Nanocrystals of Mangiferin Using Design Expert: Preparation, Characterization, and Pharmacokinetic Evaluation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preformulation Study
2.2. Preparation of Nanocrystals and Statistical Analysis of Experimental Data Using Design-Expert
2.2.1. Analysis of Particle Size
2.2.2. Analysis of PDI
2.2.3. Analysis of Zeta Potential
2.2.4. Analysis of Entrapment Efficiency
2.3. In Vitro Mangiferin Release
2.4. Fourier Transform Infrared Spectroscopy (FTIR)
2.5. Differential Scanning Calorimetry (DSC)
2.6. Size of Particles and Zeta Potential
2.7. X-ray Diffraction (XRD) Scanning Electron Microscopy (SEM)
2.8. Stability Studies
2.9. Pharmacokinetic Study
3. Materials and Methods
3.1. Materials
3.2. Preformulation Studies
3.3. Design of Experiments
3.4. Preparation of Mangiferin-Loaded Nanocrystals
3.5. HPLC Method Development
3.6. In Vitro Drug-Release Studies
3.7. Fourier Transforms Infrared Spectroscopy (FRIT)
3.8. Differential Scanning Calorimetry (DSC)
3.9. Zeta Sizer and Zeta Potential
3.10. X-ray Diffraction Analysis (XRD)
3.11. Scanning Electron Microscopy (SEM)
3.12. Stability Studies
3.13. Pharmacokinetic Analysis
4. Conclusions
- The main advantage of the present research is the enhanced oral bioavailability of mangiferin.
- The reporting of the pharmacokinetics of mangiferin in humans is the major limitation of the research work.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kamalakkannan, V.; Puratchikody, A.; Masilamani, K.; Senthilnathan, B. Solubility enhancement of poorly soluble drugs by solid dispersion technique—A review. J. Pharm. Res. 2010, 3, 2314–2321. [Google Scholar]
- Mahapatra, A.P.; Patil, V.; Patil, R. Solubility enhancement of poorly soluble drugs by using novel techniques: A comprehensive review. Int. J. Pharm. Tech. Res. 2020, 13, 80–93. [Google Scholar] [CrossRef]
- Rasenack, N.; Müller, B.W. Dissolution rate enhancement by in situ micronization of poorly water-soluble drugs. Pharm. Res. 2002, 19, 1894–1900. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.U.; Minhas, M.U.; Badshah, S.F.; Suhail, M.; Ahmad, A.; Ijaz, S. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci. 2022, 291, 120301. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sahoo, S.K.; Padhee, K.; Kochar, P.S.; Sathapathy, A.; Pathak, N. Review on solubility enhancement techniques for hydrophobic drugs. Pharm. Glob. 2011, 3, 1–7. [Google Scholar]
- Gigliobianco, M.R.; Casadidio, C.; Censi, R.; Di Martino, P. Nanocrystals of poorly soluble drugs: Drug bioavailability and physicochemical stability. Pharmaceutics 2018, 10, 134. [Google Scholar] [CrossRef] [Green Version]
- Emam, M.; Abdel-Haleem, D.R.; Farag, S.M.; El-Ansari, M.A.; Sobeh, M. Larvicidal Activity of Pentagalloyl Glucose and Mangiferin Isolated from the Waste of Mango Kernel against Culex pipiens L. Waste Biomass Valorization 2022, 13, 83–93. [Google Scholar] [CrossRef]
- Allaw, M.; Pleguezuelos-Villa, M.; Manca, M.L.; Caddeo, C.; Aroffu, M.; Nacher, A.; Diez-Sales, O.; Saurí, A.R.; Ferrer, E.E.; Fadda, A.M.; et al. Innovative strategies to treat skin wounds with mangiferin: Fabrication of transfersomes modified with glycols and mucin. Nanomedicine 2020, 15, 1671–1685. [Google Scholar] [CrossRef]
- Vyas, A.; Syeda, K.; Ahmad, A.; Padhye, S.; HSarkar, F. Perspectives on medicinal properties of mangiferin. Mini Rev. Med. Chem. 2012, 12, 412–425. [Google Scholar] [CrossRef]
- Gold-Smith, F.; Fernandez, A.; Bishop, K. Mangiferin and cancer: Mechanisms of action. Nutrients 2016, 8, 396. [Google Scholar] [CrossRef] [Green Version]
- Muruganandan, S.; Srinivasan, K.; Gupta, S.; Gupta, P.K.; Lal, J. Effect of mangiferin on hyperglycemia and atherogenicity in streptozotocin diabetic rats. J. Ethnopharmacol. 2005, 97, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Hou, J.; Ma, J.; Yu, B.; Ren, J.; Jin, W.; Wu, J.; Zheng, D.; Fan, K. Mangiferin loaded magnetic PCEC microspheres: Preparation, characterization and antitumor activity studies in vitro. Arch. Pharmacal Res. 2021, 44, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Razura-Carmona, F.F.; Pérez-Larios, A.; González-Silva, N.; Herrera-Martínez, M.; Medina-Torres, L.; Sáyago-Ayerdi, S.G.; Sánchez-Burgos, J.A. Mangiferin-loaded polymeric nanoparticles: Optical characterization, effect of Anti-Topoisomerase I, and Cytotoxicity. Cancers 2019, 11, 1965. [Google Scholar] [CrossRef] [Green Version]
- Conti, S.; Maggi, L.; Segale, L.; Machiste, E.O.; Conte, U.; Grenier, P.; Vergnault, G. Matrices containing NaCMC and HPMC: 1. Dissolution performance characterization. Int. J. Pharm. 2007, 333, 136–142. [Google Scholar] [CrossRef]
- Rinaki, E.; Valsami, G.; Macheras, P. the power law can describe the ‘entire’drug release curve from HPMC-based matrix tablets: A hypothesis. Int. J. Pharm. 2003, 255, 199–207. [Google Scholar] [CrossRef]
- Al Khateb, K.; Ozhmukhametova, E.K.; Mussin, M.N.; Seilkhanov, S.K.; Rakhypbekov, T.K.; Lau, W.M.; Khutoryanskiy, V.V. In Situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery. Int. J. Pharm. 2016, 502, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Li, L.; Dong, H.Q.; Cai, X.J.; Ren, T.B. Pluronic F127 nanomicelles engineered with nuclear localized functionality for targeted drug delivery. Mater. Sci. Eng. C 2013, 33, 2698–2707. [Google Scholar] [CrossRef]
- Kura, A.U.; Hussein-Al-Ali, S.H.; Hussein, M.Z.; Fakurazi, S. Preparation of Tween 80-Zn/Al-levodopa-layered double hydroxides nanocomposite for drug delivery system. Sci. World J. 2014, 2014, 104246. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Tiwari, R.M.; Sinha, S.K.; Danta, C.C.; Prasad, S.K. Antimicrobial evaluation of mangiferin and its synthesized analogues. Asian Pac. J. Trop. Biomed. 2012, 2, S884–S887. [Google Scholar] [CrossRef]
- Khurana, R.K.; Kaur, R.; Kaur, M.; Kaur, R.; Kaur, J.; Kaur, H.; Singh, B. Exploring and validating physicochemical properties of mangiferin through GastroPlus® software. Future Sci. OA 2017, 3, FSO167. [Google Scholar] [CrossRef] [Green Version]
- Telange, D.R.; Sohail, N.K.; Hemke, A.T.; Kharkar, P.S.; Pethe, A.M. Phospholipid complex-loaded self-assembled phytosomal soft nanoparticles: Evidence of enhanced solubility, dissolution rate, ex vivo permeability, oral bioavailability, and antioxidant potential of mangiferin. Drug Deliv. Transl. Res. 2021, 11, 1056–1083. [Google Scholar] [CrossRef] [PubMed]
- Mei, S.; Perumal, M.; Battino, M.; Kitts, D.D.; Xiao, J.; Ma, H.; Chen, X. Mangiferin: A review of dietary sources, absorption, metabolism, bioavailability, and safety. Crit. Rev. Food Sci. Nutr. 2021, 63, 3046–3064. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Y.; Ding, H.Y.; Wang, T.Y.; Tsai, Y.L.; Ting, H.J.; Chang, T.S. Improving aqueous solubility of natural antioxidant mangiferin through glycosylation by maltogenic amylase from parageobacillus galactosidasius DSM 18751. Antioxidants 2021, 10, 1817. [Google Scholar] [CrossRef]
- Grum, J.; Slabe, J.M. The use of factorial design and response surface methodology for fast determination of optimal heat treatment conditions of different Ni–Co–Mo surfaced layers. J. Mater. Process. Technol. 2004, 155, 2026–2032. [Google Scholar] [CrossRef]
- Solaiman, A.; Suliman, A.S.; Shinde, S.; Naz, S.; Elkordy, A.A. Application of general multilevel factorial design with formulation of fast disintegrating tablets containing croscaremellose sodium and Disintequick MCC-25. Int. J. Pharm. 2016, 501, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Harsha, P.J.; Thotakura, N.; Kumar, M.; Sharma, S.; Mittal, A.; Khurana, R.K.; Singh, B.; Negi, P.; Raza, K. A novel PEGylated carbon nanotube conjugated mangiferin: An explorative nanomedicine for brain cancer cells. J. Drug Deliv. Sci. Technol. 2019, 53, 101186. [Google Scholar] [CrossRef]
- Franco, P.; De Marco, I. Nanoparticles and nanocrystals by supercritical CO2-assisted techniques for pharmaceutical applications: A review. Appl. Sci. 2021, 11, 1476. [Google Scholar] [CrossRef]
- Alara, O.; Mudalip, S.A.; Olalere, O. Optimization of mangiferin extrated from Phaleria macrocarpa fruits using response surface methodology. J. Appl. Res. Med. Aromat. Plants 2017, 5, 82–87. [Google Scholar] [CrossRef]
- van der Weerd, J.; Kazarian, S.G. Release of poorly soluble drugs from HPMC tablets studied by FTIR imaging and flow-through dissolution tests. J. Pharm. Sci. 2005, 94, 2096–2109. [Google Scholar] [CrossRef]
- Layek, R.K.; Uddin, M.E.; Kim, N.H.; Lau, A.K.; Lee, J.H. Noncovalent functionalization of reduced graphene oxide with pluronic F127 and its nanocomposites with gum Arabic. Compos. Part B Eng. 2017, 128, 155–163. [Google Scholar] [CrossRef]
- da Rocha Ferreira, F.; Valentim, I.B.; Ramones, E.L.; Trevisan, M.T.; Olea-Azar, C.; Perez-Cruz, F.; de Abreu, F.C.; Goulart, M.O. Antioxidant activity of the mangiferin inclusion complex with β-cyclodextrin. LWT Food Sci. Technol. 2013, 51, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Djemai, A.; Gendron, C.M.; Xi, H.; Smith, M.; Kogan, J.; Li, L. Development of a HPMC-based controlled release formulation with hot melt extrusion (HME). Drug Dev. Ind. Pharm. 2013, 39, 1070–1083. [Google Scholar] [CrossRef] [PubMed]
- Pesika, N.S.; Stebe, K.J.; Searson, P.C. Determination of the particle size distribution of quantum nanocrystals from absorbance spectra. Adv. Mater. 2003, 15, 1289–1291. [Google Scholar] [CrossRef]
- Voss, B.; Haase, M. Intrinsic focusing of the particle size distribution in colloids containing nanocrystals of two different crystal phases. ACS Nano 2013, 7, 11242–11254. [Google Scholar] [CrossRef] [PubMed]
- Montes, A.; Wehner, L.; Pereyra, C.; de la Ossa, E.M. Mangiferin nanoparticles precipitation by supercritical antisolvent process. J. Supercrit. Fluids 2016, 112, 44–50. [Google Scholar] [CrossRef]
- Baán, A.; Adriaensens, P.; Lammens, J.; Hernandez, R.D.; Berghe, W.V.; Pieters, L.; Vervaet, C.; Kiekens, F. Dry amorphisation of mangiferin, a poorly water-soluble compound, using mesoporous silica. Eur. J. Pharm. Biopharm. 2019, 141, 172–179. [Google Scholar] [CrossRef]
- Liu, H.; Wu, B.; Pan, G.; He, L.; Li, Z.; Fan, M.; Jian, L.; Chen, M.; Wang, K.; Huang, C. Metabolism and pharmacokinetics of mangiferin in conventional rats, pseudo-germ-free rats, and streptozotocin-induced diabetic rats. Drug Metab. Dispos. 2012, 40, 2109–2118. [Google Scholar] [CrossRef] [Green Version]
- Hou, S.; Wang, F.; Li, Y.; Li, Y.; Wang, M.; Sun, D.; Sun, C. Pharmacokinetic study of mangiferin in human plasma after oral administration. Food Chem. 2012, 132, 289–294. [Google Scholar] [CrossRef]
- Rajendran, P.; Rengarajan, T.; Nandakumar, N.; Divya, H.; Nishigaki, I. Mangiferin in cancer chemoprevention and treatment: Pharmacokinetics and molecular targets. J. Recept. Signal Transduct. 2015, 35, 76–84. [Google Scholar] [CrossRef]
- Benard, O.; Chi, Y. Medicinal properties of mangiferin, structural features, derivative synthesis, pharmacokinetics and biological activities. Mini Rev. Med. Chem. 2015, 15, 582–594. [Google Scholar] [CrossRef]
- Tian, X.; Xu, Z.; Li, Z.; Ma, Y.; Lian, S.; Guo, X.; Hu, P.; Gao, Y.; Huang, C. Pharmacokinetics of mangiferin and its metabolite—Norathyriol, Part 1: Systemic evaluation of hepatic first-pass effect in vitro and in vivo. Biofactors 2016, 42, 533–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, B.; Kumar, R.; Ahuja, N. Optimizing drug delivery systems using systematic “design of experiments”. Part II: Retrospect and prospects. Crit. Rev. Ther. Drug Carr. Syst. 2005, 22, 215–294. [Google Scholar] [CrossRef] [PubMed]
- Kuncahyo, I.; Choiri, S.; Fudholi, A.; Martien, R.; Rohman, A. Assessment of fractional factorial design for the selection and screening of appropriate components of a self-nanoemulsifying drug delivery system formulation. Adv. Pharm. Bull. 2019, 9, 609. [Google Scholar] [CrossRef]
- Regulacio, M.D.; Han, M.-Y. Composition-tunable alloyed semiconductor nanocrystals. Acc. Chem. Res. 2010, 43, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Samadarsi, R.; Dutta, D. Design and characterization of mangiferin nanoparticles for oral delivery. J. Food Eng. 2019, 247, 80–94. [Google Scholar] [CrossRef]
- Plyduang, T.; Atipairin, A.; Sae Yoon, A.; Sermkaew, N.; Sakdiset, P.; Sawatdee, S. Formula Development of Red Palm (Elaeis guineensis) Fruit Extract Loaded with Solid Lipid Nanoparticles Containing Creams and Its Anti-Aging Efficacy in Healthy Volunteers. Cosmetics 2021, 9, 3. [Google Scholar] [CrossRef]
- Ahn, S.J.; Hong, H.K.; Na, Y.M.; Park, S.J.; Ahn, J.; Oh, J.; Chung, J.Y.; Park, K.H.; Woo, S.J. Use of rabbit eyes in pharmacokinetic studies of intraocular drugs. JoVE J. Vis. Exp. 2016, 113, e53878. [Google Scholar]
Code | Particle Size | PDI | Zeta Potential mV | Entrapment Efficiency (%) |
---|---|---|---|---|
F1 | 475.1 | 0.565 | −0.084 | 79.46 |
F2 | 475 | 0.587 | −14 | 23.98 |
F3 | 456.2 | 0.498 | −6.81 | 86.23 |
F4 | 511.2 | 0.577 | −2.3 | 72.34 |
F5 | 547.7 | 0.572 | −3.87 | 60.50 |
F6 | 418 | 0.485 | −3.88 | 42.07 |
F7 | 429 | 0.553 | −8.28 | 39.64 |
F8 | 480.2 | 0.563 | −17.8 | 76.83 |
F9 | 426.4 | 0.786 | −1.13 | 51.25 |
F10 | 487 | 0.428 | −13 | 54.44 |
F11 | 100.2 | 0.653 | 3.08 | 59.86 |
F12 | 620.04 | 0.709 | −1.25 | 43.74 |
F13 | 549.5 | 0.678 | −2.63 | 50.79 |
F14 | 474.7 | 0.621 | −5.21 | 50.37 |
F15 | 549.5 | 0.678 | −2.63 | 50.09 |
F16 | 549.5 | 0.678 | −2.63 | 50.37 |
F17 | 474.7 | 0.621 | −5.21 | 50.23 |
Duration in Months | Particle Size | Zeta Potential | % Mangiferin Release |
---|---|---|---|
0 | 104 ± 1.67 | −15 | 98.23 ± 3.09 |
1 | 114 ± 2.34 | −11 | 95.23 ± 3.89 |
3 | 115 ± 2.91 | −10 | 92.13 ± 4.67 |
6 | 119 ± 3.56 | −09 | 89.56 ± 4.98 |
Parameters | Nanocrystals of Mangiferin F11 (Test Formulation) | Suspension of Mangiferin (Reference Formulation) |
---|---|---|
tmax (h) | 8 ± 1.34 | 4 ± 0.43 |
Cmax (µg/mL) | 412 ± 4.10 | 367 ± 4.23 |
t1/2 (h) | 16.98 ± 2.08 | 11.34 ± 0.56 |
AUC(0−t) (µg×h/mL) | 23,567.45 ± 10.876 | 18,976.12 ± 9.765 |
AUC(0−∞) (µg×h/mL) | 45,327.60 ± 12.97 | 32,456.6 ± 12.09 |
AUMC (µg×h/mL) | 56,784.50 ± 13.567 | 42,389.45 ± 12.90 |
MRT (h) | 245.23 ± 3.12 | 176.09 ± 3.09 |
Name | Goal | Lower Limit | Upper Limit | Lower Weight | Upper Weight | Importance |
---|---|---|---|---|---|---|
A: Concentration of mangiferin | is in range | 20 | 40 | 1 | 1 | 3 |
B: Concentration of HPMC | is in range | 0 | 0.5 | 1 | 1 | 3 |
C: Concentration of Pluronic F127 | is in range | 0 | 0.5 | 1 | 1 | 3 |
D: Concentration of Tween 80 | is in range | 0.025 | 0.4 | 1 | 1 | 3 |
E: Volume ratio of anti-solvent to solvent | is in range | 1 | 9 | 1 | 1 | 3 |
Particle Size | minimize | 200 | 620 | 1 | 1 | 5 |
PDI | minimize | 0.428 | 0.786 | 1 | 1 | 3 |
Zeta Potential | is in range | −17.8 | 3.87 | 1 | 1 | 3 |
Entrapment Efficiency | maximize | 23.98 | 86.23 | 1 | 1 | 3 |
Formulation Code | Conc. of Drug (mg/mL) | Concentration of HPMC (%) | Concentration of Pluronic F127 (%) | Concentration of Tween 80 (%) | Solvent to Anti-Solvent |
---|---|---|---|---|---|
F1 | 40.00 | 0.50 | 0.50 | 0.03 | 1:1 |
F2 | 20.00 | 0.50 | 0.00 | 0.03 | 1:9 |
F3 | 40.00 | 0.00 | 0.00 | 0.03 | 1:1 |
F4 | 40.00 | 0.00 | 0.50 | 0.03 | 1:9 |
F5 | 40.00 | 0.50 | 0.00 | 0.40 | 1:9 |
F6 | 20.00 | 0.00 | 0.50 | 0.40 | 1:1 |
F7 | 20.00 | 0.00 | 0.00 | 0.40 | 1:9 |
F8 | 40.00 | 0.00 | 0.50 | 0.40 | 1:1 |
F9 | 20.00 | 0.50 | 0.50 | 0.40 | 1:9 |
F10 | 20.00 | 0.50 | 0.00 | 0.40 | 1:1 |
F11 | 20.00 | 0.00 | 0.50 | 0.03 | 1:1 |
F12 | 40.00 | 0.50 | 0.00 | 0.03 | 1:9 |
F13 | 30.00 | 0.25 | 0.25 | 0.21 | 1:5 |
F14 | 30.00 | 0.25 | 0.25 | 0.21 | 1:5 |
F15 | 30.00 | 0.25 | 0.25 | 0.21 | 1:5 |
F16 | 30.00 | 0.25 | 0.25 | 0.21 | 1:5 |
F17 | 30.00 | 0.25 | 0.25 | 0.21 | 1:5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarwar, A.R.; Iqbal, F.M.; Jamil, M.A.; Abbas, K. Nanocrystals of Mangiferin Using Design Expert: Preparation, Characterization, and Pharmacokinetic Evaluation. Molecules 2023, 28, 5918. https://doi.org/10.3390/molecules28155918
Sarwar AR, Iqbal FM, Jamil MA, Abbas K. Nanocrystals of Mangiferin Using Design Expert: Preparation, Characterization, and Pharmacokinetic Evaluation. Molecules. 2023; 28(15):5918. https://doi.org/10.3390/molecules28155918
Chicago/Turabian StyleSarwar, Abdur Rehman, Furqan Muhammad Iqbal, Muhammad Anjum Jamil, and Khizar Abbas. 2023. "Nanocrystals of Mangiferin Using Design Expert: Preparation, Characterization, and Pharmacokinetic Evaluation" Molecules 28, no. 15: 5918. https://doi.org/10.3390/molecules28155918
APA StyleSarwar, A. R., Iqbal, F. M., Jamil, M. A., & Abbas, K. (2023). Nanocrystals of Mangiferin Using Design Expert: Preparation, Characterization, and Pharmacokinetic Evaluation. Molecules, 28(15), 5918. https://doi.org/10.3390/molecules28155918