A Complete Guide to Extraction Methods of Microplastics from Complex Environmental Matrices
Abstract
:1. Introduction
- The varying size range that has been used by different researchers: The ambiguity in the size range has led to the use of different methods to study the MPs, especially when exposing organisms to MPs in laboratory studies.
- Another barrier is the unavailability of every technique or instrumentation in all the laboratories studying MPs. Since the scientific horizon is widening at a great pace, new techniques are developed which make standardization an almost impossible task. Furthermore, some research establishments (academic institutions with limited funding, small or newly established research laboratories, non-profit organizations, or research facilities in developing countries) may face financial and resource constraints, making the adoption of efficient and specialized separation approaches prohibitively expensive, leading to the employment of simpler and less precise procedures.
- The third hurdle is complex environmental matrixes, e.g., working with sewage sludge or wastewater requires many complex steps just to extract the MPs, which, in turn, require additional reagents and chemicals, thus increasing the cost.
2. Methodology
Literature Search
3. Environmental–Analytical Holistic Perspective
4. Importance of Matrix Selection
5. The Original Methods
- Density separation: This method was developed by Thompson et al., 2004, and involves MPs from sediment being isolated using a concentrated saline solution [3]. This method is only suitable for polymers with a density lower than the hypersaline brine. Many methods and devices, namely the MPSS, Elutriation techniques, and froth-flotation methods, use the principle of density separation and are discussed later in detail.
- Oxidative digestion: This method employs oxidizing agents, such as H2O2, for the removal of natural organic debris, leaving MPs unaffected [27]. This pretreatment is usually followed by density separation or filtration.
- Alkaline digestion: Various combinations of KOH and NaClO have proven to be effective in the extraction of MPs from biological tissues [28].
- Enzymatic digestion: Among acidic digestion, alkaline digestion, and enzymatic digestion, the latter seems to be the most effective, with no visible impact on MPs during treatment [31].
- Oil-extraction protocol: Based on the oleophilic properties of polymers, this method was developed in 2017 to extract MPs from environmental matrices, using oil extraction. Mixing sediments with water and canola oil separate MPs in the oil fraction from the sediment settled in the water layer [32].
- Pressurized fluid extraction: This method was optimized for MP extraction from soils and waste in 2016 [33] and is based on the use of solvents at conditions of subcritical temperature and pressure, principally for the recovery of semi-volatile organics from solid materials. In a first extraction phase, semi-volatile organics are removed using methanol at 100 °C, and MPs are subsequently recovered from the remaining matrix, using DCM at 180 °C.
- Magnetic separation: Introduced in 2019, this method is based on exploiting the hydrophobic surface of plastics to magnetize them to isolate MPs from soil samples [36].
6. Extraction Methods
6.1. Extraction from the Three S’s: Sediment, Sand, and Soil
6.1.1. Pre-Extraction: Sieving and Filtration
Sieving
Filtration
6.1.2. Density Separation Using Hypersaline Solutions
- Organic matter: More complex matrices, such as soil and sludge, are heterogenous solid combinations of minerals of varied particle sizes and organic matter in various states of degradation. Given the small size and wide variety in shape of the matrix particles, the accurate and absolute extraction of MPs from soil has proven to be difficult. Density separation is a typical method for extracting MPs from soil, but pretreatment in the form of organic-matter removal through digestion methods is required (described later).
- Wetting agents: Regardless of having the same RIC, studies have shown that the same polymers can include different additives or wetting agents, which affect their density and subsequent separation by considerably reducing the floatability [55]. There are significant differences in the floatability of virgin polymer resins and post-consumer plastic waste [56]. The floatability of the plastics decreases with the increasing concentration of the wetting agent.
- Hazardous/toxic salts: Certain salts have raised concerns associated with costs and potential hazards, even though they allow for the separation of denser polymers (Table 1). Some regulatory bodies, such as the GHS by the United Nations, discern between two distinct signal phrases that pertain to two levels of the severity of hazard: signal word “danger” is often reserved for the more serious hazardous categories, while “warning” is reserved for the less serious (e.g., CaCl2 and Na2WO4∙2H2O). The signal words “danger” is appended to ZnBr2, ZnCl2, and NaI, chemicals that can cause skin, ocular, and respiratory irritation. The use of NaI has been suggested in various studies because of its reusability, high density, and possible use in combination with separation columns. Based on the number of MPs present in a sample, NaI provides good recoveries, but this is highly dependent on the type of plastic. The use of all of these different chemicals for density extraction procedures has caused uncertainty in selecting the optimal approach.
- The 3R’s—Repeatability, Reproducibility, and Representativeness: Numerous authors have attempted to establish new protocols for density separation, as the application of those previously described have proven to be inefficient for their particular sample matrix. Furthermore, the efficacy of the various procedures utilized has seldom been compared, and, hence, the data on MP abundance in different matrices may be difficult to compare. The scientific endeavor to develop analytical methodologies for MP extraction has increased in recent years; however, there are frequent contradictions in the literature [57,58].
- MP dimensions: A recent study tested three protocols for the extraction of MPs from sediments based on density separation (NaCl followed by NaI, NaCl followed by NaI and a centrifugation step, and 10% KOH (m/v)) for three size categories of MPs and observed that the % recovery differed depending on the particle dimensions [59]. Regardless of the methodology or polymer used, MP retrieval was inversely linked to size class, with less particles recovered from sediments for the smallest MP size category [59]. In contrast, 100% recovery was achieved for larger particles, i.e., for those in the range of 2–5 mm, clearly indicating the impact of MP size category on the extraction and the importance of considering these factors when evaluating the data.
- Overlapping densities: Following density separation using salts with higher densities, some fractions of thermoset plastic types, such as PET/PVC, LDPE/PP, and HDPE/PP, require further separation; e.g., PVC and PET cannot be separated in this manner because their density ranges overlap. The densities of many polymers are similarly close, as in the case of PE/PP, rendering differentiation based on density difficult.
- Equipment building: Liu et al. created a system that is particularly intended for the extraction of MPs from soil samples, consisting of an acrylic glass cylinder with an aeration disc at the bottom and two rows of 5 mm holes at the top which works on a density separation, vacuum filtration, and a solution recovery step [52]. For ten different types of MPs (PA, PC, PP, ABS, PE, PS, PMMA, POM, PET, and PVC), recovery rates of more than 90% have been observed. However, the separating cylinder is constructed from Plexiglas (PMMA), which is a significant disadvantage, as abrasion generated by stirring coarse soils may result in an overestimation of PMMA contamination in the samples; hence, a non-plastic material should be employed, or PMMA should be omitted from the analysis.
Recycling of Salt Solutions
Advancements in Density Separations: New Methods and Customized Sediment Separators
6.1.3. Elutriation
6.1.4. Pressurized Fluid Extraction
6.1.5. Magnetic Separation
6.1.6. Electrostatic Separation
6.1.7. Oil-Extraction Protocol
6.2. Water Samples
- Water-Volume-Reduction Method
6.2.1. Clean Water Samples: From Drinking Water to Seawater
6.2.2. Wastewater
Conventional Wastewater Treatment Systems
New Techniques for Microplastic Separation
- Ferrofluid-based Separation
- Photocatalytic micromotors
6.3. Biota
6.4. Organic-Matter Removal
6.4.1. Acidic Digestion
6.4.2. Alkaline Digestion
6.4.3. Oxidative Digestion
6.4.4. Enzymatic Digestion
6.5. Air
7. Recommendations
8. Future Research
- Goal of the study;
- Scientific hypothesis;
- Experimental factors: dependent and independent variables, repeatability, and reproducibility;
- Time efficiency;
- Cost of the procedure and reagents;
- Environmental health and safety: toxicity of reagents;
- Sample size;
- Large-scale applicability;
- Long-term goal;
- Qualitative and quantitative aspects.
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
ABS | acrylonitrile butadiene styrene |
CaCl2 | calcium chloride |
CoPA | copolymer of Nylon 6 and Nylon 6/6 |
DCM | dichloromethane |
DNA | Deoxyribonucleic acid |
DW | dry weight |
EPS | expanded polystyrene |
EtOH | ethanol |
FA | fly ash |
Fe-NPs | iron nanoparticles |
FTIR | Fourier-transform infrared |
GHS | Globally Harmonized System of Classification and Labelling of Chemicals |
HCl | hydrochloric acid |
HClO4 | perchloric acid |
HDPE | high-density polyethylene |
HNO3 | nitric acid |
H2O2 | hydrogen peroxide |
H3PO4 | phosphoric acid |
H₂SO4 | sulfuric acid |
ICES | International Council for the Exploration of the Sea |
ISO | International Organization for Standardization |
K(HCOO) | potassium formate |
KOH | potassium hydroxide |
KWS | Korona–Walzen–Scheider |
LDPE | low-density polyethylene |
MPs | Microplastics |
MPSS | Munich plastic sediment separator |
NaBr | sodium bromide |
NaCl | sodium chloride |
NaClO | sodium hypochlorite |
NaI | sodium iodide |
NaOH | sodium hydroxide |
Na2WO4∙2H2O | sodium tungstate dihydrate |
NOAA | National Oceanic and Atmospheric Administration |
OEP | oil-extraction protocol |
PA | polyamide |
PC | polycarbonate |
PCCPs | personal care and cosmetic products |
PDMS | polydimethylsiloxane |
PES | polyethersulfone |
PET | polyethylene terephthalate |
PFE | pressurized fluid extraction |
PMMA | poly(methyl methacrylate) |
POM | polyoxymethylene |
PP | polypropylene |
PS | polystyrene |
PTFE | polytetrafluoroethylene |
PU | polyurethane |
PVC | polyvinyl chloride |
Pyr-GC-MS | pyrolysis–gas chromatography–mass spectrometry |
QA/QC | quality assurance and quality control |
RIC | resin identification number |
THF | tetrahydrofuran |
UNEP | United Nations Environmental Programme |
USEPA | US Environmental Protection Agency |
UV | ultraviolet |
WWTPs | wastewater treatment plants |
ZnBr2 | zinc bromide |
ZnCl2 | zinc chloride |
References
- The Business Research Company. Plastics Product Manufacturing Global Market; The Business Research Company: Telangana, India, 2017. [Google Scholar]
- ISO/TR 21960:2020; Plastics-Environmental Effects-State of Knowledge and Methodologies. International Organization for Standardization: Geneva, Switzerland, 2020.
- Thompson, R.C.; Olson, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at Sea: Where Is All the Plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef]
- Peng, X.; Chen, M.; Chen, S.; Dasgupta, S.; Xu, H.; Ta, K.; Du, M.; Li, J.; Guo, Z.; Bai, S. Microplastics Contaminate the Deepest Part of the World’s Ocean. Geochem. Perspect. Lett. 2018, 9, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Bucci, K.; Tulio, M.; Rochman, C.M. What Is Known and Unknown about the Effects of Plastic Pollution: A Meta-Analysis and Systematic Review. Ecol. Appl. 2020, 30, e02044. [Google Scholar] [CrossRef]
- Federici, S.; Ademovic, Z.; Amorim, M.J.B.; Bigalke, M.; Cocca, M.; Depero, L.E.; Dutta, J.; Fritzsche, W.; Hartmann, N.B.; Kalčikova, G.; et al. COST Action PRIORITY: An EU Perspective on Micro- and Nanoplastics as Global Issues. Microplastics 2022, 1, 282–290. [Google Scholar] [CrossRef]
- de Bruin, C.R.; de Rijke, E.; van Wezel, A.P.; Astefanei, A. Methodologies to Characterize, Identify and Quantify Nano- and Sub-Micron Sized Plastics in Relevant Media for Human Exposure: A Critical Review. Environ. Sci. Adv. 2022, 1, 238–258. [Google Scholar] [CrossRef]
- Lee, H.; Kim, S.; Sin, A.; Kim, G.; Khan, S.; Nadagouda, M.N.; Sahle-Demessie, E.; Han, C. Pretreatment Methods for Monitoring Microplastics in Soil and Freshwater Sediment Samples: A Comprehensive Review. Sci. Total Environ. 2023, 871, 161718. [Google Scholar] [CrossRef]
- Monteiro, S.S.; Pinto da Costa, J. Methods for the Extraction of Microplastics in Complex Solid, Water and Biota Samples. Trends Environ. Anal. Chem. 2022, 33, e00151. [Google Scholar] [CrossRef]
- Nabi, I.; Bacha, A.U.R.; Zhang, L. A Review on Microplastics Separation Techniques from Environmental Media. J. Clean. Prod. 2022, 337, 130458. [Google Scholar] [CrossRef]
- Debraj, D.; Lavanya, M. Microplastics Everywhere: A Review on Existing Methods of Extraction. Sci. Total Environ. 2023, 893, 164878. [Google Scholar] [CrossRef]
- Razeghi, N.; Hamidian, A.H.; Mirzajani, A.; Abbasi, S.; Wu, C.; Zhang, Y.; Yang, M. Sample Preparation Methods for the Analysis of Microplastics in Freshwater Ecosystems: A Review. Environ. Chem. Lett. 2021, 20, 417–443. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- De La Guardia, M. An Integrated Approach of Analytical Chemistry. J. Braz. Chem. Soc. 1999, 10, 429–437. [Google Scholar] [CrossRef] [Green Version]
- Valcárcel, M. Analytical Chemistry Today and Tomorrow. In Analytical Chemistry; IntechOpen: London, UK, 2012; ISBN 978-953-51-0837-5. [Google Scholar]
- Peng, L.; Fu, D.; Qi, H.; Lan, C.Q.; Yu, H.; Ge, C. Micro- and Nano-Plastics in Marine Environment: Source, Distribution and Threats—A Review. Sci. Total Environ. 2020, 698, 134254. [Google Scholar] [CrossRef] [PubMed]
- Hurley, R.R.; Nizzetto, L. Fate and Occurrence of Micro(Nano)Plastics in Soils: Knowledge Gaps and Possible Risks. Curr. Opin. Environ. Sci. Health 2018, 1, 6–11. [Google Scholar] [CrossRef]
- Andrady, A.L. Microplastics in the Marine Environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef]
- Luo, W.; Su, L.; Craig, N.J.; Du, F.; Wu, C.; Shi, H. Comparison of Microplastic Pollution in Different Water Bodies from Urban Creeks to Coastal Waters. Environ. Pollut. 2019, 246, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Eltner, A.; Sardemann, H.; Grundmann, J. Technical Note: Flow Velocity and Discharge Measurement in Rivers Using Terrestrial and UAV Imagery. Hydrol. Earth Syst. Sci. 2020, 24, 1429–1445. [Google Scholar] [CrossRef] [Green Version]
- Ezzat, M.B.; Bahgat, M.; Roushdy, M.; Elghorab, E. Investigating the Efficiency of the Water Circulation System to Assess Water Quality inside Artificial Lagoons Case Study Hacienda Bay. Nile Basin Water Sci. Eng. J. 2013, 6, 22–34. [Google Scholar]
- Ahmad, M.; Tariq, J.A.; Rafique, M.; Iqbal, N.; Choudhry, M.A.; Qureshi, R.M. Measurement of Groundwater Flow Velocity at Chashnupp Unit-2 Site Using Radiotracer Technique (No. PINSTECH--207); Pakistan Institute of Nuclear Science and Technology: Islamabad, Pakistan, 2008. [Google Scholar]
- Barackman, M.; Brusseau, M.L. Groundwater Sampling. In Environmental Monitoring and Characterization; Academic Press: Cambridge, MA, USA, 2002; pp. 121–139. [Google Scholar] [CrossRef]
- Mulligan, A.E.; Charette, M.A.; Tamborski, J.J.; Moosdorf, N. Submarine Groundwater Discharge. In Encyclopedia of Ocean Sciences; Elsevier: Amsterdam, The Netherlands, 2019; pp. 108–119. ISBN 9780128130810. [Google Scholar]
- Chapman, D.V. (Ed.) Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Li, Q.; Wu, J.; Zhao, X.; Gu, X.; Ji, R. Separation and Identification of Microplastics from Soil and Sewage Sludge. Environ. Pollut. 2019, 254, 113076. [Google Scholar] [CrossRef]
- Liebezeit, G.; Dubaish, F. Microplastics in Beaches of the East Frisian Islands Spiekeroog and Kachelotplate. Bull. Environ. Contam. Toxicol. 2012, 89, 213–217. [Google Scholar] [CrossRef]
- Enders, K.; Lenz, R.; Beer, S.; Stedmon, C.A. Extraction of Microplastic from Biota: Recommended Acidic Digestion Destroys Common Plastic Polymers. ICES J. Mar. Sci. 2017, 74, 326–331. [Google Scholar] [CrossRef] [Green Version]
- De Witte, B.; Devriese, L.; Bekaert, K.; Hoffman, S.; Vandermeersch, G.; Cooreman, K.; Robbens, J. Quality Assessment of the Blue Mussel (Mytilus Edulis): Comparison between Commercial and Wild Types. Mar. Pollut. Bull. 2014, 85, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Vandermeersch, G.; Van Cauwenberghe, L.; Janssen, C.R.; Marques, A.; Granby, K.; Fait, G.; Kotterman, M.J.J.; Diogène, J.; Bekaert, K.; Robbens, J.; et al. A Critical View on Microplastic Quantification in Aquatic Organisms. Environ. Res. 2015, 143, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.; Webb, H.; Lindeque, P.K.; Fileman, E.S.; Halsband, C.; Galloway, T.S. Isolation of Microplastics in Biota-Rich Seawater Samples and Marine Organisms. Scientific Reports 2014, 4, 4528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crichton, E.M.; Noël, M.; Gies, E.A.; Ross, P.S. A Novel, Density-Independent and FTIR-Compatible Approach for the Rapid Extraction of Microplastics from Aquatic Sediments. Anal. Methods 2017, 9, 1419–1428. [Google Scholar] [CrossRef]
- Fuller, S.; Gautam, A. A Procedure for Measuring Microplastics Using Pressurized Fluid Extraction. Environ. Sci. Technol. 2016, 50, 5774–5780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef]
- Felsing, S.; Kochleus, C.; Buchinger, S.; Brennholt, N.; Stock, F.; Reifferscheid, G. A New Approach in Separating Microplastics from Environmental Samples Based on Their Electrostatic Behavior. Environ. Pollut. 2018, 234, 20–28. [Google Scholar] [CrossRef]
- Grbic, J.; Nguyen, B.; Guo, E.; You, J.B.; Sinton, D.; Rochman, C.M. Magnetic Extraction of Microplastics from Environmental Samples. Environ. Sci. Technol. Lett. 2019, 6, 68–72. [Google Scholar] [CrossRef]
- Gao, D.; Li, X.Y.; Liu, H.T. Source, Occurrence, Migration and Potential Environmental Risk of Microplastics in Sewage Sludge and during Sludge Amendment to Soil. Sci. Total Environ. 2020, 742, 140355. [Google Scholar] [CrossRef] [PubMed]
- Willis, K.A.; Eriksen, R.; Wilcox, C.; Hardesty, B.D. Microplastic Distribution at Different Sediment Depths in an Urban Estuary. Front. Mar. Sci. 2017, 4, 419. [Google Scholar] [CrossRef] [Green Version]
- Gregory, M.R. Accumulation and Distribution of Virgin Plastic Granules on New Zealand Beaches. N. Z. J. Mar. Freshw. Res. 1978, 12, 399–414. [Google Scholar] [CrossRef]
- Álvarez-Hernández, C.; Cairós, C.; López-Darias, J.; Mazzetti, E.; Hernández-Sánchez, C.; González-Sálamo, J.; Hernández-Borges, J. Microplastic Debris in Beaches of Tenerife (Canary Islands, Spain). Mar. Pollut. Bull. 2019, 146, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Lusher, A.L.; Munno, K.; Hermabessiere, L.; Carr, S. Isolation and Extraction of Microplastics from Environmental Samples: An Evaluation of Practical Approaches and Recommendations for Further Harmonization. Appl. Spectrosc. 2020, 74, 1049–1065. [Google Scholar] [CrossRef] [PubMed]
- Arenas-Lago, D.; Santás-Miguel, V.; Rodríguez-Seijo, A. Current Methodology for Extraction, Separation, Identification, and Quantification of Microplastics in Terrestrial Systems. Handb. Environ. Chem. 2023, 114, 267–287. [Google Scholar]
- Wagner, M.; Lambert, S. (Eds.) Freshwater Microplastics, Handbook of Environmental Chemistry 58; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Tenzer, R.; Gladkikh, V. Assessment of Density Variations of Marine Sediments with Ocean and Sediment Depths. Sci. World J. 2014, 2014, 823296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guidance on Monitoring of Marine Litter in European Seas; Publications Office of the European Union: Luxembourg, 2013; Volume 10, p. 99475. [CrossRef]
- Imhof, H.K.; Schmid, J.; Niessner, R.; Ivleva, N.P.; Laforsch, C. A Novel, Highly Efficient Method for the Separation and Quantification of Plastic Particles in Sediments of Aquatic Environments. Limnol. Oceanogr. Methods 2012, 10, 524–537. [Google Scholar] [CrossRef]
- Zobkov, M.B.; Esiukova, E.E. Evaluation of the Munich Plastic Sediment Separator Efficiency in Extraction of Microplastics from Natural Marine Bottom Sediments. Limnol. Oceanogr. Methods 2017, 15, 967–978. [Google Scholar] [CrossRef]
- Thomas, D.; Schütze, B.; Heinze, W.M.; Steinmetz, Z. Sample Preparation Techniques for the Analysis of Microplastics in Soil-A Review. Sustainability 2020, 12, 9074. [Google Scholar] [CrossRef]
- Coppock, R.L.; Cole, M.; Lindeque, P.K.; Queir, A.M.; Galloway, T.S. A Small-Scale, Portable Method for Extracting Microplastics from Marine Sediments. Environ. Pollut. 2017, 230, 829–837. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Yu, K.; Zhang, H.; Liu, Y.; He, J.; Liu, X.; Jiang, J. A Novel Heating-Assisted Density Separation Method for Extracting Microplastics from Sediments. Chemosphere 2020, 256, 127039. [Google Scholar] [CrossRef]
- Felismino, M.E.L.; Helm, P.A.; Rochman, C.M. Microplastic and Other Anthropogenic Microparticles in Water and Sediments of Lake Simcoe. J. Great Lakes Res. 2021, 47, 180–189. [Google Scholar] [CrossRef]
- Liu, M.; Song, Y.; Lu, S.; Qiu, R.; Hu, J.; Li, X.; Bigalke, M.; Shi, H.; He, D. A Method for Extracting Soil Microplastics through Circulation of Sodium Bromide Solutions. Sci. Total Environ. 2019, 691, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.; Qu, L.; Jin, F.; Zhang, S.; Fang, C.; Ma, X.; Zhang, W.; Huo, C.; Cong, Y.; Wang, J. Abundance and Distribution of Microplastics in the Surface Sediments from the Northern Bering and Chukchi Seas. Environ. Pollut. 2019, 245, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Lastovina, T.A.; Budnyk, A.P. A Review of Methods for Extraction, Removal, and Stimulated Degradation of Microplastics. J. Water Process Eng. 2021, 43, 102209. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Yalikun, N.; Wang, H.; Wang, C.; Jiang, H. A Comprehensive Review of Separation Technologies for Waste Plastics in Urban Mine. Resour. Conserv. Recycl. 2023, 197, 107087. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.Q.; Fu, J.; Gu, G.H. Flotability and Flotation Separation of Polymer Materials Modulated by Wetting Agents. Waste Manag. 2014, 34, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Jaramillo, M.; Islas, M.S.; Gonzalez, M. Spatial Distribution Patterns and Identification of Microplastics on Intertidal Sediments from Urban and Semi-Natural SW Atlantic Estuaries. Environ. Pollut. 2021, 273, 116398. [Google Scholar] [CrossRef] [PubMed]
- Materić, D.; Ludewig, E.; Brunner, D.; Röckmann, T.; Holzinger, R. Nanoplastics Transport to the Remote, High-Altitude Alps. Environ. Pollut. 2021, 288, 117697. [Google Scholar] [CrossRef] [PubMed]
- Nava, V.; Leoni, B. Comparison of Different Procedures for Separating Microplastics from Sediments. Water 2021, 13, 2854. [Google Scholar] [CrossRef]
- Plastic Europe. An Analysis of European Plastics Production, Demand and Waste Data. 2020. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021 (accessed on 20 July 2023).
- Scheurer, M.; Bigalke, M. Microplastics in Swiss Floodplain Soils. Environ Sci Technol 2018, 52, 3591–3598. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.O.; Gonçalves, A.M.M.; Gonçalves, F.J.M.; Abrantes, N. Improving Cost-Efficiency for MPs Density Separation by Zinc Chloride Reuse. MethodsX 2020, 7, 100785. [Google Scholar] [CrossRef]
- Kedzierski, M.; Le Tilly, V.; César, G.; Sire, O.; Bruzaud, S. Efficient Microplastics Extraction from Sand. A Cost Effective Methodology Based on Sodium Iodide Recycling. Mar. Pollut. Bull. 2017, 115, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Stock, F.; Kochleus, C.; Bänsch-Baltruschat, B.; Brennholt, N.; Reifferscheid, G. Sampling Techniques and Preparation Methods for Microplastic Analyses in the Aquatic Environment–A Review. TrAC Trends Anal. Chem. 2019, 113, 84–92. [Google Scholar] [CrossRef]
- Nuelle, M.-T.; Dekiff, J.H.; Remy, D.; Fries, E. A New Analytical Approach for Monitoring Microplastics in Marine Sediments. Environ. Pollut. 2014, 184, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, Y.; Kang, S.; Wang, Z.; Wu, C. Microplastics in Freshwater Sediment: A Review on Methods, Occurrence, and Sources. Sci. Total Environ. 2021, 754, 141948. [Google Scholar] [CrossRef]
- Han, X.; Lu, X.; Vogt, R.D. An Optimized Density-Based Approach for Extracting Microplastics from Soil and Sediment Samples. Environ. Pollut. 2019, 254, 113009. [Google Scholar] [CrossRef]
- Nakajima, R.; Tsuchiya, M.; Lindsay, D.J.; Kitahashi, T.; Fujikura, K.; Fukushima, T. A New Small Device Made of Glass for Separating Microplastics from Marine and Freshwater Sediments. PeerJ 2019, 7, e7915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claessens, M.; Van Cauwenberghe, L.; Vandegehuchte, M.B.; Janssen, C.R. New Techniques for the Detection of Microplastics in Sediments and Field Collected Organisms. Mar. Pollut. Bull. 2013, 70, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X. Optimization of Elutriation Device for Filtration of Microplastic Particles from Sediment. Mar. Pollut. Bull. 2015, 92, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Kedzierski, M.; Le Tilly, V.; Bourseau, P.; Bellegou, H.; César, G.; Sire, O.; Bruzaud, S. Microplastics Elutriation from Sandy Sediments: A Granulometric Approach. Mar. Pollut. Bull. 2016, 107, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Constant, M.; Billon, G.; Breton, N.; Alary, C. Extraction of Microplastics from Sediment Matrices: Experimental Comparative Analysis. J. Hazard Mater. 2021, 420, 126571. [Google Scholar] [CrossRef]
- Andreu, V.; Picó, Y. Pressurized Liquid Extraction of Organic Contaminants in Environmental and Food Samples. TrAC Trends Anal. Chem. 2019, 118, 709–721. [Google Scholar] [CrossRef]
- Dierkes, G.; Lauschke, T.; Becher, S.; Schumacher, H.; Földi, C.; Ternes, T. Quantification of Microplastics in Environmental Samples via Pressurized Liquid Extraction and Pyrolysis-Gas Chromatography. Anal. Bioanal. Chem. 2019, 411, 6959–6968. [Google Scholar] [CrossRef]
- Primpke, S.; Fischer, M.; Lorenz, C.; Gerdts, G.; Scholz-Böttcher, B.M. Comparison of Pyrolysis Gas Chromatography/Mass Spectrometry and Hyperspectral FTIR Imaging Spectroscopy for the Analysis of Microplastics. Anal. Bioanal. Chem. 2020, 412, 8283. [Google Scholar] [CrossRef]
- Okoffo, E.D.; Ribeiro, F.; O’Brien, J.W.; O’Brien, S.; Tscharke, B.J.; Gallen, M.; Samanipour, S.; Mueller, J.F.; Thomas, K.V. Identification and Quantification of Selected Plastics in Biosolids by Pressurized Liquid Extraction Combined with Double-Shot Pyrolysis Gas Chromatography–Mass Spectrometry. Sci. Total Environ. 2020, 715, 136924. [Google Scholar] [CrossRef]
- Ouda, M.; Banat, F.; Hasan, S.W.; Karanikolos, G.N. Recent Advances on Nanotechnology-Driven Strategies for Remediation of Microplastics and Nanoplastics from Aqueous Environments. J. Water Process Eng. 2023, 52, 103543. [Google Scholar] [CrossRef]
- Rhein, F.; Scholl, F.; Nirschl, H. Magnetic Seeded Filtration for the Separation of Fine Polymer Particles from Dilute Suspensions: Microplastics. Chem Eng Sci 2019, 207, 1278–1287. [Google Scholar] [CrossRef]
- Enders, K.; Tagg, A.S.; Labrenz, M. Evaluation of Electrostatic Separation of Microplastics from Mineral-Rich Environmental Samples. Front. Environ. Sci. 2020, 8, 112. [Google Scholar] [CrossRef]
- Crew, A.; Gregory-Eaves, I.; Ricciardi, A. Distribution, Abundance, and Diversity of Microplastics in the Upper St. Lawrence River. Environ. Pollut. 2020, 260, 113994. [Google Scholar] [CrossRef]
- Lares, M.; Ncibi, M.C.; Sillanpää, M.; Sillanpää, M. Intercomparison Study on Commonly Used Methods to Determine Microplastics in Wastewater and Sludge Samples. Environ. Sci. Pollut. Res. 2019, 26, 12109–12122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lechthaler, S.; Hildebrandt, L.; Stauch, G.; Schüttrumpf, H. Canola Oil Extraction in Conjunction with a Plastic Free Separation Unit Optimises Microplastics Monitoring in Water and Sediment. Anal. Methods 2020, 12, 5128–5139. [Google Scholar] [CrossRef]
- Karlsson, T.M.; Vethaak, A.D.; Almroth, B.C.; Ariese, F.; van Velzen, M.; Hassellöv, M.; Leslie, H.A. Screening for Microplastics in Sediment, Water, Marine Invertebrates and Fish: Method Development and Microplastic Accumulation. Mar. Pollut. Bull. 2017, 122, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Scopetani, C.; Chelazzi, D.; Mikola, J.; Leiniö, V.; Heikkinen, R.; Cincinelli, A.; Pellinen, J. Olive Oil-Based Method for the Extraction, Quantification and Identification of Microplastics in Soil and Compost Samples. Sci. Total Environ. 2020, 733, 139338. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.J.; Park, J.W.; Jung, S.M. Repeatable Separation of Microplastics Integrating Mineral Oil Extraction and a PDMS-Ni Foam Adsorbent in Real Soil. Chem. Eng. J. 2022, 429, 132517. [Google Scholar] [CrossRef]
- Masura, J.; Baker, J.; Foster, G.; Arthur, C. Laboratory Methods for the Analysis of Microplastics in the Marine Environment: Recommendations for Quantifying Synthetic Particles in Waters and Sediments; NOAA Marine Debris Division: Silver Spring, MD, USA, 2015. [CrossRef]
- Cerasa, M.; Teodori, S.; Pietrelli, L. Searching Nanoplastics: From Sampling to Sample Processing. Polymers 2021, 13, 3658. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, X.; Chen, R.; Liu, P.; Liang, W.; Wang, J.; Teng, M.; Wang, X.; Gao, S. Wastewater Treatment Plants Act as Essential Sources of Microplastic Formation in Aquatic Environments: A Critical Review. Water Res. 2022, 221, 118825. [Google Scholar] [CrossRef]
- Monteiro, S.S.; Rocha-Santos, T.; Prata, J.C.; Duarte, A.C.; Girão, A.V.; Lopes, P.; Cristovão, T.; da Costa, J.P. A Straightforward Method for Microplastic Extraction from Organic-Rich Freshwater Samples. Sci. Total Environ. 2022, 815, 152941. [Google Scholar] [CrossRef] [PubMed]
- Barnett, S.; Evans, R.; Quintana, B.; Miliou, A.; Pietroluongo, G. An Environmentally Friendly Method for the Identification of Microplastics Using Density Analysis. Environ. Toxicol. Chem. 2021, 40, 3299–3305. [Google Scholar] [CrossRef]
- Picó, Y.; Barceló, D. Micro(Nano)Plastic Analysis: A Green and Sustainable Perspective. J. Hazard. Mater. Adv. 2022, 6, 100058. [Google Scholar] [CrossRef]
- Mahon, A.M.; O’Connell, B.; Healy, M.G.; O’Connor, I.; Officer, R.; Nash, R.; Morrison, L. Microplastics in Sewage Sludge: Effects of Treatment. Environ. Sci. Technol. 2017, 51, 810–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as Contaminants in the Marine Environment: A Review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef] [PubMed]
- Leslie, H.A.; Brandsma, S.H.; van Velzen, M.J.M.; Vethaak, A.D. Microplastics En Route: Field Measurements in the Dutch River Delta and Amsterdam Canals, Wastewater Treatment Plants, North Sea Sediments and Biota. Environ. Int. 2017, 101, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Ren, S.Y.; Ni, H.G. Incidence of Microplastics in Personal Care Products: An Appreciable Part of Plastic Pollution. Sci. Total Environ. 2020, 742, 140218. [Google Scholar] [CrossRef] [PubMed]
- Napper, I.E.; Bakir, A.; Rowland, S.J.; Thompson, R.C. Characterisation, Quantity and Sorptive Properties of Microplastics Extracted from Cosmetics. Mar. Pollut. Bull. 2015, 99, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Kalčíková, G.; Alič, B.; Skalar, T.; Bundschuh, M.; Gotvajn, A.Ž. Wastewater Treatment Plant Effluents as Source of Cosmetic Polyethylene Microbeads to Freshwater. Chemosphere 2017, 188, 25–31. [Google Scholar] [CrossRef]
- Lei, K.; Qiao, F.; Liu, Q.; Wei, Z.; Qi, H.; Cui, S.; Yue, X.; Deng, Y.; An, L. Microplastics Releasing from Personal Care and Cosmetic Products in China. Mar. Pollut. Bull. 2017, 123, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Cheung, P.K.; Fok, L. Characterisation of Plastic Microbeads in Facial Scrubs and Their Estimated Emissions in Mainland China. Water Res. 2017, 122, 53–61. [Google Scholar] [CrossRef]
- Godoy, V.; Martín-Lara, M.A.; Calero, M.; Blázquez, G. Physical-Chemical Characterization of Microplastics Present in Some Exfoliating Products from Spain. Mar. Pollut. Bull. 2019, 139, 91–99. [Google Scholar] [CrossRef]
- Lončarsk, M.; Tubic, A.; Isakovski, M.K.; Jovic, B.; Apostolovic, T.; Nikic, J.; Agbaba, J. Modelling of the Adsorption of Chlorinated Phenols on Polyethylene and Polyethylene Terephthalate Microplastic. J. Serb. Chem. Soc. 2020, 85, 697–709. [Google Scholar] [CrossRef] [Green Version]
- Rozman, U.; Turk, T.; Skalar, T.; Zupančič, M.; Čelan Korošin, N.; Marinšek, M.; Olivero-Verbel, J.; Kalčíková, G. An Extensive Characterization of Various Environmentally Relevant Microplastics–Material Properties, Leaching and Ecotoxicity Testing. Sci. Total Environ. 2021, 773, 145576. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Zeng, S.; Wang, Y.; Dong, X. Exploring the Discharge Characteristics of Personal Care Behaviors for High Precision Estimation of Microplastic Emission. J. Environ. Manag. 2022, 312, 114917. [Google Scholar] [CrossRef]
- Trabulo, J.; Pradhan, A.; Pascoal, C.; Cássio, F. Can Microplastics from Personal Care Products Affect Stream Microbial Decomposers in the Presence of Silver Nanoparticles? Sci. Total Environ. 2022, 832, 155038. [Google Scholar] [CrossRef] [PubMed]
- Madhumitha, C.T.; Karmegam, N.; Biruntha, M.; Arun, A.; Al Kheraif, A.A.; Kim, W.; Kumar, P. Extraction, Identification, and Environmental Risk Assessment of Microplastics in Commercial Toothpaste. Chemosphere 2022, 296, 133976. [Google Scholar] [CrossRef]
- Dąbrowska, A.; Mielańczuk, M.; Syczewski, M. The Raman Spectroscopy and SEM/EDS Investigation of the Primary Sources of Microplastics from Cosmetics Available in Poland. Chemosphere 2022, 308, 136407. [Google Scholar] [CrossRef]
- Priya, A.; Anusha, G.; Thanigaivel, S.; Karthick, A.; Mohanavel, V.; Velmurugan, P.; Balasubramanian, B.; Ravichandran, M.; Kamyab, H.; Kirpichnikova, I.M.; et al. Removing Microplastics from Wastewater Using Leading-Edge Treatment Technologies: A Solution to Microplastic Pollution-a Review. Bioprocess Biosyst. Eng. 2023, 46, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Talvitie, J.; Mikola, A.; Koistinen, A.; Setälä, O. Solutions to Microplastic Pollution-Removal of Microplastics from Wastewater Effluent with Advanced Wastewater Treatment Technologies. Water Res. 2017, 123, 401–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatamie, A.; Parham, H.; Zargar, B.; Heidari, Z. Evaluating Magnetic Nano-Ferrofluid as a Novel Coagulant for Surface Water Treatment. J. Mol. Liq. 2016, 219, 694–702. [Google Scholar] [CrossRef]
- Zhao, H.; Huang, X.; Wang, L.; Zhao, X.; Yan, F.; Yang, Y.; Li, G.; Gao, P.; Ji, P. Removal of Polystyrene Nanoplastics from Aqueous Solutions Using a Novel Magnetic Material: Adsorbability, Mechanism, and Reusability. Chem. Eng. J. 2022, 430, 133122. [Google Scholar] [CrossRef]
- Hamzah, S.; Ying, L.Y.; Azmi, A.A.A.R.; Razali, N.A.; Hairom, N.H.H.; Mohamad, N.A.; Harun, M.H.C. Synthesis, Characterisation and Evaluation on the Performance of Ferrofluid for Microplastic Removal from Synthetic and Actual Wastewater. J. Environ. Chem. Eng. 2021, 9, 105894. [Google Scholar] [CrossRef]
- Wang, L.; Kaeppler, A.; Fischer, D.; Simmchen, J. Photocatalytic TiO2 Micromotors for Removal of Microplastics and Suspended Matter. ACS Appl. Mater. Interfaces 2019, 11, 32937–32944. [Google Scholar] [CrossRef] [PubMed]
- Herbort, A.F.; Schuhen, K. A Concept for the Removal of Microplastics from the Marine Environment with Innovative Host-Guest Relationships. Environ. Sci. Pollut. Res. 2017, 24, 11061–11065. [Google Scholar] [CrossRef]
- Ugwu, K.; Herrera, A.; Gómez, M. Microplastics in Marine Biota: A Review. Mar. Pollut. Bull. 2021, 169, 112540. [Google Scholar] [CrossRef]
- Riley, T.; Rowley, K. Extraction and Analysis Methods of Microplastics in Bivalves; NOAA Central Library: Silver Spring, MD, USA, 2018.
- Yu, Z.; Peng, B.; Liu, L.Y.; Wong, C.S.; Zeng, E.Y. Development and Validation of an Efficient Method for Processing Microplastics in Biota Samples. Environ. Toxicol. Chem. 2019, 38, 1400–1408. [Google Scholar] [CrossRef]
- von Friesen, L.W.; Granberg, M.E.; Hassellöv, M.; Gabrielsen, G.W.; Magnusson, K. An Efficient and Gentle Enzymatic Digestion Protocol for the Extraction of Microplastics from Bivalve Tissue. Mar. Pollut. Bull. 2019, 142, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, D.; Li, L.; Jabeen, K.; Shi, H. Microplastics in Commercial Bivalves from China. Environ. Pollut. 2015, 207, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, T.; Goordiyal, K.; Glassom, D. Are Nitric Acid (HNO3) Digestions Efficient in Isolating Microplastics from Juvenile Fish? Water Air Soil Pollut. 2017, 228, 470. [Google Scholar] [CrossRef]
- Gulizia, A.M.; Brodie, E.; Daumuller, R.; Bloom, S.B.; Corbett, T.; Santana, M.M.F.; Motti, C.A.; Vamvounis, G.; Gulizia, A.M.; Brodie, E.; et al. Evaluating the Effect of Chemical Digestion Treatments on Polystyrene Microplastics: Recommended Updates to Chemical Digestion Protocols. Macromol. Chem. Phys. 2022, 223, 2100485. [Google Scholar] [CrossRef]
- Dawson, A.L.; Motti, C.A.; Kroon, F.J. Solving a Sticky Situation: Microplastic Analysis of Lipid-Rich Tissue. Front. Environ. Sci. 2020, 8, 563565. [Google Scholar] [CrossRef]
- Calderon, E.A.; Hansen, P.; Rodríguez, A.; Blettler, M.C.M.; Syberg, K.; Khan, F.R. Microplastics in the Digestive Tracts of Four Fish Species from the Ciénaga Grande de Santa Marta Estuary in Colombia. Water Air Soil Pollut. 2019, 230, 257. [Google Scholar] [CrossRef]
- Collard, F.; Gilbert, B.; Eppe, G.; Parmentier, E.; Das, K. Detection of Anthropogenic Particles in Fish Stomachs: An Isolation Method Adapted to Identification by Raman Spectroscopy. Arch. Environ. Contam. Toxicol. 2015, 69, 331–339. [Google Scholar] [CrossRef]
- Van Franeker, J.A.; Blaize, C.; Danielsen, J.; Fairclough, K.; Gollan, J.; Guse, N.; Hansen, P.L.; Heubeck, M.; Jensen, J.K.; Le Guillou, G.; et al. Monitoring Plastic Ingestion by the Northern Fulmar Fulmarus Glacialis in the North Sea. Environ. Pollut. 2011, 159, 2609–2615. [Google Scholar] [CrossRef] [PubMed]
- Kapp, K.J.; Yeatman, E. Microplastic Hotspots in the Snake and Lower Columbia Rivers: A Journey from the Greater Yellowstone Ecosystem to the Pacific Ocean. Environ. Pollut. 2018, 241, 1082–1090. [Google Scholar] [CrossRef]
- Song, X.; Wu, X.; Song, X.; Zhang, Z. Oil Extraction Following Digestion to Separate Microplastics from Mussels. Chemosphere 2022, 289, 133187. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Han, J.; Zhou, H.; Lau, Y.L.; An, W.; Wei, P.; Cheung, S.G.; Yang, Y.; Tam, N.F. Development of a Digestion Method for Determining Microplastic Pollution in Vegetal-Rich Clayey Mangrove Sediments. Sci. Total Environ. 2020, 707, 136030. [Google Scholar] [CrossRef]
- Prata, J.C.; da Costa, J.P.; Girão, A.V.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Identifying a Quick and Efficient Method of Removing Organic Matter without Damaging Microplastic Samples. Sci. Total Environ. 2019, 686, 131–139. [Google Scholar] [CrossRef]
- Yaranal, N.A.; Subbiah, S.; Mohanty, K. Identification, Extraction of Microplastics from Edible Salts and Its Removal from Contaminated Seawater. Environ. Technol. Innov. 2021, 21, 101253. [Google Scholar] [CrossRef]
- Lusher, A.L.; Welden, N.A.; Sobral, P.; Cole, M. Sampling, Isolating and Identifying Microplastics Ingested by Fish and Invertebrates. Anal. Methods 2017, 9, 1346–1360. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, F.; Fischer, E.K. Various Digestion Protocols Within Microplastic Sample Processing—Evaluating the Resistance of Different Synthetic Polymers and the Efficiency of Biogenic Organic Matter Destruction. Front. Environ. Sci. 2020, 8, 263. [Google Scholar] [CrossRef]
- Imhof, H.K.; Laforsch, C.; Wiesheu, A.C.; Schmid, J.; Anger, P.M.; Niessner, R.; Ivleva, N.P. Pigments and Plastic in Limnetic Ecosystems: A Qualitative and Quantitative Study on Microparticles of Different Size Classes. Water Res. 2016, 98, 64–74. [Google Scholar] [CrossRef]
- International Council for the Exploration of the Sea (ICES). OSPAR request on development of a common monitoring protocol for plastic particles in fish stomachs and selected shellfish on the basis of existing fish disease surveys. ICES Spec. Req. Advice 2015, 1, 1–6. [Google Scholar]
- Lin, J.; Xu, X.P.; Yue, B.Y.; Li, Y.; Zhou, Q.Z.; Xu, X.M.; Liu, J.Z.; Wang, Q.Q.; Wang, J.H. A Novel Thermoanalytical Method for Quantifying Microplastics in Marine Sediments. Sci. Total Environ. 2021, 760, 144316. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, E.; Stubbins, A. An Optimized Acidic Digestion for the Isolation of Microplastics from Biota-Rich Samples and Cellulose Acetate Matrices. Environ. Pollut. 2023, 322, 121198. [Google Scholar] [CrossRef] [PubMed]
- Hurley, R.R.; Lusher, A.L.; Olsen, M.; Nizzetto, L. Validation of a Method for Extracting Microplastics from Complex, Organic-Rich, Environmental Matrices. Environ. Sci. Technol. 2018, 52, 7409–7417. [Google Scholar] [CrossRef] [Green Version]
- Süssmann, J.; Krause, T.; Martin, D.; Walz, E.; Greiner, R.; Rohn, S.; Fischer, E.K.; Fritsche, J. Evaluation and Optimisation of Sample Preparation Protocols Suitable for the Analysis of Plastic Particles Present in Seafood. Food Control. 2021, 125, 107969. [Google Scholar] [CrossRef]
- Olsen, L.M.B.; Knutsen, H.; Mahat, S.; Wade, E.J.; Arp, H.P.H. Facilitating Microplastic Quantification through the Introduction of a Cellulose Dissolution Step Prior to Oxidation: Proof-of-Concept and Demonstration Using Diverse Samples from the Inner Oslofjord, Norway. Mar. Environ. Res. 2020, 161, 105080. [Google Scholar] [CrossRef]
- Schrank, I.; Möller, J.N.; Imhof, H.K.; Hauenstein, O.; Zielke, F.; Agarwal, S.; Löder, M.G.J.; Greiner, A.; Laforsch, C. Microplastic Sample Purification Methods-Assessing Detrimental Effects of Purification Procedures on Specific Plastic Types. Sci. Total Environ. 2022, 833, 154824. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, C. Recent Advances in the Analysis Methodologies for Microplastics in Aquatic Organisms: Current Knowledge and Research Challenges. Anal. Methods 2020, 12, 2944–2957. [Google Scholar] [CrossRef]
- Maw, M.M.; Boontanon, N.; Fujii, S.; Boontanon, S.K. Rapid and Efficient Removal of Organic Matter from Sewage Sludge for Extraction of Microplastics. Sci. Total Environ. 2022, 853, 158642. [Google Scholar] [CrossRef]
- Sujathan, S.; Kniggendorf, A.K.; Kumar, A.; Roth, B.; Rosenwinkel, K.H.; Nogueira, R. Heat and Bleach: A Cost-Efficient Method for Extracting Microplastics from Return Activated Sludge. Arch. Environ. Contam. Toxicol. 2017, 73, 641–648. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; Zou, M.; Jia, Z.; Zhou, S.; Li, Y. Microplastics in Soils: A Review of Methods, Occurrence, Fate, Transport, Ecological and Environmental Risks. Sci. Total Environ. 2020, 748, 141368. [Google Scholar] [CrossRef] [PubMed]
- Mbachu, O.; Jenkins, G.; Pratt, C. Enzymatic Purification of Microplastics in Soil. MethodsX 2021, 8, 101254. [Google Scholar] [CrossRef]
- Courtene-Jones, W.; Quinn, B.; Murphy, F.; Gary, S.F.; Narayanaswamy, B.E. Optimisation of Enzymatic Digestion and Validation of Specimen Preservation Methods for the Analysis of Ingested Microplastics. Anal. Methods 2017, 9, 1437–1445. [Google Scholar] [CrossRef] [Green Version]
- Catarino, A.I.; Macchia, V.; Sanderson, W.G.; Thompson, R.C.; Henry, T.B. Low Levels of Microplastics (MP) in Wild Mussels Indicate That MP Ingestion by Humans Is Minimal Compared to Exposure via Household Fibres Fallout during a Meal. Environ. Pollut. 2018, 237, 675–684. [Google Scholar] [CrossRef]
- Allen, S.; Allen, D.; Phoenix, V.R.; Le Roux, G.; Durántez Jiménez, P.; Simonneau, A.; Binet, S.; Galop, D. Atmospheric Transport and Deposition of Microplastics in a Remote Mountain Catchment. Nat. Geosci. 2019, 12, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Munyaneza, J.; Jia, Q.; Qaraah, F.A.; Hossain, M.F.; Wu, C.; Zhen, H.; Xiu, G. A Review of Atmospheric Microplastics Pollution: In-Depth Sighting of Sources, Analytical Methods, Physiognomies, Transport and Risks. Sci. Total Environ. 2022, 822, 153339. [Google Scholar] [CrossRef] [PubMed]
- Prata, J.C. Airborne Microplastics: Consequences to Human Health? Environ. Pollut. 2018, 234, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhou, Y.; Liang, C.; Song, J.; Yu, S.; Liao, G.; Zou, P.; Tang, K.H.D.; Wu, C. Airborne Microplastics: Occurrence, Sources, Fate, Risks and Mitigation. Sci. Total Environ. 2023, 858, 159943. [Google Scholar] [CrossRef] [PubMed]
- Dris, R.; Gasperi, J.; Saad, M.; Mirande, C.; Tassin, B. Synthetic Fibers in Atmospheric Fallout: A Source of Microplastics in the Environment? Mar Pollut Bull 2016, 104, 290–293. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, S.; Allen, S.; Allen, D.; Gao, T.; Sillanpää, M. Atmospheric Microplastics: A Review on Current Status and Perspectives. Earth Sci. Rev. 2020, 203, 103118. [Google Scholar] [CrossRef]
- Abbasi, S.; Keshavarzi, B.; Moore, F.; Turner, A.; Kelly, F.J.; Dominguez, A.O.; Jaafarzadeh, N. Distribution and Potential Health Impacts of Microplastics and Microrubbers in Air and Street Dusts from Asaluyeh County, Iran. Environ. Pollut. 2019, 244, 153–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Ho, S.S.H.; Niu, X.; Xu, H.; Qu, L.; Shen, Z.; Cao, J.; Chuang, H.C.; Ho, K.F. Explorations of Tire and Road Wear Microplastics in Road Dust PM2.5 at Eight Megacities in China. Sci. Total Environ. 2022, 823, 153717. [Google Scholar] [CrossRef] [PubMed]
- Monira, S.; Bhuiyan, M.A.; Haque, N.; Pramanik, B.K. Road Dust-Associated Microplastics from Vehicle Traffics and Weathering. In Plastic Waste for Sustainable Asphalt Roads; Woodhead Publishing: Thorston, UK, 2022; pp. 257–271. [Google Scholar] [CrossRef]
- Liao, Z.; Ji, X.; Ma, Y.; Lv, B.; Huang, W.; Zhu, X.; Fang, M.; Wang, Q.; Wang, X.; Dahlgren, R.; et al. Airborne Microplastics in Indoor and Outdoor Environments of a Coastal City in Eastern China. J. Hazard Mater. 2021, 417, 126007. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Mirande, C.; Mandin, C.; Guerrouache, M.; Langlois, V.; Tassin, B. A First Overview of Textile Fibers, Including Microplastics, in Indoor and Outdoor Environments. Environ. Pollut. 2017, 221, 453–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, S.L.; Ulke, J.; Font, A.; Chan, K.L.A.; Kelly, F.J. Atmospheric Microplastic Deposition in an Urban Environment and an Evaluation of Transport. Environ. Int. 2020, 136, 105411. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Liu, K.; Zhu, L.; Song, Z.; Li, D. Atmospheric Microplastic over the South China Sea and East Indian Ocean: Abundance, Distribution and Source. J. Hazard Mater. 2020, 389, 121846. [Google Scholar] [CrossRef]
- Tunahan Kaya, A.; Yurtsever, M.; Çiftçi Bayraktar, S.; Tunahan Kaya, A.; Yurtsever, M.; Çiftçi Bayraktar, S. Ubiquitous Exposure to Microfiber Pollution in the Air. EPJP 2018, 133, 488. [Google Scholar] [CrossRef]
- Chen, G.; Fu, Z.; Yang, H.; Wang, J. An Overview of Analytical Methods for Detecting Microplastics in the Atmosphere. Trends Anal. Chem. 2020, 130, 115981. [Google Scholar] [CrossRef]
- Mariano, S.; Tacconi, S.; Fidaleo, M.; Rossi, M.; Dini, L. Micro and Nanoplastics Identification: Classic Methods and Innovative Detection Techniques. Front. Toxicol. 2021, 3, 636640. [Google Scholar] [CrossRef]
- Elert, A.M.; Becker, R.; Duemichen, E.; Eisentraut, P.; Falkenhagen, J.; Sturm, H.; Braun, U. Comparison of Different Methods for MP Detection: What Can We Learn from Them, and Why Asking the Right Question before Measurements Matters? Environ. Pollut. 2017, 231, 1256–1264. [Google Scholar] [CrossRef] [PubMed]
- Peñalver, R.; Costa-Gómez, I.; Arroyo-Manzanares, N.; Moreno, J.M.; López-García, I.; Moreno-Grau, S.; Córdoba, M.H. Assessing the Level of Airborne Polystyrene Microplastics Using Thermogravimetry-Mass Spectrometry: Results for an Agricultural Area. Sci. Total Environ. 2021, 787, 147656. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Z.; Yang, L.; Gao, T.; Zhang, Y. A Review of Analytical Methods and Models Used in Atmospheric Microplastic Research. Sci. Total Environ. 2022, 828, 154487. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xu, E.G.; Li, J.; Chen, Q.; Ma, L.; Zeng, E.Y.; Shi, H. A Review of Microplastics in Table Salt, Drinking Water, and Air: Direct Human Exposure. Environ Sci Technol 2020, 54, 3740–3751. [Google Scholar] [CrossRef] [PubMed]
- Bogdanowicz, A.; Zubrowska-Sudol, M.; Krasinski, A.; Sudol, M. Cross-Contamination as a Problem in Collection and Analysis of Environmental Samples Containing Microplastics—A Review. Sustainability 2021, 13, 12123. [Google Scholar] [CrossRef]
- Prata, J.C.; Reis, V.; da Costa, J.P.; Mouneyrac, C.; Duarte, A.C.; Rocha-Santos, T. Contamination Issues as a Challenge in Quality Control and Quality Assurance in Microplastics Analytics. J. Hazard Mater. 2021, 403, 123660. [Google Scholar] [CrossRef]
- Brander, S.M.; Renick, V.C.; Foley, M.M.; Steele, C.; Woo, M.; Lusher, A.; Carr, S.; Helm, P.; Box, C.; Cherniak, S.; et al. Sampling and Quality Assurance and Quality Control: A Guide for Scientists Investigating the Occurrence of Microplastics Across Matrices. Appl. Spectrosc. 2020, 74, 1099–1125. [Google Scholar] [CrossRef] [PubMed]
- Cowger, W.; Booth, A.M.; Hamilton, B.M.; Thaysen, C.; Primpke, S.; Munno, K.; Lusher, A.L.; Dehaut, A.; Vaz, V.P.; Liboiron, M.; et al. Reporting Guidelines to Increase the Reproducibility and Comparability of Research on Microplastics. Appl. Spectrosc. 2020, 74, 1066–1077. [Google Scholar] [CrossRef]
- Plastics Management Index Whitepaper. Available online: https://backtoblueinitiative.com/plastics-management-index-whitepaper/ (accessed on 20 June 2023).
Salt | Density g/cm3 | PET | HD PE | PVC | LD PE | PP | PS | PA | Remarks | Price EUR/kg |
---|---|---|---|---|---|---|---|---|---|---|
1.32–1.41 | 0.94–0.96 | 1.14–1.46 | 0.91–0.92 | 0.85–0.92 | 1.04–1.08 | 1.12–1.15 | ||||
Milli-Q water | 1 | − | − | − | + | + | − | − | 1. Easy to use 2. Low recovery rate | 32.20 |
NaCl | 1.2 | − | + | ± | + | + | + | + | 1. Easy to use, non-toxic 2. Low recovery rate, requires multiple washings | 46.50 |
ZnCl2 | 1.5–1.8 | + | + | + | + | + | + [46] | + | 1. Reusable 2. Corrosive, strong foaming with organic samples [47,48] 3. Toxic to aquatic life [49] | 139.00 |
NaI | 1.55–1.8 | + | + | ± | + | + | + | + | 1. Reusable 2. Reacts with cellulose fibers, hygroscopic, multistep method 3. Eye irritant | 396 |
Sodium Polytungstate | 1.4–1.65 | + | + | + | + | + | + | − | 1. Eye irritant 2. Toxic to aquatic life | 266/100 g |
Sodium Dihydrogen Phosphate monohydrate | 1.4–1.45 | + | + | + | + | + | + | − | 1. Hazard free 2. Heating is required to achieve desired density [50] | 96.60 |
CaCl2 | 1.3–1.35 | + | + | + | + | + | + [51] | − | 1.Organic matter settles slowly due to high viscosity [32] 2. Ca2+ caused flocculation of organic substances through ion bridging; thus, it is not suggested for organic rich samples [48] 3. Eye irritant | 97.60 |
ZnBr2 dihydrate | 1.7 | + | + | + | + | + | + | + | 1. Toxic to aquatic life, eye irritant | 344.00 |
NaBr | 1.37 | + | + | + | + | + | + | + [52] | 1. Eye irritant | 80.60 |
Lithium tungstate | 1.62 | + | + | + | + | + | + | + | 1. Recommended by NOAA | 79.90/25 g |
Potassium iodide | 1.7 | + | − | + | − | + | − | + | 1. Eye irritant 2. Toxic to aquatic life [53] | 298.00 |
K(HCOO) | 1.5 | + | + | + | + | + | + | + | 1. Reusable | 96/L |
NaCl/NaI | 1.2/1.8 | + | + | + | + | + | + | + | 1. High recovery rate 2. Pretreatment required [54] | − |
Height | Width | Sieve Size | Optimal Conditions | Sample Amount | Saline Solution | Removal Efficiency | Reference |
---|---|---|---|---|---|---|---|
147 cm | 15 cm | Top: 1 mm Bottom: the 35 μm mesh has the function of a sample holder, supported on a 1 mm mesh. | flux of 300 L/h of water for 15 min. | 500 mL | NaI | 93–98% | [69] |
50 cm | 5.06–10.16 cm | Top: 3 mm | 385 L/h and 5.06 cm in column width for 10 min | 500 mL | - | 50% | [70] |
186 cm | 106 mm | Top: 63 and 32 μm | 1.2 × 10−2 m/s and 1.9 × 10−2 m/s, for 300 s | 50.5 g | - | 92% | [71] |
Oil Type | Viscosity | Matrix | Separator | Amount of Oil | Sample Mass | Extraction Time | Polymer Type | Mean Recovery Rate |
---|---|---|---|---|---|---|---|---|
Canola oil | 86 cP | Aquatic sediment | Separatory funnel | 50 g | 90 to 168 min per sample | EPS, PVC, ABS, PA, and PES | 96.1% ± 7.4 | |
Canola oil | 86 cP | Fluvial/artificial sediments (environmental samples) | Sediment microplastic isolator | 10 g | 15 min for water 45 min for sediment | EPS, CoPA, PA6, PE, PP, PS, PVC, PVDC, PET, and synthetic rubber | 85.8% | |
Castor oil | 580 cP | Marine beach sediments Agricultural soil Marine suspended surface solids Fluvial suspended surface solids | Separatory funnel | - | - | PP, PS, PMMA, and PET-G spiked samples | 99% ± 4 95% ± 4% | |
Olive oil | 84 cP | Soil Compost | Cylinder | 25 g 10 g | - | PE, PS, PVC, PC, PET, and PU | 90% ± 2% to 97% ± 5% | |
NaCl + olive oil | - | Sediment Water | Custom glassware with peristaltic pump | - | - | PP, PE, PA, EPS, and PET | 82% | |
Mineral oil | 95–100 cp | Sea sand Agricultural soil Sea sediment | - | 0.25 g | 2 g | 10 s | PP, PS, LDPE, HPDE, PET, PVC, and PTFE | 99% |
S. No. | Matrix | Method | Main Composition | Temp | Digestion Time | Observations | Recovery | Ref. |
---|---|---|---|---|---|---|---|---|
1. | Organic-rich freshwater | Density separation with ZnCl2 + centrifugation | 7% NaClO | 50 °C | 6 h–12 h | Nylon: digestion LDPE: centrifugation | 94% | [89] |
2. | Mussels | Oil extraction with NaCl | 30% H2O2 | 60 °C | 40 h | Study needed for small MPs Only performed for PP, PVC, and PET | 95% | [126] |
3. | Vegetal rich clayey sediment | Density separation with ZnCl2 | 30% H2O2 | 70 °C 100 °C 100 °C | 1 h 3 h 7 h | Multiple digestion steps High temperature can degrade MPs | [127] | |
4. | Algae, driftwood, and feathers | H2O2+Fe2+ | 50 °C | 1 h | Good for plant/organic-matter removal Cellulose acetate is degraded | 65.9% | [128] | |
5. | Fish and muscles | KOH | 50 °C | 1 h | Good for animal tissues Cellulose acetate is degraded LDPE mass loss | 58.3% | [128] | |
6. | Edible salt | Density separation with NaI + centrifugation | H2O2 | 65 °C 30 °C | 24 h 48 h | MPs lost during centrifugation | 95% | [129] |
S. No. | Reagent | % | PA | PC | PE | PET | PP | PS | PVC |
---|---|---|---|---|---|---|---|---|---|
1 | HNO3 | 20 | - | R | R | R | PR | R | R |
2 | HNO3 @ 50 °C | 70 | NR | NR | NR | NR | NR | NR | NR |
3 | HCl | 35–36 | NR | NR | R | NR | R | PR | R |
4 | HCl @ 50 °C | 35–36 | NR | NR | R | NR | R | PR | PR |
5 | H2SO4 | 30 | - | R | R | R | R | R | R |
6 | H2SO4 | 95–98 | NR | NR | PR | NR | PR | NR | PR |
7 | H2SO4 @ 50 °C | 95–98 | NR | NR | NR | NR | NR | NR | NR |
8 | KOH | 30 | R | NR | R | NR | R | R | R |
9 | KOH | 50 | R | NR | R | NR | R | R | R |
10 | KOH @ 50 °C | 50 | PR | NR | R | NR | R | R | PR |
11 | NaClO | 30 | NR | R | R | R | R | R | R |
12 | NaOH | 30 | R | NR | R | NR | R | R | R |
13 | NaOH | 50 | R | NR | R | NR | R | R | R |
14 | NaOH @ 50 °C | 50 | - | NR | R | NR | R | R | R |
15 | H2O2 | 30 | NR | R | R | NR | R | R | R |
16 | H2O2 | 90 | NR | R | RR | R | R | R | NR |
17 | H2O2 @ 50 °C | 90 | NR | R | R | - | PR | R | NR |
S. No. | Reagent | Cost |
---|---|---|
1 | HNO3 | EUR 28.20/L |
2 | HCl 1M | EUR 29.80/L |
3 | H2SO4 | EUR 41.00/L |
4 | KOH | EUR 44.80/kg |
5 | NaClO | EUR 23.72/L |
6 | NaOH | EUR 45.60/kg |
7 | H2O2 | EUR 38.70/L |
8 | Protease A | EUR 147.00/mg |
Lipase FE-01 | EUR 181/mg | |
Amylase TXL | EUR 95.70/mg | |
Cellulase TXL | EUR 36.00/g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rani, M.; Ducoli, S.; Depero, L.E.; Prica, M.; Tubić, A.; Ademovic, Z.; Morrison, L.; Federici, S. A Complete Guide to Extraction Methods of Microplastics from Complex Environmental Matrices. Molecules 2023, 28, 5710. https://doi.org/10.3390/molecules28155710
Rani M, Ducoli S, Depero LE, Prica M, Tubić A, Ademovic Z, Morrison L, Federici S. A Complete Guide to Extraction Methods of Microplastics from Complex Environmental Matrices. Molecules. 2023; 28(15):5710. https://doi.org/10.3390/molecules28155710
Chicago/Turabian StyleRani, Monika, Serena Ducoli, Laura Eleonora Depero, Miljana Prica, Aleksandra Tubić, Zahida Ademovic, Liam Morrison, and Stefania Federici. 2023. "A Complete Guide to Extraction Methods of Microplastics from Complex Environmental Matrices" Molecules 28, no. 15: 5710. https://doi.org/10.3390/molecules28155710
APA StyleRani, M., Ducoli, S., Depero, L. E., Prica, M., Tubić, A., Ademovic, Z., Morrison, L., & Federici, S. (2023). A Complete Guide to Extraction Methods of Microplastics from Complex Environmental Matrices. Molecules, 28(15), 5710. https://doi.org/10.3390/molecules28155710