Facile Electrochemical Synthesis of Bifunctional Needle-like Co-P Nanoarray for Efficient Overall Water Splitting
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Prepared Catalysts
2.2. HER Performance
2.3. OER Performance
2.4. Overall Water Splitting
3. Materials and Methods
3.1. Reagents
3.2. Preparation of Co-P-1
3.3. Preparation of Co(OH)2 and Co-P-2
3.4. Material Characterization
3.5. OER Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Seh, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.B.; Norskov, J.K.; Jaramillo, T.F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Cui, W.; Liu, Q.; Xing, Z.C.; Asiri, A.M.; Sun, X.P. Recent Progress in Cobalt-Based Heterogeneous Catalysts for Electrochemical Water Splitting. Adv. Mater. 2016, 28, 215–230. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.M.; Lin, Z.W.; Yu, J.; Zhao, S.J.; Liu, Q.; Liu, J.Y.; Chen, R.R.; Qi, Y.F.; Zhang, H.S.; Li, R.M.; et al. Superaerophobic Quaternary Ni-Co-S-P Nanoparticles for Efficient Overall Water-Splitting. Acs Sustain. Chem. Eng. 2019, 7, 14639–14646. [Google Scholar] [CrossRef]
- Jin, H.Y.; Wang, J.; Su, D.F.; Wei, Z.Z.; Pang, Z.F.; Wang, Y. In situ Cobalt-Cobalt Oxide/N-Doped Carbon Hybrids as Superior Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution. J. Am. Chem. Soc. 2015, 137, 2688–2694. [Google Scholar] [CrossRef]
- Qin, Y.; Yu, T.; Deng, S.; Zhou, X.-Y.; Lin, D.; Zhang, Q.; Jin, Z.; Zhang, D.; He, Y.-B.; Qiu, H.-J.; et al. RuO2 electronic structure and lattice strain dual engineering for enhanced acidic oxygen evolution reaction performance. Nat. Commun. 2022, 13, 3784. [Google Scholar] [CrossRef]
- Sun, H.; Jung, W. Recent advances in doped ruthenium oxides as high-efficiency electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 2021, 9, 15506–15521. [Google Scholar] [CrossRef]
- Czioska, S.; Boubnov, A.; Escalera-López, D.; Geppert, J.; Zagalskaya, A.; Röse, P.; Saraçi, E.; Alexandrov, V.; Krewer, U.; Cherevko, S.; et al. Increased Ir–Ir Interaction in Iridium Oxide during the Oxygen Evolution Reaction at High Potentials Probed by Operando Spectroscopy. ACS Catal. 2021, 11, 10043–10057. [Google Scholar] [CrossRef]
- Hung, S.-F.; Zhu, Y.; Tzeng, G.-Q.; Chen, H.-C.; Hsu, C.-S.; Liao, Y.-F.; Ishii, H.; Hiraoka, N.; Chen, H.M. In Situ Spatially Coherent Identification of Phosphide-Based Catalysts: Crystallographic Latching for Highly Efficient Overall Water Electrolysis. ACS Energy Lett. 2019, 4, 2813–2820. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Li, J.-H.; Liu, T.-T.; You, S.-H.; Liu, P.; Li, F.-J.; Gao, M.-Q.; Chen, S.-G.; Zhang, F.-F. Constructing robust NiFe LDHs–NiFe alloy gradient hybrid bifunctional catalyst for overall water splitting: One-step electrodeposition and surface reconstruction. Rare Met. 2023, 42, 2272–2283. [Google Scholar] [CrossRef]
- Duan, D.H.; Guo, D.S.; Gao, J.; Liu, S.B.; Wang, Y.F. Electrodeposition of cobalt-iron bimetal phosphide on Ni foam as a bifunctional electrocatalyst for efficient overall water splitting. J. Colloid Interface Sci. 2022, 622, 250–260. [Google Scholar] [CrossRef]
- Li, Z.; Feng, H.; Song, M.; He, C.; Zhuang, W.; Tian, L. Advances in CoP electrocatalysts for water splitting. Mater. Today Energy 2021, 20, 100698. [Google Scholar] [CrossRef]
- Popczun, E.J.; Read, C.G.; Roske, C.W.; Lewis, N.S.; Schaak, R.E. Highly Active Electrocatalysis of the Hydrogen Evolution Reaction by Cobalt Phosphide Nanoparticles. Angew. Chem. Int. Ed. 2014, 53, 5427–5430. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Zhou, J.; Wang, L.; Liu, C.; Chen, Y. Synthesis and application of transition metal phosphides as electrocatalyst for water splitting. Sci. Bull. 2017, 62, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Qu, G.; Wu, T.; Yu, Y.; Wang, Z.; Zhou, Y.; Tang, Z.; Yue, Q. Rational design of phosphorus-doped cobalt sulfides electrocatalysts for hydrogen evolution. Nano Res. 2019, 12, 2960–2965. [Google Scholar] [CrossRef]
- Kim, J.; Jang, Y.J.; Jang, Y.H. Electrodeposition of Stable Noble-Metal-Free Co-P Electrocatalysts for Hydrogen Evolution Reaction. Materials 2023, 16, 593. [Google Scholar] [CrossRef]
- Wygant, B.R.; Kawashima, K.; Mullins, C.B. Catalyst or Precatalyst? The Effect of Oxidation on Transition Metal Carbide, Pnictide, and Chalcogenide Oxygen Evolution Catalysts. Acs Energy Lett. 2018, 3, 2956–2966. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, X.; Xue, H.; Feng, L. A nitrogen-doped CoP nanoarray over 3D porous Co foam as an efficient bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 2019, 7, 13242–13248. [Google Scholar] [CrossRef]
- Sheng, M.; Yang, Y.; Bin, X.; Que, W. One-Step Electrochemical Synthesis and Surface Reconstruction of NiCoP as an Electrocatalyst for Bifunctional Water Splitting. Materials 2023, 16, 1529. [Google Scholar] [CrossRef]
- Dai, M.M.; Fan, H.Y.; Xu, G.G.; Wang, M.; Zhang, S.; Lu, L.H.; Zhang, Y.G. Boosting electrocatalytic oxygen evolution using ultrathin carbon protected iron-cobalt carbonate hydroxide nanoneedle arrays. J. Power Sources 2020, 450, 227639. [Google Scholar] [CrossRef]
- Tang, C.; Zhang, R.; Lu, W.; He, L.; Jiang, X.; Asiri, A.M.; Sun, X. Fe-Doped CoP Nanoarray: A Monolithic Multifunctional Catalyst for Highly Efficient Hydrogen Generation. Adv. Mater. 2017, 29, 1602441. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.C.; Liu, H.L.; Ge, R.X.; Ren, X.; Ren, J.; Yang, D.J.; Zhang, L.X.; Sun, X.P. Phosphorus-Doped Co3O4 Nanowire Array: A Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Acs Catal. 2018, 8, 2236–2241. [Google Scholar] [CrossRef]
- Hao, S.; Yang, L.B.; Liu, D.N.; Du, G.; Yang, Y.C.; Asiri, A.M.; Sun, X.P. Replacing oxygen evolution with sodium sulfide electro-oxidation toward energy-efficient electrochemical hydrogen production: Using cobalt phosphide nanoarray as a bifunctional catalyst. Int. J. Hydrogen Energy 2017, 42, 26289–26295. [Google Scholar] [CrossRef]
- Chen, J.S.; Bandyopadhyay, P.; Jin, E.M.; Jeong, S.M. Rationally designed hierarchical tree-like Fe-Co-P@Ni(OH)(2) hybrid nanoarrays for high energy density asymmetric supercapacitors. Appl. Surf. Sci. 2022, 588, 152857. [Google Scholar] [CrossRef]
- Wang, F.; Guo, X.Z.; He, F.; Hou, Y.; Liu, F.; Zou, C.; Yang, H. Binder free construction of hollow hierarchical Mn-Co-P nanoarrays on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting. Sustain. Energy Fuels 2022, 6, 851–860. [Google Scholar] [CrossRef]
- Feng, Z.P.; Sui, Y.W.; Sun, Z.; Qi, J.Q.; Wei, F.X.; Ren, Y.J.; Zhan, Z.Z.; Zhou, M.H.; Meng, D.M.; Zhang, L.J.; et al. Controllable synthesis of flower-like Mn-Co-P nanosheets as bifunctional electrocatalysts for overall water splitting. Colloids Surf. A-Physicochem. Eng. Asp. 2021, 615, 126265. [Google Scholar] [CrossRef]
- Pei, Y.; Cheng, Y.; Chen, J.; Smith, W.; Dong, P.; Ajayan, P.M.; Ye, M.; Shen, J. Recent developments of transition metal phosphides as catalysts in the energy conversion field. J. Mater. Chem. A 2018, 6, 23220–23243. [Google Scholar] [CrossRef]
- Safavi, M.S.; Walsh, F.C. Electrodeposited Co-P alloy and composite coatings: A review of progress towards replacement of conventional hard chromium deposits. Surf. Coat. Technol. 2021, 422, 127564. [Google Scholar] [CrossRef]
- Yan, Y. Facile Synthesis of Carbon Cloth Supported Cobalt Carbonate Hydroxide Hydrate Nanoarrays for Highly Efficient Oxygen Evolution Reaction. Front. Chem. 2021, 9, 754357. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.; Zhou, L.; Zheng, Q.; Xie, F.; Lam, K.H.; Lin, D. Ultrathin amorphous CoFeP nanosheets derived from CoFe LDHs by partial phosphating as excellent bifunctional catalysts for overall water splitting. Electrochim. Acta 2019, 323, 134595. [Google Scholar] [CrossRef]
- Han, H.; Choi, H.; Mhin, S.; Hong, Y.R.; Kim, K.M.; Kwon, J.; Ali, G.; Chung, K.Y.; Je, M.; Umh, H.N.; et al. Advantageous crystalline-amorphous phase boundary for enhanced electrochemical water oxidation. Energy Environ. Sci. 2019, 12, 2443–2454. [Google Scholar] [CrossRef]
- Yin, D.; Jin, Z.; Liu, M.; Gao, T.; Yuan, H.; Xiao, D. Microwave-assisted synthesis of the cobalt-iron phosphates nanosheets as an efficient electrocatalyst for water oxidation. Electrochim. Acta 2018, 260, 420–429. [Google Scholar] [CrossRef]
- Wang, H.; Feng, E.M.; Liu, Y.M.; Zhang, C.Y. High-performance hierarchical ultrathin sheet-based CoOOH hollow nanospheres with rich oxygen vacancies for the oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 7777–7783. [Google Scholar] [CrossRef]
- Lyu, C.; Cheng, J.; Wu, K.; Wu, J.; Wang, N.; Guo, Z.; Hu, P.; Lau, W.-M.; Zheng, J. Interfacial electronic structure modulation of CoP nanowires with FeP nanosheets for enhanced hydrogen evolution under alkaline water/seawater electrolytes. Appl. Catal. B Environ. 2022, 317, 121799. [Google Scholar] [CrossRef]
- Chen, Z.; Duan, X.; Wei, W.; Wang, S.; Ni, B.-J. Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. J. Mater. Chem. A 2019, 7, 14971–15005. [Google Scholar] [CrossRef]
- Wang, X.; Lv, F.; Li, T.; Han, Y.; Yi, Z.; Liu, M.; Chang, J.; Wu, C. Electrospun micropatterned nanocomposites incorporated with Cu2S nanoflowers for skin tumor therapy and wound healing. ACS Nano 2017, 11, 11337–11349. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Lin, Y.P.; Chen, D.D.; Zhou, T.H.; Zhang, W.; Cao, R. Autologous Cobalt Phosphates with Modulated Coordination Sites for Electrocatalytic Water Oxidation. Angew. Chem. -Int. Ed. 2020, 59, 8917–8921. [Google Scholar] [CrossRef] [PubMed]
- El Bali, B.; Lachkar, M.; Essehli, R.; Dusek, M.; Rohlicek, J.; Mircescu, N.; Haisch, C. NaCo (H2PO2) 3: Crystal structure and physical study. J. Mol. Struct. 2016, 1123, 30–34. [Google Scholar] [CrossRef]
- Chen, G.; Wang, T.; Zhang, J.; Liu, P.; Sun, H.; Zhuang, X.; Chen, M.; Feng, X. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv. Mater. 2018, 30, 1706279. [Google Scholar] [CrossRef]
- Fu, L.; Xv, R.; Fang, W.; Lin, Y.; Shang, X.; Chi, J.; Yu, H. Surface morphology and interface electronic structure tailoring of cobalt carbonate hydroxide via Ce doping for enhanced oxygen evolution reaction. Int. J. Hydrogen Energy 2023. [Google Scholar] [CrossRef]
- Li, W.; Cheng, G.; Sun, M.; Wu, Z.; Liu, G.; Su, D.; Lan, B.; Mai, S.; Chen, L.; Yu, L. C-CoP hollow microporous nanocages based on phosphating regulation: A high-performance bifunctional electrocatalyst for overall water splitting. Nanoscale 2019, 11, 17084–17092. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wu, X.; Fan, Y.; Shan, C.; Wang, B.; Xu, H.; Tang, Y. Hollow CeOx/CoP Heterostructures Using Two-dimensional Co−MOF as Template for Efficient and Stable Electrocatalytic Water Splitting. ChemNanoMat 2020, 6, 1119–1126. [Google Scholar] [CrossRef]
- Li, X.; Qian, X.; Xu, Y.; Duan, F.; Yu, Q.; Wang, J.; Chen, L.; Dan, Y.; Cheng, X. Electrodeposited cobalt phosphides with hierarchical nanostructure on biomass carbon for bifunctional water splitting in alkaline solution. J. Alloys Compd. 2020, 829, 154535. [Google Scholar] [CrossRef]
- Guo, P.; Wu, Y.-X.; Lau, W.-M.; Liu, H.; Liu, L.-M. Porous CoP nanosheet arrays grown on nickel foam as an excellent and stable catalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 2017, 42, 26995–27003. [Google Scholar] [CrossRef]
- De Silva, O.; Singh, M.; Mahasivam, S.; Mahmood, N.; Murdoch, B.J.; Ramanathan, R.; Bansal, V. Importance of Phase Purity in Two-Dimensional β-Co(OH)2 for Driving Oxygen Evolution. ACS Appl. Nano Mater. 2022, 5, 12209–12216. [Google Scholar] [CrossRef]
- Cui, M.; Zhao, H.; Dai, X.; Yang, Y.; Zhang, X.; Luan, X.; Nie, F.; Ren, Z.; Dong, Y.; Wang, Y.; et al. Promotion of the Electrocatalytic Oxygen Evolution Reaction by Chemical Coupling of CoOOH Particles to 3D Branched γ-MnOOH Rods. ACS Sustain. Chem. Eng. 2019, 7, 13015–13022. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Cai, J.; Zhou, J.; Chen, Q.; Zhong, Q.; Liu, J.; Sun, Z.; Qu, D.; Li, Y. Facile Electrochemical Synthesis of Bifunctional Needle-like Co-P Nanoarray for Efficient Overall Water Splitting. Molecules 2023, 28, 6101. https://doi.org/10.3390/molecules28166101
He X, Cai J, Zhou J, Chen Q, Zhong Q, Liu J, Sun Z, Qu D, Li Y. Facile Electrochemical Synthesis of Bifunctional Needle-like Co-P Nanoarray for Efficient Overall Water Splitting. Molecules. 2023; 28(16):6101. https://doi.org/10.3390/molecules28166101
Chicago/Turabian StyleHe, Xiong, Jiayang Cai, Jie Zhou, Qiyi Chen, Qijun Zhong, Jinghua Liu, Zijun Sun, Dezhi Qu, and Yudong Li. 2023. "Facile Electrochemical Synthesis of Bifunctional Needle-like Co-P Nanoarray for Efficient Overall Water Splitting" Molecules 28, no. 16: 6101. https://doi.org/10.3390/molecules28166101