Application of New COF Materials in Secondary Battery Anode Materials
Abstract
:1. Introduction
2. Application of COF Materials in the Lithium-Ion Battery Anode
2.1. COF Anode
2.2. The Lithium Storage Mechanism of COF Materials
3. Application of COF Materials in the Sodium-Ion Battery Anode
4. Application of COF Materials in the Potassium-Ion Battery Anode
Materials | Precursor COFs | Current Density (A g−1) | Cycle Number | Specific Capacity (mA h g−1) | Batteries | Ref. |
---|---|---|---|---|---|---|
TFPB-TAPT COF | TFPB-TAPT COF | 0.03 | 500 | 125 | SIBs | [9] |
E-TFPB-COF/MnO2 | TFPB-COF | 0.1 | 300 | 1359 | LIBs | [10] |
DAAQ-HCCP COF | DAAQ-HCCP COF | 0.1 | 100 | 88 | SIBs | [11] |
DAAQ-COF@CNT | DAAQ-COF | 0.1 | / | 157.7 | PIBs | [12] |
TA-COF | TA-COF | 5 | 2000 | 227 | LIBs | [13] |
CON | Trialdehyde and 3,5-diaminotriazole | 0.1 | 1000 | ~720 | LIBs | [29] |
DAAQ-COF | DAAQ-COF | 1 | 500 | 787 | LIBs | [31] |
PA-TA COF | PA-TA COF | 1 | 400 | 543 | LIBs | [32] |
DCB-COF | DCB-COF | 0.4 | ~500 | 387 | LIBs | [33] |
HAB-COF | HAB-COF | 1 | 1100 | 1255 | LIBs | [34] |
FO@LZU150% | COF-LZU1 | 0.1 | 300 | 2143 | LIBs | [35] |
COF-GQDs | COF-GQDs | 0.1 | 300 | ~820 | LIBs | [36] |
COF@CNT-2 | TP-DA-COF | 0.1 | 100 | 570 | LIBs | [37] |
Tp-Ta-COF | Tp-Ta-COF | 0.2 | 500 | 264 | LIBs | [39] |
Tp-Azo-COF | Tp-Azo-COF | 1 | 3000 | 305.97 | LIBs | [40] |
Exfoliated 2DP | DCB-COF | 0.1 | / | 262 | SIBs | [45] |
Aza-COF | Aza-COF | 0.06 | / | 550 | SIBs | [46] |
CON-16 | CON-16 | 0.1 | 30 | ~250 | SIBs | [47] |
Sb@NGA–CMP | NGA–CMP | 1 | 5000 | 344 | SIBs | [48] |
MPc-2D-cCOFs | MPc-2D-cCOFs | 0.05 | / | 538 | SIBs | [49] |
IISERP-COF18 | bispyridine-tetrazine COF | 1 | / | 340 | SIBs | [50] |
N-rich SC | PDA-COF | 0.5 | 500 | 238 | SIBs | [51] |
NSC | TFP-PPD-COF | 0.1 | 100 | 483.5 | SIBs | [52] |
TAEB-COF | TAEB-COF | 0.05 | 300 | 254.0 | PIBs | [55] |
FAC-Pc-COF | QPP-FAC-Pc-COF | 0.05 | 100 | 424 | PIBs | [56] |
P-COF@SWCNT | NTCDA- TAPA | 0.1 | 282 | 60 | PIBs | [57] |
COF-10@CNT | COF-10 | 0.1 | 500 | 288 | PIBs | [58] |
TP-COF/CNTs | TP-COF | 0.1 | 200 | 290 | PIBs | [60] |
Tf-TAPA@siloxene | Tf-TAPA | 2 | 1000 | 583.6 | LIBs | [61] |
8 | 1500 | 443.3 | ||||
Si@COF | TpPa | 2 | 1000 | 1864 | LIBs | [62] |
DTP-ANDI-COF@CNTs | DTP-ANDI-COF | 0.2 | 100 | 67 | LIBs | [63] |
CPOFs | POM | 0.1 | 500 | 550.6 | LIBs | [64] |
DBA-COF 3 | DBA | 0.05 | 90 | 207 | LIBs | [65] |
Co-MOP@COF | COF-LZU1 | 0.1 | 150 | 1020 | LIBs | [66] |
Sn@COF-hollow | TAPB | 0.1 | 100 | 1080 | LIBs | [67] |
H–Co3O4@CNBF | TAPT-DHNDA | 0.2 | 100 | 808 | LIBs | [68] |
CeO2-NiO/NC | DHNDA-BTH | 1 | 500 | 852 | LIBs | [69] |
NBCs | TAB-FPBA-COF | 5 | 5000 | 205.5 | LIBs | [70] |
10 | 5000 | 171.4 | ||||
NiO/NCF | TpPa | 0.1 | 60 | 673.6 | LIBs | [71] |
NCM | DAB-Tp | 5 | 400 | 345 | LIBs | [72] |
TQBQ-COF | TQBQ-COF | 0.02 | 100 | 352.3 | SIBs | [73] |
DAAQ-COF | DAAQ-COF | 0.1 | 100 | 420 | SIBs | [74] |
Carbonised COF | TAPB | 0.1 | / | 303 | SIBs | [75] |
PICOF-1 | Py-1P COF | 0.069 | 175 | 95 | SIBs | [76] |
TPB-DMTP-COF | TPB-DMTP-COF | 1 | 2000 | 179 | PIBs | [77] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Liang, Y.; Lai, W.; Miao, Z.; Chou, S. Nanocomposite materials for the sodium-ion battery: A Review. Small 2018, 14, 1702514. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Myung, S.; Sun, Y. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larcher, D.; Tarascon, J.M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2014, 7, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K.; González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Q.; Li, L.; Zhang, L.; Hu, B.; Jin, Z.; Wang, C.; Su, Z. A simple synthesis of highly ordered microporous carbon nanospheres for high performance potassium-ion batteries. Energy Environ. Sci. 2020, 479, 229113. [Google Scholar] [CrossRef]
- Li, H.; Yamaguchi, T.; Matsumoto, S.; Hoshikawa, H.; Kumagai, T.; Okamoto, N.; Ichitsubo, T. Circumventing huge volume strain in alloy anodes of lithium batteries. Nat. Commun. 2020, 11, 1584. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Han, D.; Yu, X.; Cao, M.; Hou, Z.; Li, C.; Zhu, M. Recent Advances in Electrospun Metal Chalcogenide Anodes for Lithium-Ion and Sodium-Ion Batteries. ACS Appl. Energy Mater. 2023, 6, 1155–1175. [Google Scholar] [CrossRef]
- Wei, C.; Tan, L.; Zhang, Y.; Zhang, K.; Xi, B.; Xiong, S.; Feng, J.; Qian, Y. Covalent Organic Frameworks and Their Derivatives for Better Metal Anodes in Rechargeable Batteries. ACS Nano 2021, 15, 12741–12767. [Google Scholar] [CrossRef]
- Chandra, P.B.; Kanti, D.S.; Arnab, G.; Raj, A.K.; Moitra, P.; Addicoat, M.; Mitra, S.; Bhaumik, A.; Bhattacharya, S.; Pradhan, A. Covalent organic framework based microspheres as an anode material for rechargeable sodium batteries. J. Mater. Chem. A 2018, 6, 16655–16663. [Google Scholar]
- Chen, X.; Li, Y.; Wang, L.; Xu, Y.; Nie, A.; Li, Q.; Wu, F.; Sun, W.; Zhang, X.; Vajtai, R.; et al. High-Lithium-Affinity Chemically Exfoliated 2D Covalent Organic Frameworks. Adv. Mater. 2019, 31, 1901640. [Google Scholar] [CrossRef]
- Hu, M.; Huang, H.; Gao, Q.; Tang, Y.; Luo, Y.; Deng, Y.; Zhang, L. Anthraquinone-Based Covalent Organic Framework Nanosheets with Ordered Porous Structures for Highly Reversible Sodium Storage. Energy Fuels 2020, 35, 1851–1858. [Google Scholar] [CrossRef]
- Duan, J.; Wang, W.; Zou, D.; Liu, J.; Li, N.; Weng, J.; Xu, L.; Guan, Y.; Zhang, Y.; Zhou, P. Construction of a Few-Layered COF@CNT Composite as an Ultrahigh Rate Cathode for Low-Cost K Ion Batteries. ACS Appl. Mater. Interfaces 2022, 14, 31234–31244. [Google Scholar] [CrossRef]
- Tong, Y.; Sun, Z.; Wang, J.; Huang, W.; Zhang, Q. Covalent organic framework containing dual redox centers as an efficient anode in Li-ion batteries. SmartMat 2022, 3, 685–694. [Google Scholar] [CrossRef]
- Wei, S.; Wang, J.; Li, Y.; Fang, Z.; Wang, L.; Xu, Y. Recent progress in COF-based electrode materials for rechargeable metal-ion batteries. Nano Res. 2023, 16, 6753–6770. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, J.; Lu, Z. Covalent Organic Frameworks as Emerging Battery Materials. Batter. Supercaps 2023, 6, e202200545. [Google Scholar] [CrossRef]
- Feng, K.; Wang, D.; Yu, Y. Progress and Prospect of Zn Anode Modification in Aqueous Zinc-Ion Batteries: Experimental and Theoretical Aspects. Molecules 2023, 28, 2721. [Google Scholar] [CrossRef]
- Lei, L.; Dong, J.; Ke, S.; Wu, S.; Yuan, S. Porous Framework Materials for Stable Zn Anode in Aqueous Zinc-Ion Batteries. Inorg. Chem. Front. 2023, ahead of print. [Google Scholar] [CrossRef]
- Zhao, J.; Ying, Y.; Wang, G.; Hu, K.; Yuan, Y.D.; Ye, H.; Liu, Z.; Lee, J.Y.; Zhao, D. Covalent organic framework film protected zinc anode for highly stable rechargeable aqueous zinc-ion batteries. Energy Storage Mater. 2022, 48, 82–89. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, Y.; Ren, S.; Li, C.; Chen, X.; Li, Z.; Han, Y.; Shi, Z.; Feng, S. Covalent Organic Framework with Multiple Redox Active Sites for High-Performance Aqueous Calcium Ion Batteries. J. Am. Chem. Soc. 2023, ahead of print. [Google Scholar] [CrossRef]
- Lin, Y.; Cui, H.; Liu, C.; Li, R.; Wang, S.; Qu, G.; Wei, Z.; Yang, Y.; Wang, Y.; Tang, Z.; et al. A Covalent Organic Framework as a Long-life and High-Rate Anode Suitable for Both Aqueous Acidic and Alkaline Batteries. Angew. Chem. Int. Ed. 2023, 62, e202218745. [Google Scholar] [CrossRef]
- Sriram, G.; Kurkuri, M.; Oh, T. Recent Trends in Highly Porous Structured Carbon Electrodes for Supercapacitor Applications: A Review. Energies 2023, 16, 4641. [Google Scholar] [CrossRef]
- Mukherjee, P.; Vishwanath, R.S.; Borenstein, A.; Zidki, T. Compositing redox-rich Co–Co@Ni–Fe PBA nanocubes into cauliflower-like conducting polypyrrole as an electrode material in supercapacitors. Mater. Chem. Front. 2023, 7, 1110–1119. [Google Scholar] [CrossRef]
- Li, S.; Zhao, C.; Li, B.; Wu, H. Performance Enhancement of silicon anode for lithium ion battery. Curr. Nanosci. 2016, 12, 169–174. [Google Scholar] [CrossRef]
- Doughty, D.H. Materials issues in lithium ion rechargeable battery technology. Sample J. 1995, 32, 75–81. [Google Scholar]
- Casas, C.D.L.; Li, W. A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sources 2012, 208, 74–85. [Google Scholar] [CrossRef]
- Balogun, M.S.; Luo, Y.; Qiu, W.; Liu, P.; Tong, Y. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 2016, 98, 162–178. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, H.; Wu, F.; Li, C. Polymer lithium ion batteries. 2007. [Google Scholar]
- Li, W.; Xie, W.; Shao, F.; Qian, J.; Han, S.; Wen, P.; Lin, J.; Chen, M.; Lin, X. Molecular engineering of interplanar spacing via π-conjugated phenothiazine linkages for high-power 2D covalent organic framework batteries. Chem 2023, 9, 117–129. [Google Scholar] [CrossRef]
- Haldar, S.; Roy, K.; Nandi, S.; Chakraborty, D.; Puthusseri, D.; Gawli, Y.; Ogale, S.; Vaidhyanathan, R. High and Reversible Lithium Ion Storage in Self-Exfoliated Triazole-Triformyl Phloroglucinol-Based Covalent Organic Nanosheets. Adv. Energy Mater. 2017, 8, 1702170. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, S.; Han, L.; Zhang, Z.; Xue, Z.; Gao, J.; Li, Y.; Huang, C.; Yi, Y.; Liu, H.; et al. High Conductive Two-Dimensional Covalent Organic Framework for Lithium Storage with Large Capacity. ACS Appl. Mater. Interfaces 2016, 8, 5366–5375. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, H.; Xu, C.; Li, Z.; Ding, B.; Dou, H.; Zhang, X. Charge Storage Mechanism of an Anthraquinone-Derived Porous Covalent Organic Framework with Multiredox Sites as Anode Material for Lithium-Ion Battery. ACS Appl. Energy Mater. 2021, 4, 11377–11385. [Google Scholar] [CrossRef]
- Wu, M.; Zhao, Y.; Zhang, H.; Zhu, J.; Ma, Y.; Li, C.; Zhang, Y.; Chen, Y. A 2D covalent organic framework with ultra-large interlayer distance as high-rate anode material for lithium-ion batteries. Nano Res. 2022, 15, 9779–9784. [Google Scholar] [CrossRef]
- Cai, Y.; Gong, Z.; Rong, Q.; Liu, J.; Yao, L.; Cheng, F.; Liu, J.; Xia, S.; Guo, H. Improved and stable triazine-based covalent organic framework for lithium storage. Appl. Surf. Sci. 2022, 594, 153481. [Google Scholar] [CrossRef]
- Zhao, H.; Luo, D.; Xu, H.; He, W.; Ding, B.; Dou, H.; Zhang, X. A novel covalent organic framework with high-density imine groups for lithium storage as anode material in lithium-ion batteries. J. Mater. Sci. 2022, 57, 9980–9991. [Google Scholar] [CrossRef]
- Long, Z.; Shi, C.; Wu, C.; Yuan, L.; Qiao, H.; Wang, K. Heterostructure Fe2O3 nanorods@imine-based covalent organic framework for long cycling and high-rate lithium storage. Nanoscale 2022, 14, 1906–1920. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, L.; Tang, X.; Lv, L.; Sun, W.; Wang, Y. Functionalized Graphene Quantum Dots Modified Dioxin-Linked Covalent Organic Frameworks for Superior Lithium Storage. Chem. A Eur. J. 2022, 28, e202103901. [Google Scholar] [CrossRef]
- Yang, X.; Lin, C.; Han, D.; Li, G.; Huang, C.; Liu, J.; Wu, X.; Zhai, L.; Mi, L. In situ construction of redox-active covalent organic frameworks/carbon nanotube composites as anodes for lithium-ion batteries. J. Mater. Chem. A 2022, 10, 3989–3995. [Google Scholar] [CrossRef]
- Guo, D.; Ming, F.; Shinde, D.; Cao, L.; Huang, G.; Li, C.; Li, Z.; Yuan, Y.; Hedhili, M.; Alshareef, H.; et al. Covalent Assembly of Two-Dimensional COF-on-MXene Heterostructures Enables Fast Charging Lithium Hosts. Adv. Funct. Mater. 2021, 31, 2101194. [Google Scholar] [CrossRef]
- Zhao, G.; Sun, Y.; Yang, Y.; Zhang, C.; An, Q.; Guo, H. Molecular engineering regulation redox-dual-active-center covalent organic frameworks-based anode for high-performance Li storage. EcoMat 2022, 4, e12221. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, Y.; Gao, Z.; Li, H.; Liu, S.; Cai, S.; Yang, X.; Guo, H.; Sun, X. Dual Active Site of the Azo and Carbonyl-Modified Covalent Organic Framework for High-Performance Li Storage. ACS Energy Lett. 2020, 5, 1022–1031. [Google Scholar] [CrossRef]
- He, L.; Xu, W.; Song, Y.; Luo, Y.; Liu, X.; Zhao, Z. New Insights into the Application of Lithium-Ion Battery Materials: Selective Extraction of Lithium from Brines via a Rocking-Chair Lithium-Ion Battery System. Glob. Chall. 2018, 2, 1870020. [Google Scholar] [CrossRef] [Green Version]
- Sinha, N.; Joshi, H.; Pakhira, S. Lithium Intercalation in Covalent Organic Frameworks: A Porous Electrode Material for Lithium-Ion Batteries. ACS Appl. Electron. Mater. 2022, 4, 6237–6252. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Wang, H.; Yang, Y.; Li, J. Theoretical study of thiophene-inserted COF as high performance anode material for Li-ion battery. Chem. Phys. Lett. 2021, 783, 139042. [Google Scholar] [CrossRef]
- Mei, Y.; Huang, Y.; Hu, X. Nanostructured Ti-based anode materials for Na-ion batteries. J. Mater. Chem. A 2016, 4, 12001–12013. [Google Scholar] [CrossRef]
- Liu, J.; Lyu, P.; Zhang, Y.; Nachtigall, P.; Xu, Y. New Layered Triazine Framework/Exfoliated 2D Polymer with Superior Sodium-Storage Properties. Adv. Mater. 2018, 30, 1705401. [Google Scholar] [CrossRef]
- Shehab, M.; Weeraratne, K.; Huang, T.; Lao, K.; Kaderi, H. Exceptional Sodium-Ion Storage by an Aza-Covalent Organic Framework for High Energy and Power Density Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 15083–15091. [Google Scholar] [CrossRef]
- Kim, M.; Lee, W.; Paek, S.; Park, J. Covalent Organic Nanosheets as Effective Sodium-Ion Storage Materials. ACS Appl. Mater. Interfaces 2018, 10, 32102–32111. [Google Scholar] [CrossRef]
- Xie, M.; Li, C.; Ren, S.; Ma, Y.; Chen, X.; Fan, X.; Han, Y.; Shi, Z.; Feng, S. Ultrafine Sb nanoparticles in situ confined in covalent organic frameworks for high-performance sodium-ion battery anodes. J. Mater. Chem. A 2022, 10, 15089–15100. [Google Scholar] [CrossRef]
- Yang, X.; Jin, Y.; Yu, B.; Gong, L.; Liu, W.; Liu, X.; Chen, X.; Wang, K.; Jiang, J. Two-dimensional conjugated N-rich covalent organic frameworks for superior sodium storage. Sci. China Chem. 2022, 65, 1291–1298. [Google Scholar] [CrossRef]
- Haldar, S.; Kaleeswaran, D.; Rase, D.; Roy, K.; Ogale, S.; Vaidhyanathan, R. Tuning the electronic energy level of covalent organic frameworks for crafting high-rate Na-ion battery anode. Nanoscale Horiz. 2020, 5, 1264–1273. [Google Scholar] [CrossRef]
- Selvamani, V.; Gopi, S.; Rajagopal, V.; Kathiresan, M.; Vembu, S.; Velayutham, D.; Gopukumar, S. High Rate Performing in Situ Nitrogen Enriched Spherical Carbon Particles for Li/Na-Ion Cells. ACS Appl. Mater. Interfaces 2017, 9, 39326–39335. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Zhang, X.; Sun, H.; Hu, Q.; Wang, H. Improving the Sodium Storage Performance of Porous Carbon Derived from Covalent Organic Frameworks Through N, S Co-Doping. Front. Mater. 2022, 8, 820671. [Google Scholar] [CrossRef]
- Ge, J.; Fan, L.; Wang, J.; Zhang, Q.; Liu, Z.; Zhang, E.; Liu, Q.; Yu, X.; Lu, B. MoSe2/N-Doped Carbon as Anodes for Potassium-Ion Batteries. Adv. Energ. Mater. 2018, 8, 1801477. [Google Scholar] [CrossRef]
- Lei, K.; Wang, C.; Liu, L.; Luo, Y.; Mu, C.; Li, F.; Chen, J. A Porous Network of Bismuth Used as the Anode Material for High-Energy-Density Potassium-Ion Batteries. Angew. Chem. Int. Ed. 2018, 57, 4687–4691. [Google Scholar] [CrossRef] [PubMed]
- Wolfson, E.; Schkeryantz, L.; Moscarello, E.; Fernandez, J.; Paszek, J.; Wu, Y.; Hadad, C.; McGrier, P. Alkynyl-Based Covalent Organic Frameworks as High-Performance Anode Materials for Potassium-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 41628–41636. [Google Scholar] [CrossRef]
- Yang, X.; Gong, L.; Wang, K.; Ma, S.; Liu, W.; Li, B.; Li, N.; Pan, H.; Chen, X.; Wang, H.; et al. Ionothermal Synthesis of Fully Conjugated Covalent Organic Frameworks for High-Capacity and Ultrastable Potassium-Ion Batteries. Adv. Mater. 2022, 34, 2207245. [Google Scholar] [CrossRef]
- Luo, X.; Li, W.; Liang, H.; Zhang, H.; Du, K.; Wang, X.; Liu, X.; Zhang, J.; Wu, X. Covalent Organic Framework with Highly Accessible Carbonyls and π-Cation Effect for Advanced Potassium-Ion Batteries. Angew. Chem. Int. Ed. 2022, 61, e202117661. [Google Scholar]
- Chen, X.; Zhang, H.; Ci, C.; Sun, W.; Wang, Y. Few-Layered Boronic Ester based Covalent Organic Frameworks/Carbon Nanotube Composites for High-Performance K-Organic Batteries. ACS Nano 2019, 13, 3600–3607. [Google Scholar] [CrossRef]
- Fabbrizzi, L. Beauty in Chemistry: Making Artistic Molecules with Schiff Bases. J. Org. Chem. 2020, 85, 12212–12226. [Google Scholar] [CrossRef]
- Sun, J.; Xu, Y.; Li, A.; Tian, R.; Fei, Y.; Chen, B.; Zhou, X. Schiff-Base Covalent Organic Framework/Carbon Nanotubes Composite for Advanced Potassium-Ion Batteries. ACS Appl. Nano Mater. 2022, 5, 15592–15599. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; An, Y.; Wei, C.; Tan, L.; Xi, B.; Xiong, S.; Feng, J. Ultrastable and High-Rate 2D Siloxene Anode Enabled by Covalent Organic Framework Engineering for Advanced Lithium-Ion Batteries. Small Methods 2022, 6, 2200306. [Google Scholar] [CrossRef] [PubMed]
- Ai, Q.; Fang, Q.; Liang, J.; Xu, X.; Zhai, T.; Gao, G.; Guo, H.; Han, G.; Ci, L.; Lou, J. Lithium-Conducting Covalent-Organic-Frameworks as Artificial Solid-Electrolyte-Interphase on Silicon Anode for High Performance Lithium Ion Batteries. Nano Energy 2020, 72, 104657. [Google Scholar] [CrossRef]
- Xu, F.; Jin, S.; Zhong, H.; Wu, D.; Yang, X.; Chen, X.; Wei, H.; Fu, R.; Jiang, D. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage. Sci. Rep. 2015, 5, 8225. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Li, C.; Ma, Y.; Li, D.; Li, H.; Guan, X.; Yan, Y.; Valtchev, V.; Qiu, S.; Fang, Q. Crystalline, porous, covalent polyoxometalate-organic frameworks for lithium-ion batteries. Microporous Mesoporous Mater. 2020, 299, 110105. [Google Scholar] [CrossRef]
- Wolfson, E.; Xiao, N.; Schkeryantz, L.; Haug, W.; Wu, Y.; McGrier, P. A dehydrobenzoannulene-based two-dimensional covalent organic framework as an anode material for lithium-ion batteries. Mol. Syst. Des. Eng. 2020, 5, 97–101. [Google Scholar] [CrossRef]
- Zhao, L.; Tang, X.; Lv, L.; Chen, S.; Sun, W.; Wang, Y. Imine-Induced Metal-Organic and Covalent Organic Coexisting Framework with Superior Li-Storage Properties and Activation Mechanism. ChemSusChem 2021, 14, 3283–3292. [Google Scholar] [CrossRef]
- Tang, X.; Lv, L.; Chen, S.; Sun, W.; Wang, Y. Tin-nitrogen coordination boosted lithium-storage sites and electrochemical properties in covalent-organic framework with layer-assembled hollow structure. J. Colloid Interface Sci. 2022, 622, 591–601. [Google Scholar] [CrossRef]
- Chen, K.; Huang, R.; Gu, F.; Du, Y.; Song, Y. A novel hollow Co3O4@N-doped carbon nanobubble film composite for high-performance anode of lithium-ion batteries. Compos. Part B Eng. 2021, 224, 109247. [Google Scholar] [CrossRef]
- Gu, F.; Chen, K.; Du, Y.; Song, Y.; Wang, L. CeO2-NiO/N,O-rich porous carbon derived from covalent-organic framework for enhanced Li-storage. Chem. Eng. J. 2022, 442, 136298. [Google Scholar] [CrossRef]
- Ni, B.; Li, Y.; Chen, T.; Lu, T.; Pan, L. Covalent organic frameworks converted N, B co-doped carbon spheres with excellent lithium ion storage performance at high current density. J. Colloid Interface Sci. 2019, 542, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Gu, F.; Xiong, J.; Yu, H.; Du, Y.; Song, Y. NiO/nitrogen-oxygen co-doped carbon nanoflower composites based on covalent organic frameworks for lithium-ion battery anodes. J. Alloys Compd. 2022, 924, 166524. [Google Scholar] [CrossRef]
- Sun, L.; Wang, H.; Zhai, S.; Wang, X.; Wu, H.; Deng, W. Edge-on-Plane-Confined Covalent Organic Frameworks Enable a Defect- and Nitrogen-Rich Carbon Matrix for High-Rate Lithium-Ion Storage. ACS Appl. Energy Mater. 2021, 4, 5957–5962. [Google Scholar] [CrossRef]
- Shi, R.; Liu, L.; Lu, Y.; Wang, C.; Li, Y.; Li, L.; Yan, Z.; Chen, J. Nitrogen-rich covalent organic frameworks with multiple carbonyls for high-performance sodium batteries. Nat. Commun. 2020, 11, 178. [Google Scholar] [CrossRef] [Green Version]
- Gu, S.; Wu, S.; Cao, L.; Li, M.; Qin, N.; Zhu, J.; Wang, Z.; Li, Y.; Li, Z.; Chen, J.; et al. Tunable Redox Chemistry and Stability of Radical Intermediates in 2D Covalent Organic Frameworks for High Performance Sodium Ion Batteries. J. Am. Chem. Soc. 2019, 141, 9623–9628. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, Z. High performance anode material for sodium-ion batteries derived from covalent-organic frameworks. Electrochim. Acta 2019, 301, 23–28. [Google Scholar] [CrossRef]
- Shehab, M.; Weeraratne, K.; Kadri, O.; Yadavalli, V.; Kaderi, H. Templated Synthesis of 2D Polyimide Covalent Organic Framework for Rechargeable Sodium-Ion Batteries. Macromol. Rapid Commun. 2023, 44, 2200782. [Google Scholar] [CrossRef]
- Xu, Q.; Li, Q.; Guo, Y.; Luo, D.; Qian, J.; Li, X.; Wang, Y. Multiscale Hierarchically Engineered Carbon Nanosheets Derived from Covalent Organic Framework for Potassium-Ion Batteries. Small Methods 2020, 4, 2000159. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, M.; Zhang, L.; Yuan, Q. Application of New COF Materials in Secondary Battery Anode Materials. Molecules 2023, 28, 5953. https://doi.org/10.3390/molecules28165953
Jia M, Zhang L, Yuan Q. Application of New COF Materials in Secondary Battery Anode Materials. Molecules. 2023; 28(16):5953. https://doi.org/10.3390/molecules28165953
Chicago/Turabian StyleJia, Miao, Lixin Zhang, and Qiong Yuan. 2023. "Application of New COF Materials in Secondary Battery Anode Materials" Molecules 28, no. 16: 5953. https://doi.org/10.3390/molecules28165953
APA StyleJia, M., Zhang, L., & Yuan, Q. (2023). Application of New COF Materials in Secondary Battery Anode Materials. Molecules, 28(16), 5953. https://doi.org/10.3390/molecules28165953