Identification of Volatile Markers of Colorectal Cancer from Tumor Tissues Using Volatilomic Approach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Validation Parameters
2.2. Volatilomic Signatures of Colorectal Cancer and Non-Cancerous Tissues
2.3. Differences between the Volatilomic Signatures of Healthy and Cancerous Tissues
3. Materials and Methods
3.1. Chemicals and Standards
3.2. Study Subjects and Sampling
3.3. Headspace Solid-Phase Microextraction Sampling Protocol
3.4. Gas Chromatography–Mass Spectrometry Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- World Cancer Research Fund International. Available online: https://www.wcrf.org/ (accessed on 7 May 2023).
- Siegel, R.; DeSantis, C.; Virgo, K.; Stein, K.; Mariotto, A.; Smith, T.; Cooper, D.; Gansler, T.; Lerro, C.; Fedewa, S.; et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J. Clin. 2012, 62, 220–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaukat, A.; Levin, T.R. Current and future colorectal cancer screening strategies. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 521–531. [Google Scholar] [CrossRef] [PubMed]
- Vernia, F.; Valvano, M.; Fabiani, S.; Stefanelli, G.; Longo, S.; Viscido, A.; Latella, G. Are Volatile Organic Compounds Accurate Markers in the Assessment of Colorectal Cancer and Inflammatory Bowel Diseases? A Review. Cancers 2021, 13, 2361. [Google Scholar] [CrossRef] [PubMed]
- van Keulen, K.E.; Jansen, M.E.; Schrauwen, R.W.M.; Kolkman, J.J.; Siersema, P.D. Volatile organic compounds in breath can serve as a non-invasive diagnostic biomarker for the detection of advanced adenomas and colorectal cancer. Aliment. Pharmacol. Ther. 2020, 51, 334–346. [Google Scholar] [CrossRef] [Green Version]
- Bond, A.; Greenwood, R.; Lewis, S.; Corfe, B.; Sarkar, S.; O’Toole, P.; Rooney, P.; Burkitt, M.; Hold, G.; Probert, C. Volatile organic compounds emitted from faeces as a biomarker for colorectal cancer. Aliment. Pharmacol. Ther. 2019, 49, 1005–1012. [Google Scholar] [CrossRef]
- Wang, C.; Li, P.; Lian, A.; Sun, B.; Wang, X.; Guo, L.; Chi, C.; Liu, S.; Zhao, W.; Luo, S.; et al. Blood volatile compounds as biomarkers for colorectal cancer. Cancer Biol. Ther. 2014, 15, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Turner, A.P.; Magan, N. Electronic noses and disease diagnostics. Nat. Rev. Microbiol. 2004, 2, 161–166. [Google Scholar] [CrossRef]
- Broza, Y.Y.; Kremer, R.; Tisch, U.; Gevorkyan, A.; Shiban, A.; Best, L.A.; Haick, H. A nanomaterial-based breath test for short-term follow-up after lung tumor resection. Nanomedicine 2013, 9, 15–21. [Google Scholar] [CrossRef]
- Shirasu, M.; Touhara, K. The scent of disease: Volatile organic compounds of the human body related to disease and disorder. J. Biochem. 2011, 150, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Liu, Z.; Todd, N.W.; Zhang, H.; Liao, J.; Yu, L.; Guarnera, M.A.; Li, R.; Cai, L.; Zhan, M.; et al. Diagnosis of lung cancer in individuals with solitary pulmonary nodules by plasma microRNA biomarkers. BMC Cancer 2011, 11, 374. [Google Scholar] [CrossRef] [Green Version]
- Wen, Q.; Boshier, P.; Myridakis, A.; Belluomo, I.; Hanna, G.B. Urinary Volatile Organic Compound Analysis for the Diagnosis of Cancer: A Systematic Literature Review and Quality Assessment. Metabolites 2020, 11, 17. [Google Scholar] [CrossRef] [PubMed]
- Mochalski, P.; Leja, M.; Gasenko, E.; Skapars, R.; Santare, D.; Sivins, A.; Aronsson, D.E.; Ager, C.; Jaeschke, C.; Shani, G.; et al. Ex vivo emission of volatile organic com-pounds from gastric cancer and non-cancerous tissue. J. Breath Res. 2018, 12, 046005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lourenço, C.; Turner, C. Breath analysis in disease diagnosis: Methodological considerations and applications. Metabo-Lites 2014, 4, 465–498. [Google Scholar] [CrossRef] [PubMed]
- Miekisch, W.; Schubert, J.K.; Noeldge-Schomburg, G.F. Diagnostic potential of breath analysis—Focus on volatile organic compounds. Clin. Chim. Acta 2004, 347, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Markar, S.R.; Chin, S.T.; Romano, A.; Wiggins, T.; Antonowicz, S.; Paraskeva, P.; Ziprin, P.F.; Darzi, A.F.; Hanna, G.B. Breath Volatile Organic Com-pound Profiling of Colorectal Cancer Using Selected Ion Flow-tube Mass Spectrometry. Ann. Surg. 2019, 269, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Rudnicka, J.; Kowalkowski, T.; Ligor, T.; Buszewski, B. Determination of volatile organic compounds as biomarkers of lung cancer by SPME-GC-TOF/MS and chemometrics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 3360–3366. [Google Scholar] [CrossRef]
- Giró Benet, J.; Seo, M.; Khine, M.; Gumà Padró, J.; Pardo Martnez, A.; Kurdahi, F. Breast cancer detection by analyzing the volatile organic compound (VOC) signature in human urine. Sci. Rep. 2022, 12, 14873. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Koszelewski, D.; Gawdzik, B.; Samsonowicz-Górski, J.; Kramkowski, K.; Wypych, A.; Lizut, R.; Ostaszewski, R. Promiscuous Lipase-Catalyzed Markovnikov Addition of H-Phosphites to Vinyl Esters for the Synthesis of Cytotoxic α-Acyloxy Phosphonate Derivatives. Materials 2022, 15, 1975. [Google Scholar] [CrossRef]
- Schmidt, K.; Podmore, I. Current Challenges in Volatile Organic Compounds Analysis as Potential Biomarkers of Cancer. J. Biomark. 2015, 2015, 981458. [Google Scholar] [CrossRef] [Green Version]
- Haick, H. The diagnostic breathprint of cancer; the past and the future. Br. J. Cancer 2023, 128, 448–450. [Google Scholar] [CrossRef]
- Zhou, W.; Tao, J.; Li, J.; Tao, S. Volatile organic compounds analysis as a potential novel screening tool for colorectal cancer: A systematic review and meta-analysis. Medicine 2020, 99, e20937. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Xiong, X.; Hao, T.; Zhang, C.; Gao, Z.; Zhong, L.; Zhao, Y. Volatile organic compounds as a potential screening tool for neoplasm of the digestive system: A meta-analysis. Sci. Rep. 2021, 11, 23716. [Google Scholar] [CrossRef] [PubMed]
- Altomare, D.F.; Di Lena, M.; Porcelli, F.; Travaglio, E.; Longobardi, F.; Tutino, M.; Depalma, N.; Tedesco, G.; Sardaro, A.; Memeo, R.; et al. Effects of Curative Colorectal Cancer Surgery on Exhaled Volatile Organic Compounds and Potential Implications in Clinical follow-up. Ann. Surg. 2015, 262, 862–866. [Google Scholar] [CrossRef]
- Westenbrink, E.; Arasaradnam, R.P.; O’Connell, N.; Bailey, C.; Nwokolo, C.; Bardhan, K.D.; Covington, J. Development and application of a new electronic nose instrument for the detection of colorectal cancer. Biosens. Bioelectron. 2015, 67, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Mozdiak, E.; Wicaksono, A.N.; Covington, J.A.; Arasaradnam, R.P. Colorectal cancer and adenoma screening using urinary volatile organic compound (VOC) detection: Early results from a single-centre bowel screening population (UK BCSP). Tech. Coloproctol. 2019, 23, 343–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haddad, G.; Schouwenburg, S.; Altesha, A.; Xu, W.; Liu, G. Using breath analysis as a screening tool to detect gastric cancer: A systematic review. J. Breath Res. 2020, 19, 15. [Google Scholar] [CrossRef] [PubMed]
- De Vietro, N.; Aresta, A.; Rotelli, M.T.; Zambonin, C.; Lippolis, C.; Picciariello, A.; Altomare, D.F. Relationship between cancer tissue derived and exhaled volatile organic compound from colorectal cancer patients. Preliminary results. J. Pharm. Biomed. Anal. 2020, 180, 113055. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Wang, Y.; Wang, W.; Shang, F.; Pei, B.; Zhao, Y.; Kong, D.; Fan, Z. Untargeted GC-MS-Based Metabolomics for Early Detection of Colorectal Cancer. Front. Oncol. 2021, 11, 729512. [Google Scholar] [CrossRef] [PubMed]
- Huber, W. Basic calculations about the limit of detection and its optimal determination. Accredit. Qual. Assur. 2003, 8, 213–217. [Google Scholar] [CrossRef]
- Crabb, D.W.; Matsumoto, M.; Chang, D.; You, M. Overview of the role of alcohol dehydrogenase and aldehyde dehy-drogenase and their variants in the genesis of alcohol-related pathology. Proc. Nutr. Soc. 2004, 63, 49–63. [Google Scholar] [CrossRef]
- Ortiz de Montellano, P.R. Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem. Rev. 2010, 110, 932–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekant, W.; Bernauer, U.; Rosner, E.; Amberg, A. Toxicokinetics of ethers used as fuel oxygenates. Toxicol. Lett. 2001, 124, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Wahl, H.G.; Hong, Q.; Hildenbrand, S.; Risler, T.; Luft, D.; Liebich, H. 4-Heptanone is a metabolite of the plasticizer di(2-ethylhexyl) phthalate (DEHP) in haemodialysis patients. Nephrol. Dial. Transplant. 2004, 19, 6–83. [Google Scholar] [CrossRef] [Green Version]
- Pizzimenti, S.; Ciamporcero, E.; Daga, M.; Pettazzoni, P.; Arcaro, A.; Cetrangolo, G.; Minelli, R.; Dianzani, C.; Lepore, A.; Gentile, F.; et al. Interaction of aldehydes de-rived from lipid peroxidation and membrane proteins. Front. Physiol. 2013, 4, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutaria, S.R.; Gori, S.S.; Morris, J.D.; Xie, Z.; Fu, X.A.; Nantz, M.H. Lipid Peroxidation Produces a Diverse Mixture of Saturated and Unsaturated Aldehydes in Exhaled Breath That Can Serve as Biomarkers of Lung Cancer-A Review. Metabolites 2022, 12, 561. [Google Scholar] [CrossRef]
- Kalapos, M.P. On the mammalian acetone metabolism: From chemistry to clinical implications. Biochim. Biophys. Acta 2003, 1621, 122–139. [Google Scholar] [CrossRef] [PubMed]
- Walker, V.; Mills, G.A. 2-Pentanone production from hexanoic acid by Penicillium roqueforti from blue cheese: Is this the pathway used in humans? Sci. World J. 2014, 2014, 215783. [Google Scholar] [CrossRef] [Green Version]
- Tangerman, A. Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methan-ethiol and dimethyl sulfide in various biological matrices. J. Chromatogr. B 2009, 877, 3366–3377. [Google Scholar] [CrossRef]
- Aghdassi, E.; Allard, J.P. Breath alkanes as a marker of oxidative stress in different clinical conditions. Free Radic. Biol. Med. 2000, 28, 880–886. [Google Scholar] [CrossRef]
- Kneepkens, C.M.; Lepage, G.; Roy, C.C. The potential of the hydrocarbon breath test as a measure of lipid peroxidation. Free Radic. Biol. Med. 1994, 17, 127–160. [Google Scholar] [CrossRef]
- Cosnier, F.; Grossmann, S.; Nunge, H.; Brochard, C.; Muller, S.; Lambert-Xolin, A.M.; Sebillaud, S.; Rieger, B.; Thomas, A.; Décret, M.-J.; et al. Metabolism of inhaled methylethylketone in rats. Drug Chem. Toxicol. 2018, 41, 42–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jelski, W.; Zalewski, B.; Chrostek, L.; Szmitkowski, M. The activity of class I, II, III, and IV alcohol dehydrogenase iso-enzymes and aldehyde dehydrogenase in colorectal cancer. Dig. Dis. Sci. 2004, 49, 977–981. [Google Scholar] [CrossRef] [PubMed]
- McGregor, D. Tertiary-Butanol: A toxicological review. Crit. Rev. Toxicol. 2010, 40, 697–727. [Google Scholar] [CrossRef]
- Kushch, I.; Arendacká, B.; Stolc, S.; Mochalski, P.; Filipiak, W.; Schwarz, K.; Schwentner, L.; Schmid, A.; Dzien, A.; Lechleitner, M.; et al. Breath isoprene–aspects of normal physiology related to age, gender and cholesterol profile as determined in a proton transfer reaction mass spectrometry study. Clin. Chem. Lab. Med. 2008, 46, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Mochalski, P.; King, J.; Haas, M.; Unterkofler, K.; Amann, A.; Mayer, G. Blood and breath profiles of volatile organic compounds in patients with end-stage renal disease. BMC Nephrol. 2014, 15, 43. [Google Scholar] [CrossRef] [PubMed]
- Poli, D.; Carbognani, P.; Corradi, M.; Goldoni, M.; Acampa, O.; Balbi, B.; Bianchi, L.; Rusca, M.; Mutti, A. Exhaled volatile organic compounds in patients with non-small cell lung cancer: Cross sectional and nested short-term follow-up study. Respir. Res. 2005, 6, 71. [Google Scholar] [CrossRef] [Green Version]
- Alkhouri, N.; Cikach, F.; Eng, K.; Moses, J.; Patel, N.; Yan, C.; Hanouneh, I.; Grove, D.; Lopez, R.; Dweik, R. Analysis of breath volatile organic compounds as a noninvasive tool to diagnose nonalcoholic fatty liver disease in children. Eur. J. Gastroenterol. Hepatol. 2014, 26, 82–87. [Google Scholar] [CrossRef]
- McGrath, L.T.; Patrick, R.; Silke, B. Breath isoprene in patients with heart failure. Eur. J. Heart Fail. 2001, 3, 423–427. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Broza, Y.Y.; Ionsecu, R.; Tisch, U.; Ding, L.; Liu, H.; Song, Q.; Pan, Y.-Y.; Xiong, F.-X.; Gu, K.-S.; et al. A nanomaterial-based breath test for distinguishing gastric cancer from benign gastric conditions. Br. J. Cancer 2013, 108, 941–950. [Google Scholar] [CrossRef] [Green Version]
- Mochalski, P.; King, J.; Mayhew, C.A.; Unterkofler, K. A review on isoprene in human breath. J. Breath Res. 2023, 17, 037101. [Google Scholar] [CrossRef]
- Hanouneh, I.A.; Zein, N.N.; Cikach, F.; Dababneh, L.; Grove, D.; Alkhouri, N.; Lopez, R.; Dweik, R.A. The breathprints in patients with liver disease identify novel breath biomarkers in alcoholic hepatitis. Clin. Gastroenterol. Hepatol. 2014, 12, 516–523. [Google Scholar] [CrossRef] [Green Version]
- Buszewski, B.; Ulanowska, A.; Ligor, T.; Jackowski, M.; Kłodzińska, E.; Szeliga, J. Identification of volatile organic compounds secreted from cancer tissues and bacterial cultures. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2008, 868, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Stepanov, I.; Hecht, S.S. Tobacco-specific nitrosamines and their pyridine-N-glucuronides in the urine of smokers and smokeless tobacco users. Cancer Epidemiol. Biomark. Prev. 2005, 14, 885–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mochalski, P.; Leja, M.; Ślefarska-Wolak, D.; Mezmale, L.; Patsko, V.; Ager, C.; Królicka, A.; Mayhew, C.A.; Shani, G.; Haick, H. Identification of Key Volatile Organic Compounds Released by Gastric Tissues as Potential Non-Invasive Biomarkers for Gastric Cancer. Diagnostics 2023, 13, 335. [Google Scholar] [CrossRef] [PubMed]
VOC | CAS | Rt [min] | Quantifier Ion m/z | LOD [ppb] | RSD [%] | R2 | Linear Range [ppb] |
---|---|---|---|---|---|---|---|
2-methyl-2-propanol | 75-65-0 | 4.78 | 59 | 0.1 | 5 | 0.996 | 0.3–30 |
1-propanol | 71-23-8 | 6.33 | 31 | 3 | 19 | 0.996 | 9–40 |
ethyl acetate | 141-78-6 | 6.68 | 43 | 0.08 | 6 | 0.998 | 0.24–35 |
2-butanone | 78-93-3 | 7.6 | 72 | 0.4 | 10 | 0.999 | 1.3–40 |
2-pentanone | 107-87-9 | 13.24 | 86 | 0.03 | 10 | 0.996 | 0.09–24 |
pyridine | 110-86-1 | 16.94 | 52 | 0.37 | 6 | 0.994 | 1.1–50 |
3-methyl-1-butanol | 123-51-3 | 17.95 | 70 | 0.11 | 6 | 0.989 | 0.33–29 |
cyclohexanone | 108-93-0 | 25.29 | 57 | 0.03 | 7 | 0.992 | 0.09–26 |
DL-limonene | 5989-27-5 | 29.42 | 68 | 0.47 | 9 | 0.989 | 1.5–25 |
2-ethyl-1-hexanol | 104-76-7 | 30.6 | 57 | 0.8 | 15 | 0.989 | 2.8–40 |
Class | Name (CAS; Occurrence T/N [%]) |
---|---|
Hydrocarbons | n-dodecane (112-40-3; 96/100), n-octane (111-65-9; 94/96), n-pentane (109-66-0; 90/98), isoprene (78-79-5; 72/76), n-decane (124-18-5; 68/72), n-undecane (1120-21-4; 62/74), n-nonane (111-84-2; 60/60), n-tetradecane (629-59-4; 58/64), n-hexane (110-54-3; 58/64), dicyclopentadiene (77-73-6; 52/44), n-tridecane (629-50-5; 42/54), 2-methyl-butane (78-78-4; 42/52) |
Alcohols | 1-propanol (71-23-8; 96/86), 2-methyl-2-propanol (75-65-0; 90/90), ethanol (64-17-5; 88/86), propofol (2078-54-8; 78/76), 2-propanol (67-63-0; 70/70), 3-methyl-1-butanol (123-51-3; 62/84), 2-ethyl-1-hexanol (104-76-7; 40/58) |
Aldehydes | nonanal (124-19-6; 78/86), butanal (123-72-8; 62/84), pentanal (110-62-3; 58/52), decanal (112-31-2; 54/62), dodecanal (112-54-9; 46/52) |
Aromatics | benzaldehyde (100-52-7; 96/100), toluene (108-88-3; 92/100), p-xylene (106-42-3; 92/100), o-xylene (95-47-6; 80/76), benzonitrile (100-47-0; 74/74), ethylbenzene (100-41-4; 74/72) |
Ketones | 2-butanone (78-93-3; 96/100), 2-pentanone (107-87-9; 92/100), acetone (67-64-1; 82/96), 2,3-butanedione (431-03-8; 80/86), 6-methyl-5-hepten-2-one (110-93-0; 50/50), cyclohexanone (108-94-1; 34/58) |
Volatile sulfur compounds | dimethyl sulfide (75-18-3; 88/86), carbon disulfide (75-15-0, 88/76), methyl thiolacetate (1534-08-3; 58/50) |
Heterocyclics | pyridine (110-86-1; 94/98), pyrrole (109-97-7; 70/86) |
Terpenes | d-limonene (5989-27-5; 60/74), alpha-pinene (80-56-8; 50/40) |
Esters | ethyl acetate (141-78-6; 84/88) |
Other | acetoin (513-86-0; 66/74) |
VOC | CAS | Change T vs. N | Incidence [%] | Mean [ppb] | p-Value | ||
---|---|---|---|---|---|---|---|
Tumor | Normal | Tumor | Normal | ||||
2-butanone | 78-93-3 | ↓ | 96 | 100 | 4.1 | 4.9 | 0.01 |
1-propanol | 71-23-8 | ↑ | 96 | 86 | 53 | 17 | 0.01 |
pyridine | 110-86-1 | ↑ | 94 | 98 | 88 | 44 | 4.1 × 10−3 |
2-pentanone | 107-87-9 | ↓ | 92 | 100 | 2.4 | 2.8 | 0.01 |
2-methyl-2-propanol | 75-65-0 | ↓ | 90 | 90 | 2.7 | 6.3 | 9.8 × 10−6 |
ethyl acetate | 141-78-6 | ↓ | 84 | 88 | 1.1 | 4.4 | 8.5 × 10−5 |
isoprene | 78-79-5 | ↗ | 72 | 76 | nq | nq | 0.03 |
3-methyl-1-butanol | 123-51-3 | ↓ | 62 | 84 | 0.39 | 1.0 | 4.3 × 10−3 |
d-limonene | 5989-27-5 | ↓ | 60 | 74 | 3 | 4.5 | 0.03 |
methyl thiolacetate | 1534-08-3 | ↗ | 58 | 50 | nq | nq | 5.9 × 10−4 |
tetradecane | 629-59-4 | ↙ | 58 | 64 | nq | nq | 0.04 |
dodecanal | 112-54-9 | ↙ | 46 | 52 | nq | nq | 0.04 |
tridecane | 629-50-5 | ↙ | 42 | 54 | nq | nq | 3.3 × 10−3 |
2-ethyl-1-hexanol | 104-76-7 | ↓ | 40 | 58 | 5 | 1.0 | 0.03 |
cyclohexanone | 108-94-1 | ↓ | 34 | 58 | 0.12 | 0.5 | 0.02 |
Gender | n | % | Age Range (Median) | CRC Stage | Cancer Differentiation Grade | |||||
---|---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | 1 | 2 | 3 | ||||
Males | 30 | 60% | 35–84 (72) | 8 | 16 | 5 | 1 | 7 | 20 | 3 |
Females | 20 | 40% | 50–85 (72) | 7 | 6 | 6 | 1 | 4 | 12 | 4 |
Total | 50 | 100% | 35–85 (72) | 15 | 22 | 11 | 2 | 11 | 32 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mezmale, L.; Leja, M.; Lescinska, A.M.; Pčolkins, A.; Kononova, E.; Bogdanova, I.; Polaka, I.; Stonans, I.; Kirsners, A.; Ager, C.; et al. Identification of Volatile Markers of Colorectal Cancer from Tumor Tissues Using Volatilomic Approach. Molecules 2023, 28, 5990. https://doi.org/10.3390/molecules28165990
Mezmale L, Leja M, Lescinska AM, Pčolkins A, Kononova E, Bogdanova I, Polaka I, Stonans I, Kirsners A, Ager C, et al. Identification of Volatile Markers of Colorectal Cancer from Tumor Tissues Using Volatilomic Approach. Molecules. 2023; 28(16):5990. https://doi.org/10.3390/molecules28165990
Chicago/Turabian StyleMezmale, Linda, Marcis Leja, Anna Marija Lescinska, Andrejs Pčolkins, Elina Kononova, Inga Bogdanova, Inese Polaka, Ilmars Stonans, Arnis Kirsners, Clemens Ager, and et al. 2023. "Identification of Volatile Markers of Colorectal Cancer from Tumor Tissues Using Volatilomic Approach" Molecules 28, no. 16: 5990. https://doi.org/10.3390/molecules28165990
APA StyleMezmale, L., Leja, M., Lescinska, A. M., Pčolkins, A., Kononova, E., Bogdanova, I., Polaka, I., Stonans, I., Kirsners, A., Ager, C., & Mochalski, P. (2023). Identification of Volatile Markers of Colorectal Cancer from Tumor Tissues Using Volatilomic Approach. Molecules, 28(16), 5990. https://doi.org/10.3390/molecules28165990