Factors Affecting Incurred Pesticide Extraction in Cereals
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sample Processing
2.2. Effect of Soaking Time on Extraction Yield
2.3. Effects of Extraction Time on Extraction Yield
2.4. Method Validation
2.5. Effect of Particle Size on Extraction Yield
3. Materials and Methods
3.1. Chemicals
3.2. Stock Solution Mixtures and Matrix-Matched Standard Solutions
3.3. LC-MS/MS Analysis
3.4. Sample Processing
3.5. Soaking Time Optimization
3.6. Extraction Time Optimization
3.7. Sample Preparation
3.8. Method Validation
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loskutov, I.G.; Khlestkina, E.K. Wheat, Barley, and Oat Breeding for Health Benefit Components in Grain. Plants 2021, 10, 86. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, S.S.; Hajeb, P.; Andersen, G.; Poulsen, M.E. Effects of milling on the extraction yield of incurred pesticides in cereals. Food Addit. Contam. Part A 2017, 34, 1948–1958. [Google Scholar] [CrossRef] [Green Version]
- Tudi, M.; Ruan, H.D.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- Rodríguez-Ramos, R.; Santana-Mayor, Á.; Socas-Rodríguez, B.; Herrera-Herrera, A.V.; Rodríguez-Delgado, M. Assessment of pesticide residues contamination in cereals and pseudo-cereals marketed in the Canary Islands. Food Chem. 2023, 400, 134089. [Google Scholar] [CrossRef]
- González-Curbelo, M.Á.; Herrera-Herrera, A.V.; Ravelo-Pérez, L.M.; Hernández-Borges, J. Sample-preparation methods for pesticide-residue analysis in cereals and derivatives. TrAC Trends Anal. Chem. 2012, 38, 32–51. [Google Scholar] [CrossRef]
- Parven, A. Human health risk assessment through quantitative screening of insecticide residues in two green beans to en-sure food safety. J. Food Compost Anal. 2021, 103, 104121. [Google Scholar] [CrossRef]
- Lee, J.; Shin, Y.; Lee, J.; Lee, J.; Kim, B.J.; Kim, J.-H. Simultaneous analysis of 310 pesticide multiresidues using UHPLC-MS/MS in brown rice, orange, and spinach. Chemosphere 2018, 207, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Tsiantas, P.; Bempelou, E.; Doula, M.; Karasali, H. Validation and Simultaneous Monitoring of 311 Pesticide Residues in Loamy Sand Agricultural Soils by LC-MS/MS and GC-MS/MS, Combined with QuEChERS-Based Extraction. Molecules 2023, 28, 4268. [Google Scholar] [CrossRef]
- Aydoğan, C.; El Rassi, Z. MWCNT based monolith for the analysis of antibiotics and pesticides in milk and honey by integrated nano-liquid chromatography-high resolution orbitrap mass spectrometry. Anal. Methods 2019, 11, 21–28. [Google Scholar] [CrossRef]
- Lozowicka, B.; Kaczynski, P.; Paritova, A.A.; Kuzembekova, G.B.; Abzhalieva, A.B.; Sarsembayeva, N.B.; Alihan, K. Pesticide residues in grain from Kazakhstan and potential health risks associated with exposure to detected pesticides. Food Chem. Toxicol. 2014, 64, 238–248. [Google Scholar] [CrossRef]
- Chen, C.; Li, Y.; Chen, M.; Chen, Z.; Qian, Y. Organophosphorus pesticide residues in milled rice (Oryza sativa) on the Chinese market and dietary risk assessment. Food Addit. Contam. Part A 2009, 26, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Hiemstra, M.; de Kok, A. Comprehensive multi-residue method for the target analysis of pesticides in crops using liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2007, 1154, 3–25. [Google Scholar] [CrossRef] [PubMed]
- Pang, G.-F.; Liu, Y.-M.; Fan, C.-L.; Zhang, J.-J.; Cao, Y.-Z.; Li, X.-M.; Li, Z.-Y.; Wu, Y.-P.; Guo, T.-T. Simultaneous determination of 405 pesticide residues in grain by accelerated solvent extraction then gas chromatography-mass spectrometry or liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2006, 384, 1366–1408. [Google Scholar] [CrossRef] [PubMed]
- Walorczyk, S. Development of a multi-residue screening method for the determination of pesticides in cereals and dry animal feed using gas chromatography–triple quadrupole tandem mass spectrometry. J. Chromatogr. A 2007, 1165, 200–212. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [PubMed]
- Payá, P.; Anastassiades, M.; Mack, D.; Sigalova, I.; Tasdelen, B.; Oliva, J.; Barba, A. Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection. Anal. Bioanal. Chem. 2007, 389, 1697–1714. [Google Scholar] [CrossRef] [PubMed]
- Rutkowska, E.; Łozowicka, B.; Kaczyński, P. Modification of multiresidue QuEChERS protocol to minimize matrix effect and improve recoveries for determination of pesticide residues in dried herbs followed by GC-MS/MS. Food Anal Methods. 2018, 11, 709–724. [Google Scholar] [CrossRef]
- Zhao, M.-A.; Feng, Y.-N.; Zhu, Y.-Z.; Kim, J.-H. Multi-residue Method for Determination of 238 Pesticides in Chinese Cabbage and Cucumber by Liquid Chromatography–Tandem Mass Spectrometry: Comparison of Different Purification Procedures. J. Agric. Food Chem. 2014, 62, 11449–11456. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Kim, C.J.; Lee, R.; Kim, M.; Shin, H.J.; Kim, L.; Jeong, W.T.; Shin, Y.; Kyung, K.S.; Noh, H.H. Validation of a Multi-Residue Analysis Method for 287 Pesticides in Citrus Fruits Mandarin Orange and Grapefruit Using Liquid Chromatography–Tandem Mass Spectrometry. Foods 2022, 11, 3522. [Google Scholar] [CrossRef]
- Acosta-Dacal, A.; Rial-Berriel, C.; Díaz-Díaz, R.; Bernal-Suárez, M.D.M.; Luzardo, O.P. Optimization and validation of a QuEChERS-based method for the simultaneous environmental monitoring of 218 pesticide residues in clay loam soil. Sci. Total Environ. 2020, 753, 142015. [Google Scholar] [CrossRef]
- Shin, Y.; Lee, J.; Park, E.; Lee, J.; Lee, H.S.; Kim, J.-H. A Quantitative Tandem Mass Spectrometry and Scaled-Down QuEChERS Approach for Simultaneous Analysis of Pesticide Multiresidues in Human Urine. Molecules 2019, 24, 1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chawla, S.; Patel, H.K.; Gor, H.N.; Vaghela, K.M.; Solanki, P.P.; Shah, P.G. Evaluation of Matrix Effects in Multiresidue Analysis of Pesticide Residues in Vegetables and Spices by LC-MS/MS. J. AOAC Int. 2017, 100, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Hepperle, J.; Dörk, D.; Barth, A.; Taşdelen, B.; Anastassiades, M. Studies to Improve the Extraction Yields of Incurred Pesticide Residues from Crops Using the QuEChERS Method. J. AOAC Int. 2015, 98, 450–463. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Analytical quality control and method validation procedures for pesticide residue analysis in food and feed. Sante 2021, 11312, 52. [Google Scholar]
- Ni, Y.; Yang, H.; Zhang, H.; He, Q.; Huang, S.; Qin, M.; Chai, S.; Gao, H.; Ma, Y. Analysis of four sulfonylurea herbicides in cereals using modified Quick, Easy, Cheap, Effective, Rugged, and Safe sample preparation method coupled with liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2018, 1537, 27–34. [Google Scholar] [CrossRef]
- Kresse, M.; Drinda, H.; Romanotto, A.; Speer, K. Simultaneous determination of pesticides, mycotoxins, and metabolites as well as other contaminants in cereals by LC-LC-MS/MS. J. Chromatogr. B 2019, 1117, 86–102. [Google Scholar] [CrossRef]
- Nie, J.; Miao, S.; Lehotay, S.J.; Li, W.-T.; Zhou, H.; Mao, X.-H.; Lu, J.-W.; Lan, L.; Ji, S. Multi-residue analysis of pesticides in traditional Chinese medicines using gas chromatography-negative chemical ionisation tandem mass spectrometry. Food Addit. Contam. Part A 2015, 32, 1287–1300. [Google Scholar] [CrossRef]
- Lawal, A.; Wong, R.C.S.; Tan, G.H.; Abdulra’uf, L.B.; Alsharif, A. Recent Modifications and Validation of QuEChERS-dSPE Coupled to LC–MS and GC–MS Instruments for Determination of Pesticide/Agrochemical Residues in Fruits and Vegetables: Review. J. Chromatogr. Sci. 2018, 56, 656–669. [Google Scholar] [CrossRef] [Green Version]
- Rizzetti, T.M.; Kemmerich, M.; Martins, M.L.; Prestes, O.D.; Adaime, M.B.; Zanella, R. Optimization of a QuEChERS based method by means of central composite design for pesticide multiresidue determination in orange juice by UHPLC–MS/MS. Food Chem. 2016, 196, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Hakme, E.; Herrmann, S.S.; Poulsen, M.E. Processing factors of pesticide residues in biscuits and their relation to the physicochemical properties of pesticides. Food Addit. Contam. Part A 2020, 37, 1695–1706. [Google Scholar] [CrossRef] [PubMed]
- Lacina, O.; Zachariasova, M.; Urbanova, J.; Vaclavikova, M.; Cajka, T.; Hajslova, J. Critical assessment of extraction methods for the simultaneous determination of pesticide residues and mycotoxins in fruits, cereals, spices and oil seeds employing ultra-high performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2012, 1262, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Hou, R.-Y.; Jiao, W.-T.; Qian, X.-S.; Wang, X.-H.; Xiao, Y.; Wan, X.-C. Effective Extraction Method for Determination of Neonicotinoid Residues in Tea. J. Agric. Food Chem. 2013, 61, 12565–12571. [Google Scholar] [CrossRef]
- Anastassiades, M.; Kolberg, D.L.; Benkenstein, A.; Eichhorn, E.; Zechmann, S.; Mack, D.; Wildgrube, C.; Sigalov, I.; Dörk, D.; Barth, A. Quick Method for the Analysis of Numerous Highly Polar Pesticides in Foods of Plant Origin via LC-MS/MS Involving Simultaneous Extraction with Methanol (QuPPe-Method); EU Reference Laboratory for Pesticides Requiring Single Residue Methods (EURL-SRM); CVUA: Stuttgart, Germany, 2015. [Google Scholar]
- Guo, J.; Tong, M.; Tang, J.; Bian, H.; Wan, X.; He, L.; Hou, R. Analysis of multiple pesticide residues in polyphenol-rich ag-ricultural products by UPLC-MS/MS using a modified QuEChERS extraction and dilution method. Food Chem. 2019, 274, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.S.; Soliman, A.S.; El-Gammal, H.A.; Amer, M.E.; Attallah, E.R. Development and validation of a multiresidue method for the determination of 323 pesticide residues in dry herbs using QuEChERS method and LC-ESI-MS/MS. Int. J. Environ. Anal. Chem. 2017, 97, 1003–1023. [Google Scholar] [CrossRef]
- Zhao, L.; Lee, H.K. Application of static liquid-phase microextraction to the analysis of organochlorine pesticides in water. J. Chromatogr. A 2001, 919, 381–388. [Google Scholar] [CrossRef]
- Wang, P.; Galhardi, J.A.; Liu, L.; Bueno, V.; Ghoshal, S.; Gravel, V.; Wilkinson, K.J.; Bayen, S. Development of an LC-MS-based method to study the fate of nanoencapsulated pesticides in soils and strawberry plant. Talanta 2022, 239, 123093. [Google Scholar] [CrossRef]
- Li, J.; Sun, M.; Chang, Q.; Hu, X.; Kang, J.; Fan, C. Determination of Pesticide Residues in Teas via QuEChERS Combined with Dispersive Liquid–Liquid Microextraction Followed by Gas Chromatography–Tandem Mass Spectrometry. Chromatographia 2017, 80, 1447–1458. [Google Scholar] [CrossRef]
- Salama, G.; El Gindy, A.; Hameed, E.A.A. The use of experimental design for optimisation of QuEChERS extraction of commonly used pesticides in Egyptian soil and drainage water and their determination by GC/MS. Int. J. Environ. Anal. Chem. 2020, 102, 4238–4249. [Google Scholar] [CrossRef]
- Sapozhnikova, Y.; Lehotay, S.J. Evaluation of Different Parameters in the Extraction of Incurred Pesticides and Environmental Contaminants in Fish. J. Agric. Food Chem. 2015, 63, 5163–5168. [Google Scholar] [CrossRef]
- Liu, K. Comparison of Lipid Content and Fatty Acid Composition and Their Distribution within Seeds of 5 Small Grain Species. J. Food Sci. 2011, 76, C334–C342. [Google Scholar] [CrossRef]
- Bewick, V.; Cheek, L.; Ball, J. Statistics review 9: One-way analysis of variance. Crit. Care 2004, 8, 130–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cengiz, M.F.; Başlar, M.; Basançelebi, O.; Kılıçlı, M. Reduction of pesticide residues from tomatoes by low intensity electrical current and ultrasound applications. Food Chem. 2018, 267, 60–66. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Kim, C.J.; Jeong, W.T.; Kyung, K.S.; Noh, H.H. Factors Affecting Incurred Pesticide Extraction in Cereals. Molecules 2023, 28, 5774. https://doi.org/10.3390/molecules28155774
Yuan X, Kim CJ, Jeong WT, Kyung KS, Noh HH. Factors Affecting Incurred Pesticide Extraction in Cereals. Molecules. 2023; 28(15):5774. https://doi.org/10.3390/molecules28155774
Chicago/Turabian StyleYuan, Xiu, Chang Jo Kim, Won Tae Jeong, Kee Sung Kyung, and Hyun Ho Noh. 2023. "Factors Affecting Incurred Pesticide Extraction in Cereals" Molecules 28, no. 15: 5774. https://doi.org/10.3390/molecules28155774