcA | |
ΔE* | Yogurts | - | 3.2 aD | 4.0 aC | 5.2 aB | 6.3 aA |
Soy-based yogurt alternatives | - | 1.8 bB | 1.9 cAB | 1.8 cB | 2.2 cA | |
White bean-based yogurt alternatives | - | 1.8 bB | 2.5 bA | 2.5 bA | 2.6 bA | |
Black bean-based yogurt alternatives | - | 1.5 cC | 1.9 cB | 2.2 bB | 2.8 bA |
Color Parameters | Product | Storage Time [Weeks] | ||||
---|---|---|---|---|---|---|
0 | 2 | 4 | 6 | 8 | ||
L* | Yogurts | 56.2 aC | 56.3 aC | 56.8 aB | 57.6 aA | 57.8 aA |
Soy-based yogurt alternatives | 46.8 bA | 46.7 bA | 46.8 bA | 46.9 bA | 46.9 bA | |
White bean-based yogurt alternatives | 39.3 cA | 39.3 cA | 39.4 cA | 39.4 cA | 39.5 cA | |
Black bean-based yogurt alternatives | 30.9dC | 31.1dC | 31.7 dB | 31.8 dAB | 32.1 dA | |
a* | Yogurts | 12.8 bA | 12.4 bAB | 12.1 bB | 11.6 bB | 11.4 bB |
Soy-based yogurt alternatives | 13.8 aA | 13.6 aAB | 13.3 aBC | 12.9 aCD | 12.7 aD | |
White bean-based yogurt alternatives | 9.1 cA | 8.7 dB | 8.6 dBC | 8.4 dCD | 8.2 dD | |
Black bean-based yogurt alternatives | 9.4 cA | 9.1 cAB | 9.2 cAB | 8.7 cB | 8.7 cB | |
b* | Yogurts | −3.6 cC | −3.4 cBC | −3.0 cAB | −2.9 cA | −2.8 cA |
Soy-based yogurt alternatives | −4.6 dB | −4.5 dB | −4.1 dAB | −4.0 dA | −3.9 dA | |
White bean-based yogurt alternatives | −2.6 bC | −2.5 bBC | −2.5 bBC | −2.2 bAB | −2.0 bA | |
Black bean-based yogurt alternatives | −0.7 aB | −0.7 aB | −0.4 aAB | −0.2 aA | −0.2 aA | |
ΔE* | Yogurts | − | 0.5 aC | 1.1 aB | 2.0 aA | 2.3 aA |
Soy-based yogurt alternatives | − | 0.2 bC | 0.7 bcB | 1.1 bAB | 1.3 bcA | |
White bean-based yogurt alternatives | − | 0.4 abC | 0.5 cBC | 0.8 cAB | 1.1 cA | |
Black bean-based yogurt alternatives | − | 0.4 abC | 0.9 abB | 1.2 bAB | 1.5 bA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ścibisz, I.; Ziarno, M. Effect of Fermented Matrix on the Color and Stability of Strawberry and Blueberry Anthocyanins during the Storage of Fruit Yogurts and Soy-Based and Bean-Based Fruit Yogurt Alternatives. Molecules 2023, 28, 6222. https://doi.org/10.3390/molecules28176222
Ścibisz I, Ziarno M. Effect of Fermented Matrix on the Color and Stability of Strawberry and Blueberry Anthocyanins during the Storage of Fruit Yogurts and Soy-Based and Bean-Based Fruit Yogurt Alternatives. Molecules. 2023; 28(17):6222. https://doi.org/10.3390/molecules28176222
Chicago/Turabian StyleŚcibisz, Iwona, and Małgorzata Ziarno. 2023. "Effect of Fermented Matrix on the Color and Stability of Strawberry and Blueberry Anthocyanins during the Storage of Fruit Yogurts and Soy-Based and Bean-Based Fruit Yogurt Alternatives" Molecules 28, no. 17: 6222. https://doi.org/10.3390/molecules28176222
APA StyleŚcibisz, I., & Ziarno, M. (2023). Effect of Fermented Matrix on the Color and Stability of Strawberry and Blueberry Anthocyanins during the Storage of Fruit Yogurts and Soy-Based and Bean-Based Fruit Yogurt Alternatives. Molecules, 28(17), 6222. https://doi.org/10.3390/molecules28176222