Detection of Mildewed Nutmeg Internal Quality during Storage Using an Electronic Nose Combined with Chemical Profile Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Changes in the Physicochemical Indexes of Nutmeg during Storage
2.2. Odor Characteristics
2.3. PCA and OPLS-DA Analysis of Odor Ingredients
2.4. HS–GC–MS Analysis of the Volatile Organic Compounds of Nutmeg Samples
2.5. Qualitative Classification of the Degree of Moldiness in Nutmeg Based on Different Machine Learning Algorithms
2.6. Quantification of the Predicted Physicochemical Indexes of Nutmeg
2.7. Prediction of the Storage Time of Nutmeg
3. Materials and Methods
3.1. Preparation of the Nutmeg Samples
3.2. Setup of the Electronic Nose and Acquisition of Signals
3.3. Analysis of the Chemical Profile of the Nutmeg Samples
3.3.1. Main Chemicals and Reagents
3.3.2. GC–MS Analysis of the Contents of α-Pinene, β-Pinene, and Elemicin
3.3.3. HPLC Analysis for the Content of Dehydro-di-isoeugenol
3.3.4. Analyses of the Volatile Organic Compounds
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Mandal, D.; Sarkar, T.; Chakraborty, R. Critical Review on Nutritional, Bioactive, and Medicinal Potential of Spices and Herbs and Their Application in Food Fortification and Nanotechnology. Appl. Biochem. Biotechnol. 2023, 195, 1319–1513. [Google Scholar] [CrossRef] [PubMed]
- Barman, R.; Bora, P.K.; Saikia, J.; Kemprai, P.; Saikia, S.P.; Haldar, S.; Banik, D. Nutmegs and wild nutmegs: An update on ethnomedicines, phytochemicals, pharmacology, and toxicity of the Myristicaceae species. Phytother. Res. 2021, 35, 4632–4659. [Google Scholar] [CrossRef]
- Carstairs, S.D.; Cantrell, F.L. The spice of life: An analysis of nutmeg exposures in California. Clin. Toxicol. 2011, 49, 177–180. [Google Scholar] [CrossRef]
- Abourashed, E.A.; El-Alfy, A.T. Chemical diversity and pharmacological significance of the secondary metabolites of nutmeg (Myristica fragrans Houtt.). Phytochem. Rev. Proc. Phytochem. Soc. Eur. 2016, 15, 1035–1056. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.S.; Wu, H.F.; Wei, J.H.; Yang, M.H. Quantification and characterization of volatile constituents in Myristica fragrans Houtt. by gas chromatography-mass spectrometry and gas chromatography quadrupole-time-of-flight mass spectrometry. Ind. Crops Prod. 2019, 130, 137–145. [Google Scholar] [CrossRef]
- Kapoor, I.P.S.; Singh, B.; Singh, G.; De Heluani, C.S.; De Lampasona, M.P.; Catalan, C.A.N. Chemical Composition and Antioxidant Activity of Essential Oil and Oleoresins of Nutmeg (Myristica fragrans Houtt.) Fruits. Int. J. Food Prop. 2013, 16, 1059–1070. [Google Scholar] [CrossRef] [Green Version]
- Nikolic, V.; Nikolic, L.; Dinic, A.; Gajic, I.; Urosevic, M.; Stanojevic, L.; Stanojevic, J.; Danilovic, B. Chemical Composition, Antioxidant and Antimicrobial Activity of Nutmeg (Myristica fragrans Houtt.) Seed Essential Oil. J. Essent.Oil Bear. Plants 2021, 24, 218–227. [Google Scholar] [CrossRef]
- Kiarsi, Z.; Hojjati, M.; Behbahani, B.A.; Noshad, M. In vitro antimicrobial effects of Myristica fragrans essential oil on foodborne pathogens and its influence on beef quality during refrigerated storage. J. Food Saf. 2020, 40, e12782. [Google Scholar] [CrossRef]
- Teixeira, R.F.; Balbinot, C.A.; Borges, C.D. Essential oils as natural antimicrobials for application in edible coatings for minimally processed apple and melon: A review on antimicrobial activity and characteristics of food models. Food Packag. Shelf Life 2022, 31, 100781. [Google Scholar] [CrossRef]
- Beyer, J.; Ehlers, D.; Maurer, H.H. Abuse of nutmeg (Myristica fragrans Houtt.): Studies on the metabolism and the toxicologic detection of its ingredients elemicin, myristicin, and safrole in rat and human urine using gas chromatography/mass spectrometry. Ther. Drug Monit. 2006, 28, 568–575. [Google Scholar] [CrossRef]
- Gotz, M.E.; Sachse, B.; Schafer, B.; Eisenreich, A. Myristicin and Elemicin: Potentially Toxic Alkenylbenzenes in Food. Foods 2022, 11, 988. [Google Scholar] [CrossRef]
- Jiang, W.J.; Guo, M.Y.; Yang, M.H.; Mantri, N.; Chen, X.Y.; Pang, X.H. High-throughput analysis of fungal communities in Myristicae Semen. LWT-Food Sci. Technol. 2020, 128, 09499. [Google Scholar] [CrossRef]
- Reinholds, I.; Pugajeva, I.; Bavrins, K.; Kuckovska, G.; Bartkevics, V. Mycotoxins, pesticides and toxic metals in commercial spices and herbs. Food Addit. Contam. B 2017, 10, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.S.; Liu, D.; Zhang, L.; Zhou, Y.K.; Yang, M.H. Development and optimization of a method based on QuEChERS-dSPE followed by UPLC-MS/MS for the simultaneous determination of 21 mycotoxins in nutmeg and related products. Microchem. J. 2021, 168, 106499. [Google Scholar] [CrossRef]
- Farag, M.A.; Mohsen, E.; El-Gendy, A.G. Sensory metabolites profiling in Myristica fragrans (Nutmeg) organs and in response to roasting as analyzed via chemometric tools. LWT-Food Sci. Technol. 2018, 97, 684–692. [Google Scholar] [CrossRef]
- Wu, Y.X.; Yu, J.Z.; Li, F.; Li, J.L.; Shen, Z.Q. A Calibration Curve Implanted Enzyme-Linked Immunosorbent Assay for Simultaneously Quantitative Determination of Multiplex Mycotoxins in Cereal Samples, Soybean and Peanut. Toxins 2020, 12, 718. [Google Scholar] [CrossRef]
- Wen, F.R.; Guan, H.O.; Ma, X.D.; Zuo, F.; Qian, L.L. Moldy Rice Detection Method Based on Near Infrared Spectroscopy Image Processing Technology. Spectrosc. Spect. Anal. 2022, 42, 428–433. [Google Scholar] [CrossRef]
- He, H.J.; Sun, D.W. Hyperspectral imaging technology for rapid detection of various microbial contaminants in agricultural and food products. Trends Food Sci. Technol. 2015, 46, 99–109. [Google Scholar] [CrossRef]
- Persaud, K.; Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 1982, 299, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Abasi, S.; Minaei, S.; Jamshidi, B.; Fathi, D. Dedicated non-destructive devices for food quality measurement: A review. Trends Food Sci. Technol. 2018, 78, 197–205. [Google Scholar] [CrossRef]
- Su, M.S.; Ye, Z.W.; Zhang, B.; Chen, K.S. Ripening season, ethylene production and respiration rate are related to fruit non-destructively-analyzed volatiles measured by an electronic nose in 57 peach (Prunus persica L.) samples. Emir. J. Food Agric. 2017, 29, 807–814. [Google Scholar] [CrossRef] [Green Version]
- Aghilinategh, N.; Dalvand, M.J.; Anvar, A. Detection of ripeness grades of berries using an electronic nose. Food Sci. Nutr. 2020, 8, 4919–4928. [Google Scholar] [CrossRef] [PubMed]
- Malegori, C.; Buratti, S.; Benedetti, S.; Oliveri, P.; Ratti, S.; Cappa, C.; Lucisano, M. A modified mid-level data fusion approach on electronic nose and FT-NIR data for evaluating the effect of different storage conditions on rice germ shelf life. Talanta 2020, 206, 120208. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.W.; Li, Y.H.; Wang, C.Y.; Shi, H.Q.; Wang, S.Y.; Yong, C.; Gong, Y.; Zhang, W.T.; Zou, X.G. Non-Destructive Detection of Chicken Freshness Based on Electronic Nose Technology and Transfer Learning. Agriculture 2023, 13, 496. [Google Scholar] [CrossRef]
- Yi, Z.K.; Xie, J. Prediction in the Dynamics and Spoilage of Shewanella putrefaciens in Bigeye Tuna (Thunnus obesus) by Gas Sensors Stored at Different Refrigeration Temperatures. Foods 2021, 10, 2132. [Google Scholar] [CrossRef]
- Balivo, A.; Cipolletta, S.; Tudisco, R.; Iommelli, P.; Sacchi, R.; Genovese, A. Electronic Nose Analysis to Detect Milk Obtained from Pasture-Raised Goats. Appl. Sci. 2023, 13, 861. [Google Scholar] [CrossRef]
- Xu, D.; Lin, Y.; Bauer, R.; Chen, H.R.; Yang, R.Q.; Zou, H.Q.; Yan, Y.H. Organoleptic Evaluation of Amomi Fructus and Its Further Background Verified via Morphological Measurement and GC Coupled with E-Nose. Evid.-Based Complement. Altern. Med. 2018, 2018, 4689767. [Google Scholar] [CrossRef] [Green Version]
- Zou, H.Q.; Li, S.; Huang, Y.H.; Liu, Y.; Bauer, R.; Peng, L.; Tao, O.; Yan, S.R.; Yan, Y.H. Rapid Identification of Asteraceae Plants with Improved RBF-ANN Classification Models Based on MOS Sensor E-Nose. Evid.-Based Complement. Altern. Med. 2014, 2014, 425341. [Google Scholar] [CrossRef] [Green Version]
- Aiyama, R.; Trivittayasil, V.; Tsuta, M. Discrimination of aflatoxin contamination level in nutmeg by fluorescence fingerprint measurement. Food Control 2018, 85, 113–118. [Google Scholar] [CrossRef]
- van Ruth, S.M.; Silvis, I.C.J.; Alewijn, M.; Liu, N.J.; Jansen, M.; Luning, P.A. No more nutmegging with nutmeg: Analytical fingerprints for distinction of quality from low-grade nutmeg products. Food Control 2019, 98, 439–448. [Google Scholar] [CrossRef]
- Sanford, K.J.; Heinz, D.E. Effects of storage on the volatile composition of nutmeg. Phytochemistry 1971, 10, 1245–1250. [Google Scholar] [CrossRef]
- Matulyte, I.; Marksa, M.; Ivanauskas, L.; Kalveniene, Z.; Lazauskas, R.; Bernatoniene, J. GC-MS Analysis of the Composition of the Extracts and Essential Oil from Myristica fragrans Seeds Using Magnesium Aluminometasilicate as Excipient. Molecules 2019, 24, 1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, S.; Gupta, S.; Variyar, P.S. Comparison of Essential Oils Obtained from Different Extraction Techniques as an Aid in Identifying Aroma Significant Compounds of Nutmeg (Myristica fragrans). Nat. Prod. Commun. 2015, 10, 1443–1446. [Google Scholar]
- Yang, R.Q.; Li, J.H.; Feng, H.S.; Yao, Y.B.; Guo, X.Y.; Yu, S.L.; Cui, Y.; Zou, H.Q.; Yan, Y.H. Identification of Nutmeg with Different Mildew Degree Based on HPLC Fingerprint, GC-MS, and E-Nose. Front. Nutr. 2022, 9, 914758. [Google Scholar] [CrossRef] [PubMed]
- Micheluz, A.; Manente, S.; Rovea, M.; Slanzi, D.; Varese, G.C.; Ravagnan, G.; Formenton, G. Detection of volatile metabolites of moulds isolated from a contaminated library. J. Microbiol. Methods 2016, 128, 34–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller, A.; Faubert, P.; Hagen, M.; Castell, W.Z.; Polle, A.; Schnitzler, J.P.; Rosenkranz, M. Volatile profiles of fungi—Chemotyping of species and ecological functions. Fungal Genet. Biol. 2013, 54, 25–33. [Google Scholar] [CrossRef]
- Ma, H.; Xu, C.F.; Shen, Z.; Yu, C.H.; Li, Y.M. Application of Machine Learning Techniques for Clinical Predictive Modeling: A Cross-Sectional Study on Nonalcoholic Fatty Liver Disease in China. BioMed Res. Int. 2018, 2018, 4304376. [Google Scholar] [CrossRef] [Green Version]
- Ropelewska, E. Evaluation of wheat kernels infected by fungi of the genus Fusarium based on morphological features. J. Food Saf. 2019, 39, e12623. [Google Scholar] [CrossRef]
- Skrubej, U.; Rozman, C.; Stajnko, D. Assessment of germination rate of the tomato seeds using image processing and machine learning. Eur. J. Hortic. Sci. 2015, 80, 68–75. [Google Scholar] [CrossRef]
- Liu, Y.; Jing, W.Z.; Xu, L.X. Parallelizing Backpropagation Neural Network Using MapReduce and Cascading Model. Comput. Int. Neurosci. 2016, 2016, 2842780. [Google Scholar] [CrossRef] [Green Version]
- Brudzewski, K.; Osowski, S.; Markiewicz, T. Classification of milk by means of an electronic nose and SVM neural network. Sens. Actuators B 2004, 98, 291–298. [Google Scholar] [CrossRef]
- Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995. [Google Scholar]
- Geladi, P.; Kowalski, B.R. Partial Least-Squares Regression: A Tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
Rank | Classifier | Accuracy (%) | Precision | Recall | F-Measure |
---|---|---|---|---|---|
1 | Functions.Logistic | 99.30% | 0.989 | 0.989 | 0.989 |
2 | Lazy.ibk | 95.80% | 0.936 | 0.933 | 0.934 |
3 | Lazy.Kstar | 95.80% | 0.935 | 0.933 | 0.934 |
4 | Functions.Multilayer Perception | 95.15% | 0.944 | 0.922 | 0.926 |
5 | Trees.Random Forest | 94.45% | 0.919 | 0.911 | 0.913 |
6 | Trees.J48 | 93.05% | 0.89 | 0.889 | 0.888 |
7 | Bayes.Bayes Net | 91.70% | 0.88 | 0.867 | 0.869 |
8 | Bayes.Naïve Bayes | 91.00% | 0.854 | 0.856 | 0.854 |
Algorithm | Physicochemical Index | Training Set | Testing Set | ||
---|---|---|---|---|---|
R2 | RMSEC | R2 | RMSEP | ||
BPNN | α-pinene | 0.8878 | 0.0371 | 0.8821 | 0.0509 |
β-pinene | 0.7969 | 0.1357 | 0.8080 | 0.1332 | |
Elemicin | 0.9450 | 0.0352 | 0.9579 | 0.0339 | |
Dehydro-di-isoeugenol | 0.5927 | 0.2623 | 0.5284 | 0.3333 | |
SVM | α-pinene | 0.9348 | 0.0290 | 0.8276 | 0.0447 |
β-pinene | 0.8653 | 0.1114 | 0.8016 | 0.1338 | |
Elemicin | 0.9103 | 0.0413 | 0.8831 | 0.0617 | |
Dehydro-di-isoeugenol | 0.6126 | 0.2788 | 0.3796 | 0.3107 | |
RF | α-pinene | 0.9140 | 0.0332 | 0.8399 | 0.0439 |
β-pinene | 0.8640 | 0.1175 | 0.8092 | 0.1142 | |
Elemicin | 0.9287 | 0.0421 | 0.8772 | 0.0511 | |
Dehydro-di-isoeugenol | 0.5630 | 0.3082 | 0.3981 | 0.2699 | |
PLSR | α-pinene | 0.8074 | 0.0515 | 0.7941 | 0.0449 |
β-pinene | 0.6024 | 0.1923 | 0.6218 | 0.1843 | |
Elemicin | 0.7048 | 0.0857 | 0.6959 | 0.0815 | |
Dehydro-di-isoeugenol | 0.1845 | 0.4094 | 0.1611 | 0.3552 |
No. | Type of Sensor | Sensitive Substance |
---|---|---|
S1 | LY2/LG | Oxidizing gas |
S2 | LY2/G | Ammonia, carbon monoxide |
S3 | LY2/AA | Ethanol |
S4 | LY2/GH | Ammonia/organic amine |
S5 | LY2/gCTL | Hydrogen sulfide |
S6 | LY2/gCT | Propane/butane |
S7 | T30/1 | Organic solvents |
S8 | P10/1 | Hydrocarbons |
S9 | P10/2 | Methane |
S10 | P40/1 | Fluorine |
S11 | T70/2 | Aromatic compounds |
S12 | PA/2 | Ethanol, ammonia/organic amine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Yao, Y.; Yang, R.; Wang, Y.; Liang, J.; Ouyang, S.; Yu, S.; Zou, H.; Yan, Y. Detection of Mildewed Nutmeg Internal Quality during Storage Using an Electronic Nose Combined with Chemical Profile Analysis. Molecules 2023, 28, 6051. https://doi.org/10.3390/molecules28166051
Cui Y, Yao Y, Yang R, Wang Y, Liang J, Ouyang S, Yu S, Zou H, Yan Y. Detection of Mildewed Nutmeg Internal Quality during Storage Using an Electronic Nose Combined with Chemical Profile Analysis. Molecules. 2023; 28(16):6051. https://doi.org/10.3390/molecules28166051
Chicago/Turabian StyleCui, Yang, Yuebao Yao, Ruiqi Yang, Yashun Wang, Jingni Liang, Shaoqin Ouyang, Shulin Yu, Huiqin Zou, and Yonghong Yan. 2023. "Detection of Mildewed Nutmeg Internal Quality during Storage Using an Electronic Nose Combined with Chemical Profile Analysis" Molecules 28, no. 16: 6051. https://doi.org/10.3390/molecules28166051
APA StyleCui, Y., Yao, Y., Yang, R., Wang, Y., Liang, J., Ouyang, S., Yu, S., Zou, H., & Yan, Y. (2023). Detection of Mildewed Nutmeg Internal Quality during Storage Using an Electronic Nose Combined with Chemical Profile Analysis. Molecules, 28(16), 6051. https://doi.org/10.3390/molecules28166051