Synthesis, Anti-Tyrosinase Activity, and Spectroscopic Inhibition Mechanism of Cinnamic Acid–Eugenol Esters
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Tyrosinase Inhibitory Activity
2.3. Kinetic Study
2.4. Three-Dimensional Fluorescence Spectra
2.5. Circular Dichroism Spectra
2.6. Fluorescence Quenching
2.7. Molecular Docking
2.8. Drug-like Properties
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Synthesis of Cinnamic Acid–Eugenol Ester Derivatives (c1~c29)
3.2.2. Tyrosinase Inhibition and Kinetics Study
3.2.3. Three-Dimensional Fluorescence Spectra Assay
3.2.4. Circular Dichroism Spectroscopy Assay
3.2.5. Fluorescence Quenching Experiments
3.2.6. Molecular Docking
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Feng, L.; Liu, L.; Wang, F.; Ouyang, L.; Zhang, L.; Hu, X.; Wang, G. Recent advances in the design and discovery of synthetic tyrosinase inhibitors. Eur. J. Med. Chem. 2021, 224, 113744. [Google Scholar] [CrossRef]
- Hassan, M.; Shahzadi, S.; Kloczkowski, A. Tyrosinase inhibitors naturally present in plants and synthetic modifications of these natural products as anti-melanogenic agents: A review. Molecules 2023, 28, 378. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Fan, M.; Yang, W.; Peng, Z.; Wang, G. Novel kojic acid-1,2,4-triazine hybrids as anti-tyrosinase agents: Synthesis, biological evaluation, mode of action, and anti-browning studies. Food Chem. 2023, 419, 136047. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; He, M.; Huang, Y.; Peng, Z. Synthesis and biological evaluation of new kojic acid-1,3,4-oxadiazole hybrids as tyrosinase inhibitors and their application in the anti-browning of fresh-cut mushrooms. Food Chem. 2023, 409, 135275. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Park, Y.J.; Jung, H.J.; Ullah, S.; Yoon, D.; Jeong, Y.; Kim, G.Y.; Kang, M.K.; Kang, D.; Park, Y.; et al. Design and synthesis of (Z)-2-(benzylamino)-5-benzylidenethiazol-4(5H)-one derivatives as tyrosinase inhibitors and their anti-melanogenic and antioxidant effects. Molecules 2023, 28, 848. [Google Scholar] [CrossRef]
- Djafarou, S.; Mermer, A.; Barut, B.; Yılmaz, G.T.; Khodja, I.A.; Boulebd, H. Synthesis and evaluation of the antioxidant and anti-tyrosinase activities of thiazolyl hydrazone derivatives and their application in the anti-browning of fresh-cut potato. Food Chem. 2023, 414, 135745. [Google Scholar] [CrossRef]
- Zargaham, M.K.; Ahmed, M.; Akhtar, N.; Ashraf, Z.; Abdel-Maksoud, M.A.; Aufy, M.; Nadeem, H. Synthesis, in silico studies, and antioxidant and tyrosinase inhibitory potential of 2-(substituted phenyl) thiazolidine-4-carboxamide derivatives. Pharmaceuticals 2023, 16, 835. [Google Scholar] [CrossRef]
- Xue, S.; Li, Z.; Ze, X.; Wu, X.; He, C.; Shuai, W.; Marlow, M.; Chen, J.; Scurr, D.; Zhu, Z.; et al. Design, synthesis, and biological evaluation of novel hybrids containing dihydrochalcone as tyrosinase inhibitors to treat skin hyperpigmentation. J. Med. Chem. 2023, 66, 5099–5117. [Google Scholar] [CrossRef]
- ZNajafi; Ebadi, A.; Chehardoli, G.; Ziaei, M.; Akbarzadeh, T.; Saeedi, M.; Gholamhoseini, P.; Mahdavi, M. Design, synthesis, in vitro, and in silico studies of novel benzylidene 6-methoxy-1-tetralone linked to benzyloxy and benzyl-1, 2, 3-triazole rings as potential tyrosinase inhibitors. J. Mol. Struct. 2023, 1271, 134018. [Google Scholar] [CrossRef]
- BRoulier; Rush, I.; Lazinski, L.M.; Pérès, B.; Olleik, H.; Royal, G.; Fishman, A.; Maresca, M.; Haudecoeur, R. Resorcinol-based hemiindigoid derivatives as human tyrosinase inhibitors and melanogenesis suppressors in human melanoma cells. Eur. J. Med. Chem. 2023, 246, 114972. [Google Scholar] [CrossRef]
- De Barros, M.R.; Menezes, T.M.; Garcia, Y.S.; Neves, J.L. Inhibitory effects of iron-based carbonaceous nanocomposites on mushroom tyrosinase activity: Molecular aspects and mechanistic insights. New J. Chem. 2023, 47, 9134–9142. [Google Scholar] [CrossRef]
- Esma, A.T.K.; Abd, E.H.K.; Rabah, A.; Djamila, B.; Mohamed, S.B.; Chawki, B.; Ramazan, E. In vitro assessment of antioxidant, neuroprotective, anti-urease and anti-tyrosinase capacities of Tamarix africana leaves extracts. J. Tradit. Chin. Med. 2023, 43, 252–264. [Google Scholar] [CrossRef]
- Romagnoli, R.; Oliva, P.; Prencipe, F.; Manfredini, S.; Germanò, M.P.; De Luca, L.; Ricci, F.; Corallo, D.; Aveic, S.; Mariotto, E.; et al. Cinnamic acid derivatives linked to arylpiperazines as novel potent inhibitors of tyrosinase activity and melanin synthesis. Eur. J. Med. Chem. 2022, 231, 114147. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Li, D.; Hu, Y.; You, X.; Guo, X.; Li, X.; Chen, B. A novel C6-sulfonated celastrol analog as a tyrosinase and melanin inhibitor: Design, synthesis, biological evaluation and molecular simulation. J. Mol. Struct. 2023, 1283, 135–288. [Google Scholar] [CrossRef]
- Nasab, N.H.; Raza, H.; Eom, Y.S.; Hassan, M.; Kloczkowski, A.; Kim, S.J. Synthesis and discovery of potential tyrosinase inhibitor of new coumarin-based thiophenyl-pyrazolylthiazole nuclei: In-vitro evaluation, cytotoxicity, kinetic and computational studies. Chem. Biol. Drug. Des. 2023, 101, 13–88. [Google Scholar]
- Iraji, A.; Sheikhi, N.; Attarroshan, M.; Ardani, G.R.S.; Kabiri, M.; Bafghi, A.N.; Kobarfard, F.; Rezaei, Z.; Khoshneviszadeh, M.; Foroumadi, A.; et al. Design, synthesis, spectroscopic characterization, in vitro tyrosinase inhibition, antioxidant evaluation, in silico and kinetic studies of substituted indole-carbohydrazides. Bioorganic Chem. 2022, 129, 106–140. [Google Scholar] [CrossRef]
- Ge, Z.; Liu, J.-C.; Sun, J.-A.; Mao, X.-Z. Tyrosinase Inhibitory Peptides from Enzyme Hydrolyzed Royal Jelly: Production, Separation, Identification and Docking Analysis. Foods 2023, 12, 2240. [Google Scholar] [CrossRef]
- Güven, Z.B.; Saracoglu, I.; Nagatsu, A.; Yilmaz, M.A.; Basaran, A.A. Anti-tyrosinase and antimelanogenic effect of cinnamic acid derivatives from Prunus mahaleb L.: Phenolic composition, isolation, identification and inhibitory activity. J. Ethnopharmacol. 2023, 310, 116378. [Google Scholar] [CrossRef]
- Ledwoń, P.; Goldeman, W.; Hałdys, K.; Jewgiński, M.; Calamai, G.; Rossowska, J.; Papini, A.M.; Rovero, P.; Latajka, R. Tripeptides conjugated with thiosemicarbazones: New inhibitors of tyrosinase for cosmeceutical use. J. Enzym. Inhib. Med. Chem. 2023, 38, 2193676. [Google Scholar] [CrossRef]
- Ielo, L.; Deri, B.; Germano, M.P.; Vittorio, S.; Mirabile, S.; Gitto, R.; Rapisarda, A.; Ronsisvalle, S.; Floris, S.; Pazy, Y. Exploiting the 1-(4-fluorobenzyl) piperazine fragment for the development of novel tyrosinase inhibitors as anti-melanogenic agents: Design, synthesis, structural insights and biological profile. Eur. J. Med. Chem. 2019, 178, 380–389. [Google Scholar]
- Veljović, E.; Rimac, H.; Salihović, M.; Špirtović-Halilović, S.; Osmanović, A.; Kovač, N.; Kiršek, E.; Članjak-Kudra, E.; Špirtović, D.; Bojić, M. Synthesis of arylmethylene-bis (3-hydroxy-5, 5-dimethylcyclohex-2-en-1-one) derivatives and their effect on tyrosinase activity. Croat. Chem. Acta. 2021, 94, 1–9. [Google Scholar]
- Chortani, S.; Hajlaoui, A.; Jlizi, S.; Harrath, A.H.; Jannet, H.B.; Romdhane, A. Access to new phosphonate-and imidazolidine-benzopyrimidinone derivatives as antityrosinase and anti-acetylcholinesterase agents: Design, synthesis and molecular docking. J. Mol. Struc. 2022, 1268, 133–693. [Google Scholar]
- Mohammadsadeghi, N.; Mahdavi, A.; Saadati, F.; Mohammadi, F. In silico and in vitro studies of novel derivatives of tyrosol and raspberry ketone as the mushroom tyrosinase inhibitors. Food Chem. 2023, 424, 136413. [Google Scholar] [CrossRef]
- Vittorio, S.; Dank, C.; Ielo, L. Heterocyclic Compounds as Synthetic Tyrosinase Inhibitors: Recent Advances. Int. J. Mol. Sci. 2023, 24, 9097. [Google Scholar] [CrossRef]
- Zhu, Y.-Z.; Chen, K.; Chen, Y.-L.; Zhang, C.; Xie, Y.-Y.; Hider, R.C.; Zhou, T. Design and synthesis of novel stilbene-hydroxypyridinone hybrids as tyrosinase inhibitors and their application in the anti-browning of freshly-cut apples. Food Chem. 2022, 385, 132730. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.-L.; Chen, X.; Song, Y.-Y.; Zhu, Q.-L.; Bilal, M.; Wang, Y.; Tong, Z.; Wu, T.-T.; Wang, Z.-Y.; Luo, H.-Z.; et al. Whole cell-mediated biocatalytic synthesis of helicid cinnamylate and its biological evaluation as a novel tyrosinase inhibitor. Biotechnol. Bioprocess Eng. 2022, 27, 443–450. [Google Scholar] [CrossRef]
- Nazir, Y.; Rafique, H.; Roshan, S.; Shamas, S.; Ashraf, Z.; Rafiq, M.; Tahir, T.; Qureshi, Z.-U.; Aslam, A.; Bin Asad, M.H.H. Molecular Docking, Synthesis, and Tyrosinase Inhibition activity of acetophenone amide: Potential inhibitor of melanogenesis. BioMed. Res. Int. 2022, 2022, 1040693. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Hu, Y.-H.; Yu, F.; Zheng, J.; Chen, L.-S.; Chen, Q.-X.; Wang, Q. Inhibition kinetics and molecular simulation of p-substituted cinnamic acid derivatives on tyrosinase. Int. J. Biol. Macromol. 2017, 95, 1289–1297. [Google Scholar] [CrossRef] [Green Version]
- Vale, J.A.D.; Rodrigues, M.P.; Lima, M.A.; Santiago, S.S.; Lima, G.D.d.A.; Almeida, A.A.; de Oliveira, L.L.; Bressan, G.C.; Teixeira, R.R.; Machado-Neves, M. Synthesis of cinnamic acid ester derivatives with antiproliferative and antimetastatic activities on murine melanoma cells. Biomed. Pharmacother. 2022, 148, 112–689. [Google Scholar] [CrossRef]
- Neto, C.F.G.; Nascimento, P.D.; da Silveira, V.C.; de Mattos, A.B.N.; Bertol, C.D. Natural sources of melanogenic inhibitors: A systematic review. Int. J. Cosmet. Sci. 2022, 44, 143–153. [Google Scholar] [CrossRef]
- Larik, F.A.; Saeed, A.; Channar, P.A.; Muqadar, U.; Abbas, Q.; Hassan, M.; Seo, S.-Y.; Bolte, M. Design, synthesis, kinetic mechanism and molecular docking studies of novel 1-pentanoyl-3-arylthioureas as inhibitors of mushroom tyrosinase and free radical scavengers. Eur. J. Med. Chem. 2017, 141, 273–281. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, G.; Zeng, Q.-H.; Li, Y.; Liu, H.; Wang, J.J.; Zhao, Y. A systematic review of synthetic tyrosinase inhibitors and their structure-activity relationship. Crit. Rev. Food Sci. 2021, 62, 4053–4094. [Google Scholar] [CrossRef]
- Ashooriha, M.; Khoshneviszadeh, M.; Khoshneviszadeh, M.; Rafiei, A.; Kardan, M.; Yazdian-Robati, R.; Emami, S. Kojic acid–natural product conjugates as mushroom tyrosinase inhibitors. Eur. J. Med. Chem. 2020, 201, 112480. [Google Scholar] [CrossRef] [PubMed]
- Cabezudo, I.; Ramallo, I.A.; Alonso, V.L.; Furlan, R.L. Effect directed synthesis of a new tyrosinase inhibitor with anti-browning activity. Food Chem. 2021, 341, 128232. [Google Scholar] [CrossRef] [PubMed]
- Hariri, R.; Saeedi, M.; Akbarzadeh, T. Naturally occurring and synthetic peptides: Efficient tyrosinase inhibitors. J. Pept. Sci. 2021, 27, e3329. [Google Scholar] [CrossRef] [PubMed]
- Obaid, R.J.; Mughal, E.U.; Naeem, N.; Sadiq, A.; Alsantali, R.I.; Jassas, R.S.; Moussa, Z.; Ahmed, S.A. Natural and synthetic flavonoid derivatives as new potential tyrosinase inhibitors: A systematic review. RSC Adv. 2021, 11, 22159–22198. [Google Scholar] [CrossRef]
- Sheng, Z.; Ge, S.; Xu, X.; Zhang, Y.; Wu, P.; Zhang, K.; Xu, X.; Li, C.; Zhao, D.; Tang, X. Design, synthesis and evaluation of cinnamic acid ester derivatives as mushroom tyrosinase inhibitors. MedChemComm 2018, 9, 853–861. [Google Scholar] [CrossRef]
- Citarella, A.; Moi, D.; Pedrini, M.; Pérez-Peña, H.; Pieraccini, S.; Dimasi, A.; Stagno, C.; Micale, N.; Schirmeister, T.; Sibille, G.; et al. Synthesis of SARS-CoV-2 Mpro inhibitors bearing a cinnamic ester warhead with in vitro activity against human coronaviruses. Org. Biomol. Chem. 2023, 21, 3811. [Google Scholar] [CrossRef]
- Huang, S.; Liu, W.; Li, Y.; Zhang, K.; Zheng, X.; Wu, H.; Tang, G. Design, Synthesis, and Activity Study of Cinnamic Acid Derivatives as Potent Antineuroinflammatory Agents. ACS Chem. Neurosci. 2021, 12, 419–429. [Google Scholar] [CrossRef]
- Jiang, Y.-Y.; Wu, S.; Wu, Y.-W.; Gao, Y.; Chong, D.; Sun, C.; Wei, M.-Y.; Gu, Y.-C.; Shao, C.-L.; Gu, Y. New brefeldin A-cinnamic acid ester derivatives as potential antitumor agents: Design, synthesis and biological evaluation. Eur. J. Med. Chem. 2022, 240, 114598. [Google Scholar] [CrossRef]
- Wang, S.; Chen, J.; Shi, J.; Wang, Z.; Hu, D.; Song, B. Novel cinnamic acid derivatives containing the 1,3,4-oxadiazole moiety: Design, synthesis, antibacterial activities, and mechanisms. J. Agric. Food Chem. 2021, 69, 11804–11815. [Google Scholar] [CrossRef]
- de Morais, M.C.; Medeiros, G.A.; Almeida, F.S.; Rocha, J.d.C.; Perez-Castillo, Y.; Keesen, T.d.S.L.; de Sousa, D.P. Antileishmanial activity of cinnamic acid derivatives against Leishmania infantum. Molecules 2023, 28, 2844. [Google Scholar] [CrossRef] [PubMed]
- Nazir, Y.; Saeed, A.; Rafiq, M.; Afzal, S.; Ali, A.; Latif, M.; Zuegg, J.; Hussein, W.M.; Fercher, C.; Barnard, R.T.; et al. Hydroxyl substituted benzoic acid/cinnamic acid derivatives: Tyrosinase inhibitory kinetics, anti-melanogenic activity and molecular docking studies. Bioorg. Med. Chem. Lett. 2020, 30, 126722. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.; Jiang, Y.; Zhang, H.; Huang, W.; Xie, Y.; Deng, C.; Xu, H.; Song, X.; Xu, H. Design, synthesis of cinnamyl-paeonol derivatives with 1, 3-dioxypropyl as link arm and screening of tyrosinase inhibition activity in vitro. Bioorg. Chem. 2021, 106, 104512. [Google Scholar] [CrossRef]
- Lin, Z.; Xia, W.; Liu, R.; Jiang, S.; Ma, Z. Synthesis of cinnamic acid-coumarin ester analogs and inhibition of tyrosinase activity. Chin. J. Org. Chem. 2020, 40, 2980. [Google Scholar] [CrossRef]
- He, M.; Fan, M.; Liu, W.; Li, Y.; Wang, G. Design, synthesis, molecular modeling, and biological evaluation of novel kojic acid derivatives containing bioactive heterocycle moiety as inhibitors of tyrosinase and antibrowning agents. Food Chem. 2021, 362, 130241. [Google Scholar] [CrossRef]
- Ali, A.; Ashraf, Z.; Kumar, N.; Rafiq, M.; Jabeen, F.; Park, J.H.; Choi, K.H.; Lee, S.; Seo, S.-Y.; Choi, E.H.; et al. Influence of plasma-activated compounds on melanogenesis and tyrosinase activity. Sci. Rep. 2016, 6, 21779. [Google Scholar] [CrossRef] [Green Version]
- Mermer, A.; Demirci, S. Recent advances in triazoles as tyrosinase inhibitors. Eur. J. Med. Chem. 2023, 259, 115655. [Google Scholar] [CrossRef]
- Lin, J.; Xiao, D.; Lu, L.; Liang, B.; Xiong, Z.; Xu, X. New β-carboline derivatives as potential α-glucosidase inhibitor: Synthesis and biological activity evaluation. J. Mol. Struct. 2023, 1283, 135279. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, Y.-Y.; Hu, C.-M.; Wu, X.-Z.; Lin, J.; Xiong, Z.; Zhang, K.; Xu, X.-T. Synthesis and biological evaluation of coumarin derivatives containing oxime ester as α-glucosidase inhibitors. Arab. J. Chem. 2022, 15, 104072. [Google Scholar] [CrossRef]
- Li, M.; Li, L.; Lu, L.; Xu, X.; Hu, J.; Peng, J.-B. Anti-α-glucosidase, SAR analysis, and mechanism investigation of indolo [1,2-b]isoquinoline derivatives. Molecules 2023, 28, 5282. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-Z.; Zhu, W.-J.; Lu, L.; Hu, C.-M.; Zheng, Y.-Y.; Zhang, X.; Lin, J.; Wu, J.-Y.; Xiong, Z.; Zhang, K.; et al. Synthesis and anti-α-glucosidase activity evaluation of betulinic acid derivatives. Arab. J. Chem. 2023, 16, 104659. [Google Scholar] [CrossRef]
- YHu, G.; Gao, Z.P.; Zheng, Y.Y.; Lin, J.; Wu, X.Z.; Zhang, X.; Zhou, Y.S.; Xiong, Z.; Zhu, D.Y. Synthesis and biological activity evaluation of 2-cyanopyrrole derivatives as potential tyrosinase inhibitors. Front. Chem. 2022, 10, 540. [Google Scholar]
- Alizadeh, N.; Sayahi, M.H.; Iraji, A.; Yazzaf, R.; Moazzam, A.; Mobaraki, K.; Adib, M.; Attarroshan, M.; Larijani, B.; Rastegar, H.; et al. Evaluating the effects of disubstituted 3-hydroxy-1H-pyrrol-2(5H)-one analog as novel tyrosinase inhibitors. Bioorg. Chem. 2022, 126, 105876. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, X.; Kang, Y.; Xiong, Z.; Zhang, K.; Xu, X.; Bai, L.; Li, H. Novel coumarin derivatives as potential tyrosinase inhibitors: Synthesis, binding analysis and biological evaluation. Arab. J. Chem. 2023, 16, 104724. [Google Scholar] [CrossRef]
- Fan, M.; Yang, W.; Peng, Z.; He, Y.; Wang, G. Chromone-based benzohydrazide derivatives as potential α-glucosidase inhibitor: Synthesis, biological evaluation and molecular docking study. Bioorg. Chem. 2023, 131, 106–276. [Google Scholar] [CrossRef]
- Nunes, J.A.; Araújo, R.S.A.D.; Silva, F.N.D.; Cytarska, J.; Łączkowski, K.Z.; Cardoso, S.H.; Mendonça-Júnior, F.J.B.; Silva-Júnior, E.F.D. Coumarin-based compounds as inhibitors of tyrosinase/tyrosine hydroxylase: Synthesis, kinetic studies, and in silico approaches. Int. J. Mol. Sci. 2023, 24, 5216. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, M.; Lin, G.; Duan, W.; Li, Q.; Zou, R.; Cen, B. Synthesis, antifungal activity and molecular docking study of 1,3,4-thiadiazole-urea compounds containing gem-dimethylcyclopropane ring structure. Chin. J. Org. Chem. 2022, 42, 3784–3797. [Google Scholar]
- Sun, C.; Zhang, F.; Zhang, H.; Li, P.; Jiang, L. Design, synthesis, fungicidal activity and molecular docking study of novel 2-(1-methyl-1h-pyrazol-4-yl)pyrimidine-4-carboxamides. Chin. J. Org. Chem. 2023, 43, 229–235. [Google Scholar] [CrossRef]
- Hemachandran, H.; Jain, F.; Mohan, S.; Kumar, T.D.; Doss, G.P.C.; Ramamoorthy, S. Glandular hair constituents of Mallotus philippinensis Muell. fruit act as tyrosinase inhibitors: Insights from enzyme kinetics and simulation study. Int. J. Biol. Macromol. 2018, 107, 1675–1682. [Google Scholar] [CrossRef]
Compounds | R | Inhibition Rate at 64 μM (%) | IC50 (μM) |
---|---|---|---|
c1 | -H | 12 ± 1 | - |
c2 | -2CH3 | 12 ± 0.3 | - |
c3 | -3CH3 | 39 ± 3 | - |
c4 | -4CH3 | 15 ± 1 | - |
c5 | -2Cl | 29 ± 3 | - |
c6 | -3Cl | 17 ± 2 | - |
c7 | -4Cl | 24 ± 1 | - |
c8 | -2F | 17 ± 3 | - |
c9 | -3F | 17 ± 3 | - |
c10 | -4F | 17 ± 1 | - |
c11 | -2Br | 10 ± 0.4 | - |
c12 | -3Br | 3 ± 0.8 | - |
c13 | -4Br | 13 ± 1 | - |
c14 | -3OH | 68 ± 0.7 | 16.28 ± 1.52 |
c15 | -4OH | 76 ± 0.2 | 5.95 ± 1.46 |
c16 | -2NO2 | 5 ± 0.1 | - |
c17 | -3NO2 | 9 ± 0.8 | - |
c18 | -4NO2 | 14 ± 1 | - |
c19 | -2CH3O | 3 ± 0.2 | - |
c20 | -3CH3O | 3 ± 0.1 | - |
c21 | -4CH3O | 7 ± 0.9 | - |
c22 | -2CF3 | 6 ± 0.5 | - |
c23 | -3CF3 | 5 ± 0.2 | - |
c24 | -4CF3 | 2 ± 0.1 | - |
c25 | -(CH3CH2)2N | 26 ± 1 | - |
c26 | -3CH3O, -4OH | 47 ± 1 | - |
c27 | -3,4OH | 81 ± 2 | 3.07 ± 0.28 |
c28 | -3F, -4Cl | 19 ± 0.2 | - |
c29 | -3,4CH2O | 4 ± 1 | - |
Cinnamic acid | 201.4 ± 5.3 | ||
Eugenol | 5521 ± 25 | ||
Kojic acid | 76 ± 2 | 14.15 ± 0.46 |
[Tyrosinase]:[c27] | α-Helix (%) | β-Sheet (%) | β-Turn (%) | Random Coil (%) |
---|---|---|---|---|
1:0 | 7.10 | 48.90 | 17.21 | 28.40 |
1:1 | 7.12 | 49.00 | 17.63 | 28.23 |
1:2 | 9.56 | 49.23 | 18.37 | 28.12 |
1:3 | 9.85 | 49.27 | 18.55 | 27.94 |
T (K) | KSV (×104 L·mol−1) | Kq (×1012 L·mol−1) | Ka (×104 L·mol−1) | n |
---|---|---|---|---|
304 | 4.77 | 4.77 | 0.05 | 0.59 |
307 | 4.32 | 4.32 | 0.93 | 0.86 |
310 | 4.29 | 4.29 | 3.85 | 0.99 |
MF | MW | RB | HBA | HBD | PPSA | Log Po/w | WS |
---|---|---|---|---|---|---|---|
C19H18O5 | 326.34 | 7 | 5 | 2 | 75.99 | 3.10 | Poorly |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Min, X.; Zheng, X.; Wang, S.; Xu, X.; Peng, J. Synthesis, Anti-Tyrosinase Activity, and Spectroscopic Inhibition Mechanism of Cinnamic Acid–Eugenol Esters. Molecules 2023, 28, 5969. https://doi.org/10.3390/molecules28165969
Li J, Min X, Zheng X, Wang S, Xu X, Peng J. Synthesis, Anti-Tyrosinase Activity, and Spectroscopic Inhibition Mechanism of Cinnamic Acid–Eugenol Esters. Molecules. 2023; 28(16):5969. https://doi.org/10.3390/molecules28165969
Chicago/Turabian StyleLi, Jianping, Xiaofeng Min, Xi Zheng, Shaohua Wang, Xuetao Xu, and Jinbao Peng. 2023. "Synthesis, Anti-Tyrosinase Activity, and Spectroscopic Inhibition Mechanism of Cinnamic Acid–Eugenol Esters" Molecules 28, no. 16: 5969. https://doi.org/10.3390/molecules28165969
APA StyleLi, J., Min, X., Zheng, X., Wang, S., Xu, X., & Peng, J. (2023). Synthesis, Anti-Tyrosinase Activity, and Spectroscopic Inhibition Mechanism of Cinnamic Acid–Eugenol Esters. Molecules, 28(16), 5969. https://doi.org/10.3390/molecules28165969