Citrullus colocynthis (L.) Schrad.: A Promising Pharmaceutical Resource for Multiple Diseases
Abstract
:1. Introduction
2. Results
2.1. Habitat
2.2. Traditional Uses
2.3. Phytochemical Analysis
2.4. Pharmacological Activity of C. colocynthis
2.4.1. Insecticidal Activity
2.4.2. Cytotoxic Activity
2.4.3. Antidiabetic Activity
2.5. Clinical Study
2.6. Toxicity
3. Materials and Methods
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Rahimi, R.; Amin, G.; Ardekani, M.R. A review on Citrullus colocynthis Schrad.: From traditional Iranian medicine to modern phytotherapy. J. Altern. Complement. Med. 2012, 18, 551–554. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.I.; Rathore, H.A.; Sattar, M.Z.; Chatha, S.A.; Sarker, S.D.; Gilani, A.H. Citrullus colocynthis (L.) Schrad (bitter apple fruit): A review of its phytochemistry, pharmacology, traditional uses and nutritional potential. J. Ethnopharmacol. 2014, 155, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Karim, S.; Wang, C.; Zhao, M.; Murtaza, G. A review on antidiabetic activity of Citrullus colocynthis Schrad. Acta Pol. Pharm. 2014, 71, 363–367. [Google Scholar] [PubMed]
- Zheng, M.; Liu, Y.; Yuan, T.; Liu, L.; Li, Z.; Huang, H. Research progress on chemical constituents of Citrullus colocynthis and their pharmacological effects. Zhongguo Zhong Yao Za Zhi 2020, 45, 816–824. [Google Scholar] [PubMed]
- Al Faraj, S. Haemorrhagic colitis induced by Citrullus colocynthis. Ann. Trop. Med. Parasitol. 1995, 89, 695–696. [Google Scholar] [CrossRef]
- Ziyyat, A.; Legssyer, A.; Mekhfi, H.; Dassouli, A.; Serhrouchni, M.; Benjelloun, W. Phytotherapy of hypertension and diabetes in oriental Morocco. J. Ethnopharmacol. 1997, 58, 45–54. [Google Scholar] [CrossRef]
- Jabbar, A.; Raza, M.A.; Iqbal, Z.; Khan, M.N. An inventory of the ethnobotanicals used as anthelmintics in the southern Punjab (Pakistan). J. Ethnopharmacol. 2006, 108, 152–154. [Google Scholar] [CrossRef]
- Al-Qura’n, S. Ethnopharmacological survey of wild medicinal plants in Showbak, Jordan. J. Ethnopharmacol. 2009, 123, 45–50. [Google Scholar] [CrossRef]
- Marzouk, B.; Marzouk, Z.; Haloui, E.; Fenina, N.; Bouraoui, A.; Aouni, M. Screening of analgesic and anti-inflammatory activities of Citrullus colocynthis from southern Tunisia. J. Ethnopharmacol. 2010, 128, 15–19. [Google Scholar] [CrossRef]
- Nawash, O.; Shudiefat, M.; Al-Tabini, R.; Al-Khalidi, K. Ethnobotanical study of medicinal plants commonly used by local Bedouins in the Badia region of Jordan. J. Ethnopharmacol. 2013, 148, 921–925. [Google Scholar] [CrossRef]
- Bibi, T.; Ahmad, M.; Bakhsh Tareen, R.; Mohammad Tareen, N.; Jabeen, R.; Rehman, S.U.; Sultana, S.; Zafar, M.; Yaseen, G. Ethnobotany of medicinal plants in district Mastung of Balochistan province-Pakistan. J. Ethnopharmacol. 2014, 157, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Akour, A.; Kasabri, V.; Afifi, F.U.; Bulatova, N. The use of medicinal herbs in gynecological and pregnancy-related disorders by Jordanian women: A review of folkloric practice vs. evidence-based pharmacology. Pharm. Biol. 2016, 54, 1901–1918. [Google Scholar] [CrossRef] [PubMed]
- Karimabad, M.N.; Niknia, S.; Golnabadi, M.B.; Poor, S.F.; Hajizadeh, M.R.; Mahmoodi, M. Effect of Citrullus colocynthis Extract on Glycated Hemoglobin Formation (In Vitro). Eurasian J. Med. 2020, 52, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Qin, P.; Ji, M.; An, R.; Guo, H.; Shafi, J. Spinasterol, 22,23-Dihydrospinasterol and Fernenol from Citrullus colocynthis L. with Aphicidal Activity against Cabbage Aphid Brevicoryne brassicae L. Molecules 2020, 25, 2184. [Google Scholar] [CrossRef] [PubMed]
- Mehrzadi, S.; Shojaii, A.; Pur, S.A.; Motevalian, M. Anticonvulsant Activity of Hydroalcoholic Extract of Citrullus colocynthis Fruit: Involvement of Benzodiazepine and Opioid Receptors. J. Evid. Based Complement. Altern. Med. 2016, 21, NP31–NP35. [Google Scholar] [CrossRef]
- Bahmani, M.; Zargaran, A.; Rafieian-Kopaei, M.; Saki, K. Ethnobotanical study of medicinal plants used in the management of diabetes mellitus in the Urmia, Northwest Iran. Asian Pac. J. Trop. Med. 2014, 7, S348–S354. [Google Scholar] [CrossRef] [PubMed]
- Haddad, M.; Mahbodfar, H.; Zamani, Z.; Ramazani, A. Antimalarial evaluation of selected medicinal plant extracts used in Iranian traditional medicine. Iran J. Basic Med. Sci. 2017, 20, 415–422. [Google Scholar] [PubMed]
- Li, Q.Y.; Munawar, M.; Saeed, M.; Shen, J.Q.; Khan, M.S.; Noreen, S.; Alagawany, M.; Naveed, M.; Madni, A.; Li, C.X. Citrullus colocynthis (L.) Schrad (Bitter Apple Fruit): Promising Traditional Uses, Pharmacological Effects, Aspects, and Potential Applications. Front. Pharmacol. 2021, 12, 791049. [Google Scholar] [CrossRef]
- Aziz, M.A.; Adnan, M.; Khan, A.H.; Shahat, A.A.; Al-Said, M.S.; Ullah, R. Traditional uses of medicinal plants practiced by the indigenous communities at Mohmand Agency, FATA, Pakistan. J. Ethnobiol. Ethnomedicine 2018, 14, 2. [Google Scholar] [CrossRef]
- Emami, S.; Sahebkar, A.; Javadi, B. Paresthesia: A Review of Its Definition, Etiology and Treatments in View of the Traditional Medicine. Curr. Pharm. Des. 2016, 22, 321–327. [Google Scholar] [CrossRef]
- Al-Yahya, M.A.; Al-Farhan, A.H.; Adam, S.E.I. Preliminary toxicity study on the individual and combined effects of Citrullus colocynthis and Nerium oleander in rats. Fitoterapia 2000, 71, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; Ali, H.M.; Elshikh, M.S.; Abdel-Salam, E.M.; El-Esawi, M.; El-Ansary, D.O. Bioactivities of Traditional Medicinal Plants in Alexandria. Evid. Based Complement. Altern. Med. 2018, 2018, 1463579. [Google Scholar] [CrossRef] [PubMed]
- Abu-Darwish, M.S.; Efferth, T. Medicinal Plants from Near East for Cancer Therapy. Front. Pharmacol. 2018, 9, 56. [Google Scholar] [CrossRef] [PubMed]
- Marwat, S.; Rehman, F.; Khan, E.; Khakwani, A.; Ullah, K.; Khan, K.; Khan, I.A. Useful ethnophytomedicinal recipes of angiosperms used against diabetes in South East Asian Countries (India, Pakistan & Sri Lanka). Pak. J. Pharm. Sci. 2014, 27, 1333–1358. [Google Scholar] [PubMed]
- Abdel-Hassan, I.; Abdel-Barry, J.; Tariq Mohammeda, S. The hypoglycaemic and antihyperglycaemic effect of Citrullus colocynthis fruit aqueous extract in normal and alloxan diabetic rabbits. J. Ethnopharmacol. 2000, 71, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Aburjai, T.; Hudaib, M.; Tayyem, R.; Yousef, M.; Qishawi, M. Ethnopharmacological survey of medicinal herbs in Jordan, the Ajloun Heights region. J. Ethnopharmacol. 2007, 110, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, B.; Singh, K.P.; Kumar, A. Ethno-veterinary uses and informants consensus factor of medicinal plants of Sariska region, Rajasthan, India. J. Ethnopharmacol. 2011, 133, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Bahmani, M.; Eftekhari, Z. An ethnoveterinary study of medicinal plants in treatment of diseases and syndromes of herd dog in southern regions of Ilam province, Iran. Comp. Clin. Pathol. 2013, 22, 403–407. [Google Scholar] [CrossRef]
- Adam, S.E.I.; Al-Yahya, M.A.; Al-Farhan, A.H. Response of Najdi sheep to oral administration of Citrullus colocynthis fruits, Nerium oleander leaves or their mixture. Small Rumin. Res. 2001, 40, 239–244. [Google Scholar] [CrossRef]
- Nayab, D.; Ali, D.; Arshad, N.; Malik, A.; Choudhary, M.I.; Ahmed, Z. Cucurbitacin glucosides from Citrullus colocynthis. Nat. Prod. Res. 2006, 20, 409–413. [Google Scholar] [CrossRef]
- Gowri, S.; Priyavardhini, S.; Vasantha, K.; Umadevi, M. Antibacterial activity on Citrullus colocynthis leaf extract. Anc. Sci. Life 2009, 29, 12–13. [Google Scholar] [PubMed]
- Yoshikawa, M.; Morikawa, T.; Kobayashi, H.; Nakamura, A.; Matsuhiri, K.; Nakamura, S.; Matsuda, H. Bioactive Saponins and Glycosides. XXVII. Structures of New Cucurbitane-Type Triterpene Glycosides and Antiallergic Constituents from Citrullus colocynthis. Chem. Pharm. Bull. 2007, 55, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Seger, C.; Sturm, S.; Mair, M.E.; Ellmerer, E.P.; Stuppner, H. 1H and 13C NMR signal assignment of cucurbitacin derivatives from Citrullus colocynthis (L.) Schrader and Ecballium elaterium L. (Cucurbitaceae). Magn. Reson. Chem. 2005, 43, 489–491. [Google Scholar] [CrossRef]
- Chawech, R.; Jarraya, R.; Girardi, C.; Vansteelandt, M.; Marti, G.; Nasri, I.; Racaud-Sultan, C.; Fabre, N. Cucurbitacins from the Leaves of Citrullus colocynthis (L.) Schrad. Molecules 2015, 20, 18001–18015. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, L.; Xue, J.; Wang, K.; Hua, H.; Yuan, T. Norcolocynthenins A and B, two cucurbitane 3-nor-Triterpenoids from Citrullus colocynthis and their cytotoxicity. Bioorganic Chem. 2020, 101, 104045. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.H.; Lee, H.S. Biofunctional constituent isolated from Citrullus colocynthis fruits and structure-activity relationships of its analogues show acaricidal and insecticidal efficacy. J. Agric. Food Chem. 2014, 62, 8663–8667. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Sajid, A.R.; Javeed, A.; Aslam, M.; Ahsan, T.; Hussain, D.; Mateen, A.; Li, X.; Qin, P.; Ji, M. Antioxidant, antifungal, and aphicidal activity of the triterpenoids spinasterol and 22,23-dihydrospinasterol from leaves of Citrullus colocynthis L. Sci. Rep. 2022, 12, 4910. [Google Scholar] [CrossRef]
- Nehdi, I.A.; Sbihi, H.; Tan, C.P.; Al-Resayes, S.I. Evaluation and characterisation of Citrullus colocynthis (L.) Schrad seed oil: Comparison with Helianthus annuus (sunflower) seed oil. Food Chem. 2013, 136, 348–353. [Google Scholar] [CrossRef]
- Gurudeeban, S.; Ramanathan, T.; Satyavani, K. Characterization of Volatile Compounds from Bitter Apple (Citrullus colocynthis) Using GC-MS. Int. J. Chem. Anal. Sci. 2011, 2, 108–110. [Google Scholar]
- Gurudeeban, S.; Satyavani, K.; Ramanathan, T. Bitter Apple (Citrullus colocynthis) An Overview of Chemical Composition and Biomedical Potentials. Asian J. Plant Sci. 2010, 9, 394–401. [Google Scholar] [CrossRef]
- Cheraghi Niroumand, M.; Farzaei, M.H.; Karimpour Razkenari, E.; Amin, G.; Khanavi, M.; Akbarzadeh, T.; Shams-Ardekani, M.R. An Evidence-Based Review on Medicinal Plants Used as Insecticide and Insect Repellent in Traditional Iranian Medicine. Iran. Red Crescent Med. J. 2016, 18, e22361. [Google Scholar] [CrossRef] [PubMed]
- Rehman, T.; Iqbal, K.J.; Anwer, A.; Abbas, R.Z.; Babar, W.; Ali, A.; Khan, M.K.; Javid, A.; Khan, N.; Ali, H.M.; et al. In vitro anthelmintic efficacy of Citrullus colocynthis (L.) Schrad on Haemonchus contortus. Vet. Arh. 2021, 91, 309–318. [Google Scholar] [CrossRef]
- Hyder, M.; Li, Y.; Wang, M.; Mao, J.; Zhang, L. Insecticidal Activity of Ethanol and Aqueous Extracts of Medicinal Plants against Green Peach Aphid (Myzus Persicae). Appl. Ecol. Environ. Res. 2022, 20, 2329–2342. [Google Scholar] [CrossRef]
- Mohamed, S.N.A.; Montasser, A.A.; Baioumy Ali, A.A. Acaricidal effect of Citrullus colocynthis fruit extract on the camel tick Hyalomma dromedarii (Koch, 1844). Ticks Tick-Borne Dis. 2022, 13, 101995. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Peiwen, Q.; Gu, Z.; Liu, Y.; Sikandar, A.; Hussain, D.; Javeed, A.; Shafi, J.; Iqbal, M.F.; An, R.; et al. Insecticidal activity and biochemical composition of Citrullus colocynthis, Cannabis indica and Artemisia argyi extracts against cabbage aphid (Brevicoryne brassicae L.). Sci. Rep. 2020, 10, 522. [Google Scholar] [CrossRef] [PubMed]
- Chawech, R.; Njeh, F.; Hamed, N.; Damak, M.; Ayadi, A.; Hammami, H.; Mezghani-Jarraya, R. A study of the molluscicidal and larvicidal activities of Citrullus colocynthis L. leaf extract and its main cucurbitacins against the mollusc Galba truncatula, intermediate host of Fasciola hepatica. Pest Manag. Sci. 2017, 73, 1473–1477. [Google Scholar] [CrossRef] [PubMed]
- Elazab, S.T.; Soliman, A.F.; Nishikawa, Y. Effect of some plant extracts from Egyptian herbal plants against Toxoplasma gondii tachyzoites in vitro. J. Vet. Med. Sci. 2021, 83, 100–107. [Google Scholar] [CrossRef]
- Farooq, Z.; Iqbal, Z.; Mushtaq, S.; Muhammad, G.; Iqbal, M.Z.; Arshad, M. Ethnoveterinary practices for the treatment of parasitic diseases in livestock in Cholistan desert (Pakistan). J. Ethnopharmacol. 2008, 118, 213–219. [Google Scholar] [CrossRef]
- Al-Ardi, M.H. Anti-parasitic activity of nano Citrullus colocynthis and nano Capparis spinose against Trichomonas vaginalis in vitro. J. Parasit. Dis. 2021, 45, 845–850. [Google Scholar] [CrossRef]
- Ponsankar, A.; Sahayaraj, K.; Senthil-Nathan, S.; Vasantha-Srinivasan, P.; Karthi, S.; Thanigaivel, A.; Petchidurai, G.; Madasamy, M.; Hunter, W.B. Toxicity and developmental effect of cucurbitacin E from Citrullus colocynthis L. (Cucurbitales: Cucurbitaceae) against Spodoptera litura Fab. and a non-target earthworm Eisenia fetida Savigny. Environ. Sci. Pollut. Res. Int. 2020, 27, 23390–23401. [Google Scholar] [CrossRef]
- Rahuman, A.A.; Venkatesan, P. Larvicidal efficacy of five cucurbitaceous plant leaf extracts against mosquito species. Parasitol. Res. 2008, 103, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Mullai, K.; Jebanesan, A. Larvicidal, ovicidal and repellent activities of the leaf extract of two cucurbitacious plants against filarial vector Culex quinquefasciatus (Say) (Diptera Culicidae). Trop. Biomed. 2007, 24, 1–6. [Google Scholar] [PubMed]
- Rahuman, A.A.; Venkatesan, P.; Gopalakrishnan, G. Mosquito larvicidal activity of oleic and linoleic acids isolated from Citrullus colocynthis (Linn.) Schrad. Parasitol. Res. 2008, 103, 1383–1390. [Google Scholar] [CrossRef] [PubMed]
- Abdulridha, M.K.; Al-Marzoqi, A.H.; Ghasemian, A. The Anticancer Efficiency of Citrullus colocynthis toward the Colorectal Cancer Therapy. J. Gastrointest. Cancer 2020, 51, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Gebhardt, R. Antioxidative, Antiproliferative and Biochemical Effects in HepG2 Cells of a Homeopathic Remedy and its Constituent Plant Tinctures Tested Separately or in Combination. Arzneimittelforschung 2003, 53, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Yonbawi, A.R.; Abdallah, H.M.; Alkhilaiwi, F.A.; Koshak, A.E.; Heard, C.M. Anti-Proliferative, Cytotoxic and Antioxidant Properties of the Methanolic Extracts of Five Saudi Arabian Flora with Folkloric Medicinal Use: Aizoon canariense, Citrullus colocynthis, Maerua crassifolia, Rhazya stricta and Tribulus macropterus. Plants 2021, 10, 2073. [Google Scholar] [CrossRef] [PubMed]
- Abdou, A.M.; Seddek, A.S.; Abdelmageed, N.; Badry, M.O.; Nishikawa, Y. Wild Egyptian medicinal plants show in vitro and in vivo cytotoxicity and antimalarial activities. BMC Complement. Med. Ther. 2022, 22, 130. [Google Scholar] [CrossRef]
- Khan, M.I.; Bouyahya, A.; Hachlafi, N.E.L.; Menyiy, N.E.; Akram, M.; Sultana, S.; Zengin, G.; Ponomareva, L.; Shariati, M.A.; Ojo, O.A.; et al. Anticancer properties of medicinal plants and their bioactive compounds against breast cancer: A review on recent investigations. Environ. Sci. Pollut. Res. 2022, 29, 24411–24444. [Google Scholar] [CrossRef]
- Hajjar, D.; Kremb, S.; Sioud, S.; Emwas, A.H.; Voolstra, C.R.; Ravasi, T. Anti-cancer agents in Saudi Arabian herbals revealed by automated high-content imaging. PLoS ONE 2017, 12, e0177316. [Google Scholar] [CrossRef]
- Perveen, S.; Ashfaq, H.; Ambreen, S.; Ashfaq, I.; Kanwal, Z.; Tayyeb, A. Methanolic extract of Citrullus colocynthis suppresses growth and proliferation of breast cancer cells through regulation of cell cycle. Saudi J. Biol. Sci. 2021, 28, 879–886. [Google Scholar] [CrossRef]
- Perveen, S.; Ashfaq, H.; Shahjahan, M.; Manzoor, A.; Tayyeb, A. Citrullus colocynthis regulates de novo lipid biosynthesis in human breast cancer cells. J. Cancer Res. Ther. 2020, 16, 1294–1301. [Google Scholar] [PubMed]
- Ayyad, S.E.; Abdel-Lateff, A.; Alarif, W.M.; Patacchioli, F.R.; Badria, F.A.; Ezmirly, S.T. In vitro and in vivo study of cucurbitacins-type triterpene glucoside from Citrullus colocynthis growing in Saudi Arabia against hepatocellular carcinoma. Environ. Toxicol. Pharmacol. 2012, 33, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.E.M.; Boulos, J.C.; Elhaboub, G.; Rigano, D.; Saab, A.; Loizzo, M.R.; Hassan, L.E.A.; Sugimoto, Y.; Piacente, S.; Tundis, R.; et al. Cytotoxicity of cucurbitacin E from Citrullus colocynthis against multidrug-resistant cancer cells. Phytomedicine 2019, 62, 152945. [Google Scholar] [CrossRef] [PubMed]
- Tannin-Spitz, T.; Grossman, S.; Dovrat, S.; Gottlieb, H.E.; Bergman, M. Growth inhibitory activity of cucurbitacin glucosides isolated from Citrullus colocynthis on human breast cancer cells. Biochem. Pharmacol. 2007, 73, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S. Search for biofunctional constituents from medicinal foods-elucidation of constituents with anti-proliferation effects and the target molecule from Citrullus colocynthis. Yakugaku Zasshi 2012, 132, 1063–1067. [Google Scholar] [CrossRef] [PubMed]
- Al-Hwaiti, M.S.; Alsbou, E.M.; Abu Sheikha, G.; Bakchiche, B.; Pham, T.H.; Thomas, R.H.; Bardaweel, S.K. Evaluation of the anticancer activity and fatty acids composition of “Handal” (Citrullus colocynthis L.) seed oil, a desert plant from south Jordan. Food Sci. Nutr. 2021, 9, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Adeyemi, O.O.; Ishola, I.O.; Ajani, I.D. Citrullus colocynthis Linn. Fruit extract ameliorates cisplatin-induced hepato-renal toxicity in rats. J. Complement. Integr. Med. 2017, 15, 20170086. [Google Scholar] [CrossRef] [PubMed]
- Asadi-Samani, M.; Moradi, M.T.; Mahmoodnia, L.; Alaei, S.; Asadi-Samani, F.; Luther, T. Traditional uses of medicinal plants to prevent and treat diabetes; an updated review of ethnobotanical studies in Iran. J. Nephropathol. 2017, 6, 118–125. [Google Scholar] [CrossRef]
- Patel, D.K.; Prasad, S.K.; Kumar, R.; Hemalatha, S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac. J. Trop. Biomed. 2012, 2, 320–330. [Google Scholar] [CrossRef]
- Tahraoui, A.; El-Hilaly, J.; Israili, Z.H.; Lyoussi, B. Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia province). J. Ethnopharmacol. 2007, 110, 105–117. [Google Scholar] [CrossRef]
- Drissi, F.; Lahfa, F.; Gonzalez, T.; Peiretti, F.; Tanti, J.F.; Haddad, M.; Fabre, N.; Govers, R. A Citrullus colocynthis fruit extract acutely enhances insulin-induced GLUT4 translocation and glucose uptake in adipocytes by increasing PKB phosphorylation. J. Ethnopharmacol. 2021, 270, 113772. [Google Scholar] [CrossRef] [PubMed]
- Benariba, N.; Djaziri, R.; Hupkens, E.; Louchami, K.; Malaisse, W.J.; Sener, A. Insulinotropic action of Citrullus colocynthis seed extracts in rat pancreatic islets. Mol. Med. Rep. 2013, 7, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Benariba, N.; Bellakdhar, W.; Djaziri, R.; Hupkens, E.; Louchami, K.; Malaisse, W.J. Protective action of Citrullus colocynthis seed extracts against the deleterious effect of streptozotocin on both in vitro glucose-stimulated insulin release from rat pancreatic islets and in vivo glucose homeostasis. Biomed. Rep. 2013, 1, 119–121. [Google Scholar] [CrossRef] [PubMed]
- Benariba, N.; Djaziri, R.; Zerriouh, B.H.; Bellakhdar, W.; Hupkens, E.; Boucherit, Z.; Malaisse, W.J. Short- and long-term effects of various Citrullus colocynthis seed extracts in normal and streptozotocin-induced diabetic rats. Int. J. Mol. Med. 2012, 30, 1528–1536. [Google Scholar] [CrossRef]
- Ghauri, A.O.; Ahmad, S.; Rehman, T. In vitro and in vivo anti-diabetic activity of Citrullus colocynthis pulpy flesh with seeds hydro-ethanolic extract. J. Complement. Integr. Med. 2020, 17, 20180228. [Google Scholar] [CrossRef] [PubMed]
- Nmila, R.; Gross, R.; Rchid, H.; Roye, M.; Manteghetti, M.; Petit, P.; Tijane, M.; Ribes, G.; Sauvaire, Y. Insulinotropic effect of Citrullus colocynthis fruit extracts. Planta Medica 2000, 66, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghaithi, F.; El-Ridi, M.; Adeghate, E.; Amiri, M. Biochemical effects of Citrullus colocynthis in normal and diabetic rats. Mol. Cell. Biochem. 2004, 261, 143–149. [Google Scholar] [CrossRef]
- Ostovar, M.; Akbari, A.; Anbardar, M.H.; Iraji, A.; Salmanpour, M.; Hafez Ghoran, S.; Heydari, M.; Shams, M. Effects of Citrullus colocynthis L. in a rat model of diabetic neuropathy. J. Integr. Med. 2020, 18, 59–67. [Google Scholar] [CrossRef]
- Rajizadeh, M.A.; Aminizadeh, A.H.; Esmaeilpour, K.; Bejeshk, M.A.; Sadeghi, A.; Salimi, F. Investigating the effects of Citrullus colocynthis on cognitive performance and anxiety-like behaviors in STZ-induced diabetic rats. Int. J. Neurosci. 2021, 133, 343–355. [Google Scholar] [CrossRef]
- Sebbagh, N.; Cruciani-Guglielmacci, C.; Ouali, F.; Berthault, M.F.; Rouch, C.; Sari, D.C.; Magnan, C. Comparative effects of Citrullus colocynthis, sunflower and olive oil-enriched diet in streptozotocin-induced diabetes in rats. Diabetes Metab. 2009, 35, 178–184. [Google Scholar] [CrossRef]
- Tehseen, I.; Haq, T.U.; Ilahi, I.; Khan, A.A.; Attaullah, M.; Zamani, G.Y.; Zaman, S.; Ismail, I. Antidiabetic and hepato-renal protective effects of medicinal plants in STZ induced diabetic rats. Braz. J. Biol. 2022, 84, e260189. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.D.; Fang, P.F.; Xiang, D.X.; Yang, Y.Y. Topical treatments for diabetic neuropathic pain. Exp. Ther. Med. 2019, 17, 1963–1976. [Google Scholar] [CrossRef] [PubMed]
- Ahangarpour, A.; Belali, R.; Bineshfar, F.; Javadzadeh, S.; Yazdanpanah, L. Evaluation of skin absorption of the Citrullus colocynthis in treatment of type II diabetic patients. J. Diabetes Metab. Disord. 2020, 19, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Barghamdi, B.; Ghorat, F.; Asadollahi, K.; Sayehmiri, K.; Peyghambari, R.; Abangah, G. Therapeutic effects of Citrullus colocynthis fruit in patients with type II diabetes: A clinical trial study. J. Pharm. Bioallied Sci. 2016, 8, 130–134. [Google Scholar] [PubMed]
- Huseini, H.F.; Darvishzadeh, F.; Heshmat, R.; Jafariazar, Z.; Raza, M.; Larijani, B. The clinical investigation of Citrullus colocynthis (L.) schrad fruit in treatment of Type II diabetic patients: A randomized, double blind, placebo-controlled clinical trial. Phytother. Res. 2009, 23, 1186–1189. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zheng, M.; Zhai, X.; Huang, Y.; Khalid, A.; Malik, A.; Shah, P.; Karim, S.; Azhar, S.; Hou, X. Effect of Gymnema sylvestrs, Citrullus colocynthis and Artemisia absinthium on blood glucose and lipid profile in diabetic human. Acta Pol. Pharm. 2015, 72, 981–985. [Google Scholar] [PubMed]
- Mazokopakis, E.E.; Karagiannis, C.G. Medical toxicology in the Old Testament. The poisonous pottage. Intern. Med. J. 2017, 47, 1458–1460. [Google Scholar] [CrossRef]
- Adam, S.E.I.; Al-Farhan, A.H.; Al-Yahya, M.A. Effect of Combined Citrullus colocynthis and Rhazya Stricta Use in Najdi Sheep. Am. J. Chin. Med. 2000, 28, 385–390. [Google Scholar] [CrossRef]
- Bendjeddou, D.; Lalaoui, K.; Satta, D. Immunostimulating activity of the hot water-soluble polysaccharide extracts of Anacyclus pyrethrum, Alpinia galanga and Citrullus colocynthis. J. Ethnopharmacol. 2003, 88, 155–160. [Google Scholar] [CrossRef]
- Ghorbani, A.; Shafiee-Nick, R.; Rakhshandeh, H.; Borji, A. Antihyperlipidemic effect of a polyherbal mixture in streptozotocin-induced diabetic rats. J. Lipids 2013, 2013, 675759. [Google Scholar] [CrossRef]
- Alhawiti, N.M. Antiplatelets and profibrinolytic activity of Citrullus colocynthis in control and high-fat diet-induced obese rats: Mechanisms of action. Arch. Physiol. Biochem. 2018, 124, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Birem, Z.; Tabani, K.; Lahfa, F.; Djaziri, R.; Hadjbekkouche, F. Effects of colocynth alkaloids and glycosides on Wistar rats fed high-fat diet. A biochemical and morphological study. Folia Histochem. Cytobiol. 2017, 55, 74–75. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, J.; Shaikh, D.; Rahman, A.; Shafi, S. Antimicrobial and toxicological studies on fruit pulp of Citrullus colocynthis L. Pak. J. Pharm. Sci. 2016, 29, 9–15. [Google Scholar] [PubMed]
- Chaturvedi, M.; Mali, P.C.; Ansari, A.S. Induction of reversible antifertility with a crude ethanol extract of Citrullus colocynthis Schrad fruit in male rats. Pharmacology 2003, 68, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Qazan, W.; Almasad, M.; Daradka, H. Short and long effects of Citrullus colocynthis L. on reproductive system and fertiliity in female spague-dawley rats. Pak. J. Pharm. Sci. 2007, 10, 2699–2703. [Google Scholar]
- Goraya, K.; Iqbal, Z.; Sajid, M.; Muhammad, G.; Ain, Q.; Saleem, M. Diversity of flora used for the cure of equine diseases in selected peri-urban areas of Punjab, Pakistan. J. Ethnobiol. Ethnomed. 2013, 9, 70. [Google Scholar] [CrossRef] [PubMed]
- Daoudi, A.; Aarab, L.; Abdel-Sattar, E. Screening of immunomodulatory activity of total and protein extracts of some Moroccan medicinal plants. Toxicol. Ind. Health 2013, 29, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Pashmforosh, M.; Rajabi Vardanjani, H.; Rajabi Vardanjani, H.; Pashmforosh, M.; Khodayar, M.J. Topical Anti-Inflammatory and Analgesic Activities of Citrullus colocynthis Extract Cream in Rats. Medicina 2018, 54, 51. [Google Scholar] [CrossRef]
- Ibrahim, T.A.; El-Hefnawy, H.M.; El-Hela, A.A. Antioxidant potential and phenolic acid content of certain cucurbitaceous plants cultivated in Egypt. Nat. Prod. Res. 2010, 24, 1537–1545. [Google Scholar] [CrossRef]
- Pang, B.; Zhu, Y.; Lu, L.; Gu, F.; Chen, H. The applications and features of liquid chromatography-mass spectrometry in the analysis of traditional Chinese medicine. Evid. Based Complement. Altern. Med. 2016, 2016, 3837270. [Google Scholar] [CrossRef]
- Wu, H.; Guo, J.; Chen, S.; Liu, X.; Zhou, Y.; Zhang, X.; Xu, X. Recent developments in qualitative and quantitative analysis of phytochemical constituents and their metabolites using liquid chromatography-mass spectrometry. J. Pharm. Biomed. A 2013, 72, 267–291. [Google Scholar] [CrossRef]
- Ye, J. Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine. Chem. Pap. 2009, 63, 506–511. [Google Scholar] [CrossRef]
- Rodriguez-Maecker, R.; Vyhmeister, E.; Meisen, S.; Rosales Martinez, A.; Kuklya, A.; Telgheder, U. Identification of terpenes and essential oils by means of static headspace gas chromatography-ion mobility spectrometry. Anal. Bioanal. Chem. 2017, 409, 6595–6603. [Google Scholar] [CrossRef]
No. | Compound | Part of Plant | References |
---|---|---|---|
Cucurbitacin and its glucosides | |||
1 | Cucurbitacin A | Fruit | [29] |
2 | Cucurbitacin B | Fruit | [29] |
3 | Cucurbitacin C | Fruit | [29] |
4 | Cucurbitacin D | Fruit | [29] |
5 | Cucurbitacin E | Fruit | [30] |
6 | Cucurbitacin I | Fruit | [31] |
7 | Cucurbitacin J | Fruit | [31] |
8 | Cucurbitacin K | Fruit | [31] |
9 | Cucurbitacin L | Fruit | [31] |
10 | Cucurbitacin E 2-O-β-D-glucopyranoside | Fruit | [32] |
11 | Cucurbitacin I 2-O-β-D-glucoside | Fruit | [32] |
12 | Cucurbitacin J 2-O-β-D-glucoside | Fruit | [32] |
13 | Cucurbitacin K 2-O-β-D-glucoside | Fruit | [32] |
14 | Cucurbitacin L 2-O-β-D-glucoside | Fruit | [32] |
15 | Colocynthosides A | Fruit | [32] |
16 | Colocynthosides B | Fruit | [32] |
17 | Deoxocucurbitoside B | Fruit | [33] |
18 | Iso-cucurbitacin B | Fruit | [33] |
19 | Dihydrocucurbitacin E | Fruit | [33] |
20 | Hexanocucurbitacin I 2-O-β-D-glucopyranoside | Fruit | [32] |
21 | Khekadaengoside E | Fruit | [32] |
22 | Dihydro-epi-iso-cucurbitacin D | Fruit | [4] |
23 | Dihydroisocucurbitacin B-25-acaetate | Fruit | [4] |
24 | 6′-acetyl-2-O-β-D-glucocucurbitacin E | Leaves | [34] |
25 | 25-p-coumaroyl-3′-acetyl-2-O-β-D-glucocucurbitacin I | Leaves | [34] |
26 | 16-(2-prop-1-enyl)-2-O-β-D-glucopyranosyl cucurbitacin I | Fruit | [4] |
27 | 16-(2-prop-1-enyl)-25-O-acetyl-2-O-β-D-glucopyranosyl cucurbitacin I | Fruit | [4] |
28 | Norcolocynthenins A | Fruit | [35] |
29 | Norcolocynthenins B | Fruit | [35] |
Alkaloids | |||
30 | Quinoline | Fruit | [2] |
31 | Nicotinamide | Fruit | [2,4] |
32 | Uracil | Fruit | [2,4] |
33 | 2-hydroxyquinoline | Fruit | [2,36] |
34 | 2-methylquinoline | Fruit | [2,36] |
35 | 4-hydroxyquinoline | Fruit | [2,36] |
36 | 4-methylquinoline | Fruit | [2,36] |
37 | 6-hydroxyquinoline | Fruit | [2,36] |
38 | 6-methylquinoline | Fruit | [2,36] |
39 | 7,8-benzoquinoline | Fruit | [2,36] |
40 | 8-hydroxyquinoline | Fruit | [2,36] |
41 | 8-methylquinoline | Fruit | [2,36] |
Flavonoids | |||
42 | Catechin | Fruit | [3] |
43 | Isosaponarin | Seeds | [30] |
44 | Isovitexin | Seeds | [30] |
45 | Isoorientin 3-O-methyl ether | Seeds | [30] |
46 | Kaempferol | Fruit | [1] |
47 | Myricetin | Fruit | [1] |
48 | Quercetin | Fruit | [1] |
49 | 6-C-p-methylbenzoylvitexin | Fruit | [1] |
Coumarin | |||
50 | 6-hydroxy-4-methylcoumarin | Fruit | [22] |
Steroid and its saponins | |||
51 | α-spinasterone | Fruit | [4] |
52 | α-spinasterol-3-O-β-D-glucopyranoside | Fruit | [4] |
53 | β-sitosterol | Fruit | [4] |
54 | 22,23-dihydrospinasterol | Fruit | [37] |
Aromatic rings | |||
55 | Benzyl β-D-glucopyranoside | Fruit | [32] |
56 | 4-hydroxybenzyl β-D-glucopyranoside | Fruit | [32] |
57 | 4-(β-D-glucopyranosyloxy)-benzaldehyde | Fruit | [32] |
58 | 4-(β-D-glucopyranosyloxy)-benzal alcohol | Fruit | [32] |
Phenolic acids | |||
59 | Caffeic acid | Leaves | [22] |
60 | Chlorogenic acid | Fruit | [4] |
61 | Ferulic acid | Leaves | [22] |
62 | Gallic acid | Leaves | [22] |
63 | Gallic acid monohydrate | Roots | [22] |
64 | Hydroxycaffeic acid | Seeds | [22] |
65 | Protocatechuic acid | Fruit | [22] |
66 | Sinapic acid | Fruit | [22] |
67 | Syringic acid | Seeds | [22] |
68 | Vanillic acid | Fruit | [22] |
69 | P-coumaric acid | Leaves | [4] |
70 | P-hydroxy benzoic acid | Leaves | [22] |
71 | 3,4-dihydroxyphenylacetic acid | Leaves | [22] |
Tocopherols | |||
72 | α-tocopherol | Seeds | [38] |
73 | β-tocopherol | Seeds | [38] |
74 | γ-tocopherol | Seeds | [38] |
75 | δ-tocopherol | Seeds | [38] |
No. | Active Ingredients | Scientific Species | Numerical Value | References |
---|---|---|---|---|
1 | Fruit extracts | Helminthiasis | - | [7,48] |
2 | Fruit extracts | Plasmodium falciparum | IC50 (2.01 µg/mL) | [17] |
3 | Fruit extracts | Toxoplasma gondii | LC50 (22.86 µg/mL) | [47] |
Fruit extracts | Haemonchus contortus | LC50 (6.32 µg/mL) | [42] | |
4 | Leaf extracts | Aedes aegypti L. | LC50 (74.57 ppm) | [51] |
Culex quinquefasciatus Say | LC50 (88.24 ppm) | |||
5 | Leaf extracts | Brevicoryne brassicae L. | LC50(0.22 mg/mL) | [45] |
6 | Leaf extracts | Culex quinquefasciatus | LC50 (71.72 ppm) | [52] |
7 | Leaf extracts | Galba truncatula | LC50(12.6 µg/mL) | [46] |
Nano-extract | Trichomonas vaginalis | - | [49] | |
8 | Cucurbitacin E | Galba truncatula | LC50(9.55 µg/mL) | [46] |
9 | Cucurbitacin E | Spodoptera litura | LC50 (11.58 ppm) | [50] |
10 | Cucurbitacin E 2-O-β-D-glucopyranoside | Galba truncatula | LC50(10.61 µg/mL) | [46] |
11 | Linoleic acid | Aedes aegypti L. | LC50 (18.20 ppm) | [53] |
Anopheles stephensi Liston | LC50 (11.49 ppm) | |||
Culex quinquefasciatus Say | LC50 (27.24 ppm) | |||
12 | Oleic acid | Aedes aegypti L. | LC50 (8.80 ppm) | [53] |
Anopheles stephensi Liston | LC50 (9.79 ppm) | |||
Culex quinquefasciatus Say | LC50 (7.66 ppm) | |||
13 | Spinasterol | Brevicoryne Brassicae L. | LC50(37.50 µg/mL) | [14] |
22,23-dihydrospinasterol | Myzus persicae | - | [37] | |
14 | 7,8-benzoquinoline | Tetranychus urticae | LC50 (11.8 µg/mL) | [36] |
Sitophilus oryzae | LC50 (2.9 µg/mL) | |||
Sitophilus zeamais | LC50 (2.7 µg/mL) |
No. | Active Ingredients | In Vitro/In Vivo | Result | References |
---|---|---|---|---|
1 | Fruit extracts | In vitro | Significant cytotoxic activity in HepG-2 and MCF-7 (LC50, 12/5430 μg/mL; LC50, 17/230 μg/mL) | [54] |
2 | Fruit extracts | In vivo | Protective drug against hepatotoxicity and nephrotoxicity together with cisplatin treatment in rats | [67] |
3 | Fruit extracts | In vivo | Negative effects on intensity, nuclear area, actin, and mitochondria, and positive effects on NF-κn | [59] |
4 | Fruit extracts | In vivo | Expression regulation of cyclin-CDK inhibitors in human breast cancer cells | [60] |
5 | Leaf extracts | In vivo | Induced apoptosis in breast cancer cells via fatty acid synthesis pathways | [61] |
6 | Seed oil fatty acid | In vitro | Significant cytotoxic activity in Caco-2 and HCT-116 (IC50, 7.1 mg/mL; IC50, 4.3 mg/mL) | [66] |
7 | Plant tinctures | In vitro | Strongest inhibition amounting to 11.8 ± 2.7% and 13.5 ± 0.5% for cell number and thymidine incorporation | [55] |
8 | Cucurbitacin B | In vitro | Activated Wnt/β-catenin signaling pathway in non-small-cell lung cancer cells | [54] |
9 | Cucurbitacin E | In vitro | Activated apoptotic pathways (inhibiting STAT3 function and increasing caspase-3) in breast cancer cells | [54,65] |
10 | Cucurbitacin E | In vitro | Targeted EGFR and silenced its downstream signaling cascades | [63] |
11 | Cucurbitacin B glucoside | In vitro | Resulted in accumulation of cells at the G2/M phase | [64] |
12 | Cucurbitacin E glucoside | In vitro | Cytotoxic activity in HepG2 hepatoma cells, with IC50 value of 3.5 µM | [23,62] |
13 | Cucurbitacin I glucoside | In vitro | Cytotoxic activity in HepG2 hepatoma cells, with IC50 values of 2.8 µM | [23,62] |
14 | 25-p-coumaroyl-3′-acetyl-2-O-β-D-glucocucurbitacin I | In vitro | Cytotoxic activity for two human colon cancer cell lines (Caco-2 (−19%) and HT29 (−32%) at 1 µg/mL) and no cytotoxic activity for normal rat intestine epithelial cell line (IEC6) | [34] |
15 | Norcolocynthenins A | In vitro | Significant cytotoxic activity in HL-60 and PC-3 (IC50 8.32 µM and 31.26 µM) | [35] |
16 | Norcolocynthenins B | In vitro | Significant cytotoxic activity in HL-60 and PC-3 (IC50, 6.49 µM; IC50, 13.42 µM, respectively) | [35] |
No. | Active Ingredients | Model | Result | References |
---|---|---|---|---|
1 | Fruit extracts | 3T3-L1 adipocytes | Insulin-enhancing activity | [71] |
2 | Fruit extracts | Hemoglobin | Increasing time reduced the formation of HbA1c and, thus, inhibited the production of glycated proteins | [13] |
3 | Saponin extract | Rabbit | Direct hypoglycemic agent | [25] |
4 | Fruit extracts | Rat | Glucose-stimulated insulin release | [72] |
5 | Fruit extracts | Rat | Lowered glycemia in short- and long-term experiments and during an oral glucose tolerance test (OGTT), lowered serum triglyceride concentration, prevention of a progressive increase in serum cholesterol concentration, increase in epididymal fat weight and lesser decrease in body weight | [74] |
6 | Seed extracts | Rat | Glucose homeostasis in rats injected with the β-cytotoxic agent and glucose-stimulated insulin secretion from rat-isolated pancreatic islets | [73] |
7 | Seed extracts | Rat | Decolorized DPPH, possessed antioxidant potential, decrease in serum glucose levels, and time-dependent decrease in blood glucose levels | [75] |
8 | Seed extracts | Rat | Direct action on endocrine pancreatic B cells | [76] |
9 | Fruit extracts | Rat | Positive effect in the treatment of diabetic neuropathy | [78] |
10 | Fruit extracts | Rat | Protective effect against cognitive impairments | [79] |
11 | Fruit extracts | Rat | Protective effect against liver/kidney | [81] |
12 | Fruit extracts | Rat | Protective effect against diabetic neuropathic pain | [82] |
13 | Seed extracts | Rat | Protective effect against pancreatic β-cell mass | [80] |
14 | Seed extracts | Rat | Reduction in aspartate aminotransferase (AST) and lactic dehydrogenase (LDH) and increase in blood levels of gamma-glutamyl transferase (GGT) and alkaline phosphatase (ALP) | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Qin, M.; Chen, R.; Jia, Y.; Zhu, Q.; Chen, G.; Wang, A.; Ling, B.; Rong, W. Citrullus colocynthis (L.) Schrad.: A Promising Pharmaceutical Resource for Multiple Diseases. Molecules 2023, 28, 6221. https://doi.org/10.3390/molecules28176221
Cheng X, Qin M, Chen R, Jia Y, Zhu Q, Chen G, Wang A, Ling B, Rong W. Citrullus colocynthis (L.) Schrad.: A Promising Pharmaceutical Resource for Multiple Diseases. Molecules. 2023; 28(17):6221. https://doi.org/10.3390/molecules28176221
Chicago/Turabian StyleCheng, Xiaotian, Minni Qin, Rongrong Chen, Yunxia Jia, Qing Zhu, Guangtong Chen, Andong Wang, Bai Ling, and Weiwei Rong. 2023. "Citrullus colocynthis (L.) Schrad.: A Promising Pharmaceutical Resource for Multiple Diseases" Molecules 28, no. 17: 6221. https://doi.org/10.3390/molecules28176221
APA StyleCheng, X., Qin, M., Chen, R., Jia, Y., Zhu, Q., Chen, G., Wang, A., Ling, B., & Rong, W. (2023). Citrullus colocynthis (L.) Schrad.: A Promising Pharmaceutical Resource for Multiple Diseases. Molecules, 28(17), 6221. https://doi.org/10.3390/molecules28176221