Adsorption of Phenoxyacetic Herbicides from Water on Carbonaceous and Non-Carbonaceous Adsorbents
Abstract
:1. Introduction
2. Physical, Chemical, and Biological Properties of Phenoxy Carboxylic Acid Herbicides
3. Chlorinated Phenoxyacetic Acids in the Natural Environment
4. Adsorption of Chlorinated Phenoxyacetic Acids on Carbonaceous Adsorbents
4.1. Commercial Activated Carbons
4.2. Activated Carbons from Solid Wastes
4.3. Other Carbonaceous Materials
5. Adsorption of Chlorinated Phenoxyacetic Acids on Non-Carbonaceous Adsorbents
5.1. Inorganic Materials
5.2. Non-Conventional (Low-Cost) Adsorbents
5.2.1. Natural Materials
Adsorbent | BET m2 g−1 | Adsorption Capacity (qm) mg g−1 | Isotherm Model | Kinetic Model | Ref. | |
---|---|---|---|---|---|---|
2,4-D | MCPA | |||||
Andisol soil | - | 0.0095 | - | - | PFO, PSO, E, W-M | [151] |
bentonite | - | 0.014 | - | L, F | - | [154] |
N-cetylpyridinium modified bentonite | - | 0.378 | - | L, F | - | [154] |
N-cetylpyridinium modified zeolite | - | 0.130 | - | L, F | - | [154] |
Modified bentonite | - | 136.1 | - | L, F, D-R | PFO, PSO, B, E, W-M | [155] |
Raw bentonite (Wyoming) | 10.2 | 1.19 | - | L, F, L-F | PFO, PSO, E | [156] |
Raw bentonite (Clair T) | 79.3 | 1.79 | - | L, F, L-F | PFO, PSO, E | [156] |
HDTMA modified bentonite | 2.0 | 47.2 | - | L | - | [157] |
Commercial bentonite clay | - | 6.45 | - | L, F, Te | PFO, PSO, E, W-M | [159] |
Dodecylammonium bentonite | - | 0.0003 | 0.0001 | L, F, H | - | [162] |
Dodecylammonium sepiolite | - | 0.046 | 0.0008 | L, F, H | - | [162] |
Non-modified bentonite | 31.76 | 0.32 | - | L, F, Te, D-R | PFO, PSO, E, W-M | [164] |
Acid-treated bentonite BA0.5 | 77.12 | 0.31 | - | L, F, Te | PFO, PSO, W-M | [164] |
Heat-treated bentonite BC500 | 32.19 | 0.28 | - | L, F | PFO, PSO | [164] |
N-cetylpyridinium modified sepiolite | - | 0.076 | - | L, F | - | [165] |
Clinoptilolite | - | 42.02 | - | L, F | - | [166] |
Clinoptilolite HLC | - | 94.34 | - | L, F | - | [166] |
Clinoptilolite DLC | - | 75.19 | - | L, F | - | [166] |
Zeolite Y | - | 51.81 | - | L, F | - | [166] |
Zeolite Y HLY | - | 116.3 | - | L, F | - | [166] |
Zeolite Y DLY | - | 120.5 | - | L, F | - | [166] |
Bentonite | - | 121.9 | - | L, F | - | [166] |
Bentonite HLB | - | 129.9 | - | L, F | - | [166] |
Bentonite DLB | - | 133.3 | - | L, F | - | [166] |
Montmorillonite | - | 78.13 | - | L, F | - | [166] |
Montmorillonite HLM | - | 158.7 | - | L, F | - | [166] |
Montmorillonite DLM | - | 161.3 | - | L, F | - | [166] |
Zeolite Y | 744 | 175.4 | - | L, F | PFO, PSO | [167] |
HDTMA-modified zeolite | 299 | 82.64 | - | L, F | PFO, PSO | [167] |
SDS-modified zeolite | 548 | 120.5 | - | L, F | PFO, PSO | [167] |
Montmorillonite (Cloisite 30B) | - | 282.9 | - | L, F, D-R | PFO, PSO, W-M | [168] |
Argentine montmorillonite | 573 | - | 0.0069 | L, F | - | [172] |
DDTMA treated montmorillonite | 108 | - | 0.0570 | L, F | - | [172] |
OP2CEC organo-palygorskite | 33.2 | 42.02 | - | L | - | [174] |
DP2CEC organo-palygorskite | 25.6 | 25.77 | - | L | - | [174] |
Calcined hydrotalcite | - | 0.0018 | - | L | - | [175] |
Bituminous shale | 11.0 | 0.0114 | - | L, F, D-R | M-P | [176] |
Bituminous shale | 11.0 | - | 0.0101 | L, F, D-R, Te | M-P | [177] |
Lignite | 0.91 | 7.783 | 7.431 | L, F, L-F | PFO, PSO, B, W-M | [181] |
5.2.2. Natural Biosorbents
Adsorbent | BET m2 g−1 | Adsorption Capacity (qm) mg g−1 | Isotherm Model | Kinetic Model | Ref. | |
---|---|---|---|---|---|---|
2,4-D | MCPA | |||||
Chitin | - | 6.08 | - | L, F | - | [182] |
Chitosan | - | 11.20 | - | L, F | - | [182] |
Aminated Penicillium chrysogenum biomass | - | 0.270 | - | L | PFO, PSO, W-M | [183] |
Pristine Penicillium chrysogenum biomass | - | 0.088 | - | L | PFO, PSO, W-M | [183] |
Water hyacinth based biosorbent | - | 40.0 | - | L | PFO, PSO, W-M | [184] |
Modified Physalis peruvian chalice | - | 244.2 | - | L, F, To | PFO, PSO, W-M | [185] |
Modified Merremia vitifolia biomass | - | 66.93 | - | L, F, Te, D-R | PFO, PSO, W-M, B | [186] |
Modified Merremia vitifolia biomass | 196.2 | 181.4 | - | L, F, Te, D-R | PFO, PSO, W-M, B | [187] |
Untreated jute powder | - | 16.1 | - | L, F | PFO, PSO | [188] |
Modified jute powder | - | 38.5 | - | L, F | PFO, PSO | [188] |
Anoxybacillus flavithermus biomass | - | 24.15 | - | L, F | PFO, PSO | [189] |
Oscillatoria sp.- cyanobacterial mat | - | 0.088 | - | L, F | - | [190] |
Raw sterile bracts of Araucaria angustifolia | - | 109.8 | - | L, F, R-P, S | PFO, PSO | [191] |
Boiling-treated sterile bracts of Araucaria angustifolia | - | 126.3 | - | L, F, R-P, S | PFO, PSO | [191] |
Macro fungi Sajor caju | - | 0.810 | - | L, F | - | [192] |
Macro fungi Florida | - | 0.880 | - | L, F | - | [192] |
5.2.3. Industrial By-Products
Adsorbent | BET m2 g−1 | Adsorption Capacity (qm) mg g−1 | Isotherm Model | Kinetic Model | Ref. | |
---|---|---|---|---|---|---|
2,4-D | MCPA | |||||
Rubber granules | - | 0.900 | - | L, F | - | [192] |
Bagasse fly ash | 52 | 5.63 | - | L, F, Te | - | [195] |
Lignite fly ash | 12.9 | 0.004 | - | L, F | PFO, PSO, W-M | [197] |
Blast furnace sludge | 28 | 30.0 | - | L, F | - | [105] |
Blast furnace dust | 13 | 21.0 | - | L, F | - | [105] |
Surfactant modified silica gel waste | 194 | 33.9 | - | L, F, Te, R-P | PFO, PSO | [198] |
Activated spent bleaching earth | 198 | - | 0.016 | L, F | PFO, W-M | [199] |
5.2.4. Metal Oxides and Hydroxides
Adsorbent | BET m2 g−1 | Adsorption Capacity (qm) mg g−1 | Isotherm Model | Kinetic Model | Ref. | |
---|---|---|---|---|---|---|
2,4-D | MCPA | |||||
In situ-generated metal hydroxides | - | 45.4 | - | L, F | PFO, PSO | [201] |
Calcinated Mg-Al-CO3-LDH | 62 | 1.111 | 0.938 | L | - | [204] |
Al2O3 | 195 | - | 13.64 | F | PFO | [202] |
Fe2O | 106 | - | 11.84 | F | PFO | [202] |
Cu-Fe-NO3-LDH | - | 1428 | - | L, F | PFO, PSO, E, W-M | [205] |
Cu-Fe-NO3-LDH | - | - | 800 | L, F | PFO, PSO, E, W-M | [206] |
Zn-Al-Cl-LDH | - | 1.158 | - | L | - | [207] |
Co-Al-Cl-LDH | 44 | 30.1 | - | L, F | PFO, PSO, W-M | [208] |
5.3. Other Materials
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
AC | Activated carbon |
B | Boyd kinetic model |
Ba | Bangham kinetic model |
Bi | Biot number |
βL | External mass transfer coefficient, cm s−1 |
D-R | Dubinin-Radushkevich isotherm |
Deff | Effective diffusivity, cm2 s−1 |
Di | Effective diffusion coefficient, m2 s−1 |
DL | Axial dispersion coefficient, m2 s−1 |
Dm | Molecular diffusion coefficient, m2 s−1 |
Dp | Effective pore diffusion coefficient, m2 s−1 |
Ds | Effective surface diffusion coefficient, m2 s−1 |
E | Elovich isotherm |
F | Freundlich isotherm |
f-MOE | Fractal mixed-order equation |
F-S | Fritz-Schlunder isotherm model |
GF | The Generalized Freundlich isotherm |
GL | The Generalized Langmuir isotherm |
H | The linear Henry’s Law isotherm |
IDM | Intraparticle diffusion model |
K-C | Koble-Corrigan equilibrium model |
k | Intraparticle diffusion rate in W-M kinetic model, |
k1 | Rate constant for PFO kinetic model, min−1 |
k2 | Rate constant for PSO kinetic model, g mg−1 min−1 |
kf | Film mass transfer coefficient, m s−1 |
ks | Solid mass transfer coefficient, s−1 |
kL | External mass transfer coefficient, cm min−1 |
L | Langmuir isotherm |
L-F | Langmuir-Freundlich isotherm |
McKay | McKay’s pore diffusion model |
m-exp | Multi-exponential kinetic equation |
MOE | Mixed-order equation |
M-P | McKay and Paterson’s equations |
PDM | Pore diffusion model |
PFO | Pseudo-first-order kinetic model/equation (PFOE) |
PSO | Pseudo-second-order kinetic model/equation (PSOE) |
qm | The maximum adsorption capacity, mg g−1 |
R-P | Redlich-Peterson isotherm |
S | Sips isotherm |
Te | Temkin isotherm |
To | Toth isotherm |
W-M | Weber-Morris kinetic model |
References
- U.S. FAO Food and Agriculture Organization of the United Nations. Pesticides Use, Pesticides Trade and Pesticides Indicators. Global, Regional and Country Trends, 1990–2020. 2022. Available online: http://www.fao.org/faostat/en/#data/RP (accessed on 1 July 2023).
- U.S. EPA. Enlist One and Enlist Duo Decision; EPA-HQ-OPP-2021-0957; U.S. EPA: Washington, DC, USA, 2022.
- von Stackelberg, K. A systematic review of carcinogenic outcomes and potential mechanisms from exposure to 2,4-D and MCPA in the environment. J. Toxicol. 2013, 2013, 1–53. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Guidelines for Drinking-Water Quality, 2,4-D in Drinking-Water, WHO/SDE/WSH/03.04/70; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- World Health Organization. WHO Guidelines for Drinking-Water Quality, MCPA in Drinking-Water, WHO/SDE/WSH/03.04/38; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Magnoli, K.; Carranza, C.; Aluffi, M.; Magnoli, C.; Barberis, C. Fungal biodegradation of chlorinated herbicides: An overview with an emphasis on 2,4-D in Argentina. Biodegradation 2023, 34, 199–214. [Google Scholar] [CrossRef] [PubMed]
- Girón-Navarro, R.; Linares-Hernández, I.; Teutli-Sequeira, E.A.; Martínez-Miranda, V.; Santoyo-Tepole, F. Evaluation and comparison of advanced oxidation processes for the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D): A review. Environ. Sci. Pollut. Res. 2021, 28, 26325–26358. [Google Scholar] [CrossRef] [PubMed]
- Magnoli, K.; Carranza, C.S.; Aluffi, M.E.; Magnoli, C.E.; Barberis, C.L. Herbicides based on 2,4-D: Its behavior in agricultural environments and microbial biodegradation aspects. A review. Environ. Sci. Pollut. Res. 2020, 27, 38501–38512. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, N.S.; Mandavgane, S.A. Fundamentals of 2, 4 Dichlorophenoxyacetic Acid Removal from Aqueous Solutions. Sep. Purif. Rev. 2018, 47, 337–354. [Google Scholar] [CrossRef]
- Muszyński, P.; Brodowska, M.S.; Paszko, T. Occurrence and transformation of phenoxy acids in aquatic environment and photochemical methods of their removal: A review. Environ. Sci. Pollut. Res. 2020, 27, 1276–1293. [Google Scholar] [CrossRef] [Green Version]
- Mechnou, I.; Meskini, S.; Raji, Y.; Kouar, J.; Hlaibi, M. Development of a novel in-situ aluminum/carbon composite from olive mill wastewater for the selective adsorption and separation of malachite green and acid yellow 61. Bioresour. Technol. 2023, 384, 129272. [Google Scholar] [CrossRef]
- Mechnou, I.; Meskini, S.; Mourtah, I.; Lebrun, L.; Hlaibi, M. Use of phosphorus-doped microporous carbon from olive mill wastewater for effective removal of Crystal violet and Methylene blue. J. Clean. Prod. 2023, 393, 136333. [Google Scholar] [CrossRef]
- Mechnou, I.; Meskini, S.; El Ayar, D.; Lebrun, L.; Hlaibi, M. Olive mill wastewater from a liquid biological waste to a carbon/oxocalcium composite for selective and efficient removal of methylene blue and paracetamol from aqueous solution. Bioresour. Technol. 2022, 365, 128162. [Google Scholar] [CrossRef]
- Raji, Y.; Nadi, A.; Mechnou, I.; Saadouni, M.; Cherkaoui, O.; Zyade, S. High adsorption capacities of crystal violet dye by low-cost activated carbon prepared from Moroccan Moringa oleifera wastes: Characterization, adsorption and mechanism study. Diam. Relat. Mater. 2023, 135, 109834. [Google Scholar] [CrossRef]
- Mithila, J.; Hall, J.C.; Johnson, W.G.; Kelley, K.B.; Riechers, D.E. Evolution of resistance to auxinic herbicides: Historical perspectives, mechanisms of resistance, and implications for broadleaf weed management in agronomic crops. Weed Sci. 2011, 59, 445–457. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Li, J.; Qu, L.-J. 2-Auxins. In Hormone Metabolism and Signaling in Plants; Li, J., Li, C., Smith, S.M., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 39–76. [Google Scholar]
- Stenersen, J. Chemical Pesticides Mode of Action and Toxicology; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Benfeito, S.; Garrido, J.; Sottomayor, B.M.J.; Fernanda, G. Pesticides and cancer: Studies on the interaction of phenoxy acid herbicides with DNA. In Handbook on Herbicides; Kobayashi, D., Watanabe, E., Eds.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2013. [Google Scholar]
- Atwood, D.; Paisley-Jones, C. Pesticides Industry Sales and Usage 2008–2012 Market Estimates. Available online: https://www.epa.gov/sites/production/files/2017-01/documents/pesticides-industry-sales-usage-2016_0.pdf (accessed on 1 January 2023).
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef] [Green Version]
- Morton, P.A.; Fennell, C.; Cassidy, R.; Doody, D.; Fenton, O.; Mellander, P.E.; Jordan, P. A review of the pesticide MCPA in the land-water environment and emerging research needs. Wiley Interdiscip. Rev. Water 2020, 7, e1402. [Google Scholar] [CrossRef] [Green Version]
- Tu, M.; Hurd, C.; Randall, J.M. Weed Control Methods Handbook: Tools & Techniques for Use in Natural Areas; The Nature Conservancy: Harrisburg, PA, USA, 2001. [Google Scholar]
- Derylo-Marczewska, A.; Blachnio, M.; Marczewski, A.W.; Seczkowska, M.; Tarasiuk, B. Phenoxyacid pesticide adsorption on activated carbon–Equilibrium and kinetics. Chemosphere 2019, 214, 349–360. [Google Scholar] [CrossRef]
- Hornsby, A.G.; Herner, A.E.; Wauchope, R.D. Pesticide Properties in the Environment; Springer: New York, NY, USA, 1996. [Google Scholar]
- Roberts, T.R.; Hutson, D.H.; Lee, P.W.; Nicholls, P.H. Metabolic Pathways of Agrochemicals. Part 1: Herbicides and Plant Growth Regulators; Royal Society of Chemistry: Cambridge, UK, 1998. [Google Scholar]
- Yalkowsky, S.H.; He, Y.; Jain, P. Handbook of Aqueous Solubility Data; CRC Press Library of Congress: Boca Raton, FL, USA, 2010. [Google Scholar]
- Khan, A.A.; Akhtar, T. Adsorption thermodynamics studies of 2,4,5-trichlorophenoxy acetic acid on poly-o-toluidine Zr(IV) phosphate, a nano-composite used as pesticide sensitive membrane electrode. Desalination 2011, 272, 259–264. [Google Scholar] [CrossRef]
- Kennepohl, E.; Munro, I.C.; Bus, J.S. Phenoxy herbicides (2,4-D). In Hayes’ Handbook of Pesticide Toxicology, 3rd ed.; Krieger, R., Ed.; Academic Press: New York, NY, USA, 2010; pp. 1829–1847. [Google Scholar]
- Tűrker, L. AM1 treatment of some phenoxyacetic acid herbicides. Turk. J. Biol. 2000, 24, 291–298. [Google Scholar]
- Birnbaum, L.S. The role of structure in the disposition of halogenated aromatic xenobiotics. Environ. Health Perspect. 1985, 61, 11–20. [Google Scholar] [CrossRef]
- Marvin 14.8.25.0 Suite Program; ChemAxon Ltd.: Budapest, Hungary, 2017.
- Mueller, T.C. Methods to measure herbicide volatility. Weed Sci. 2015, 63, 116–120. [Google Scholar] [CrossRef] [Green Version]
- Polli, E.G.; Alves, G.S.; de Oliveira, J.V.; Kruger, G.R. Physical-chemical properties, droplet size, and efficacy of dicamba plus glyphosate tank mixture influenced by adjuvants. Agronomy 2021, 11, 1321. [Google Scholar] [CrossRef]
- Le Person, A.; Mellouki, A.; Munoz, A.; Borras, E.; Martin-Reviejo, M.; Wirtz, K. Trifluralin: Photolysis under sunlight conditions and reaction with HO radicals. Chemosphere 2007, 67, 376–383. [Google Scholar] [CrossRef]
- Murschell, T.; Farmer, D.K. Atmospheric OH oxidation of three chlorinated aromatic herbicides. Environ. Sci. Technol. 2018, 52, 4583–4591. [Google Scholar] [CrossRef] [PubMed]
- Jote, C.A. A review of 2,4-D environmental fate, persistence and toxicity effects on living organisms. Org. Med. Chem. Int. J. 2019, 9, 22–32. [Google Scholar] [CrossRef]
- Murschell, T.; Farmer, D.K. Real-Time Measurement of Herbicides in the Atmosphere: A Case Study of MCPA and 2,4-D during Field Application. Toxics 2019, 7, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruse-Plaß, M.; Hofmann, F.; Wosniok, W.; Schlechtriemen, U.; Kohlschütter, N. Pesticides and pesticide-related products in ambient air in Germany. Environ. Sci. Eur. 2021, 33, 114. [Google Scholar] [CrossRef]
- Zaller, J.G.; Kruse-Plaß, M.; Schlechtriemen, U.; Gruber, E.; Peer, M.; Nadeem, I.; Formayer, H.; Hutter, H.-P.; Landler, L. Pesticides in ambient air, influenced by surrounding land use and weather, pose a potential threat to biodiversity and humans. Sci. Total Environ. 2022, 838, 156012. [Google Scholar] [CrossRef]
- Bish, M.; Oseland, E.; Bradley, K. Off-target pesticide movement: A review of our current understanding of drift due to inversions and secondary movement. Weed Technol. 2021, 35, 345–356. [Google Scholar] [CrossRef]
- Boivin, A.; Cherrier, R.; Schiavon, M. A comparison of five pesticides adsorption and desorption processes in thirteen contrasting field soils. Chemosphere 2005, 61, 668–676. [Google Scholar] [CrossRef]
- Barchańska, H.; Czaplicka, M.; Kyzioł-Komosińska, J. Interaction of selected pesticides with mineral and organic soil components. Arch. Environ. Prot. 2020, 46, 80–91. [Google Scholar] [CrossRef]
- Celis, R.; Real, M.; Hermosin, M.C.; Cornejo, J. Sorption and leaching behaviour of polar aromatic acids in agricultural soils by batch and column leaching tests. Eur. J. Soil Sci. 2005, 56, 287–297. [Google Scholar] [CrossRef]
- Meftaul, I.M.; Venkateswarlu, K.; Dharmarajan, R.; Annamalai, P.; Megharaj, M. Movement and Fate of 2,4-D in Urban Soils: A Potential Environmental Health Concern. ACS Omega 2020, 5, 13287–13295. [Google Scholar] [CrossRef]
- Jamshidi, M.H.; Salehian, H.; Babanezhad, E.; Rezvani, M. The Adsorption and Degradation of 2,4-D Affected by Soil Organic Carbon and Clay. Bull. Environ. Contam. Toxicol. 2022, 108, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Georgieva, I.; Kersten, M.; Tunega, D. Molecular modeling of MCPA herbicide adsorption by goethite (110) surface in dependence of pH. Theor. Chem. Acc. 2020, 139, 132. [Google Scholar] [CrossRef]
- Hiller, E.; Khun, M.; Zemanova, L.; Jurkovic, L.; Bartal, M. Laboratory study of retention and release of weak acid herbicide MCPA by soils and sediments and leaching potential of MCPA. Plant Soil Environ. 2006, 52, 550–558. [Google Scholar] [CrossRef] [Green Version]
- Gamhewage, M.; Farenhorst, A.; Sheedy, C. Phenoxy herbicides’ interactions with river bottom sediments. J. Soils Sediments 2019, 19, 3620–3630. [Google Scholar] [CrossRef]
- Ozbay, B.; Akyol, N.H.; Akyol, G.; Ozbay, I. Sorption and desorption behaviours of 2,4-D and glyphosate in calcareous soil from Antalya, Turkey. Water Environ. J. 2018, 32, 141–148. [Google Scholar] [CrossRef]
- Werner, D.; Garratt, J.A.; Pigott, G. Sorption of 2,4-D and other phenoxy herbicides to soil, organic matter, and minerals. J. Soils Sediments 2013, 13, 129–139. [Google Scholar] [CrossRef]
- Hiller, E.; Krascsenits, Z.; Cernansky, S. Sorption of acetochlor, atrazine, 2,4-D, chlorotoluron, MCPA, and trifluralin in six soils from Slovakia. Bull. Environ. Contam. Toxicol. 2008, 80, 412–416. [Google Scholar] [CrossRef]
- Véronique, C.; Laure, M.; Laure, V.-G.; Christian, M.; Pierre, B.; Enrique, B.; Sylvie, N.l. Fate of Pesticides in Soils: Toward an Integrated Approach of Influential Factors. In Pesticides in the Modern World; Margarita, S., Ed.; IntechOpen: Rijeka, Yugoslavia, 2011; Chapter 29; pp. 535–560. [Google Scholar]
- Schröter, M.; Bonn, A.; Klotz, S.; Seppelt, R.; Baessler, C. Atlas of Ecosystem Services: Drivers, Risks, and Societal Responses; Springer: Cham, Switzerland, 2019. [Google Scholar]
- EPA. Drinking Water Report for Public Water Supplies 2016; Environmental Protection Agency: Wexford, Ireland, 2017.
- Overview of the Drinking Water Quality in Bulgaria. Results of the Reporting 2011–2013 under the Drinking Water Directive 98/83/EC, European Topic Centre: Inland, Coastal and Marine Waters; European Topic Centre: Copenhagen, Denmark, 2016. [Google Scholar]
- Overview of the Drinking Water Quality in Greece. Results of the Reporting 2011–2013 under the Drinking Water Directive 98/83/EC, European Topic Centre: Inland, Coastal and Marine Waters; European Topic Centre: Copenhagen, Denmark, 2016. [Google Scholar]
- Overview of the Drinking Water Quality in Ireland. Results of the Reporting 2011–2013 under the Drinking Water Directive 98/83/EC, European Topic Centre: Inland, Coastal and Marine Waters; European Topic Centre: Copenhagen, Denmark, 2016. [Google Scholar]
- Overview of the Drinking Water Quality in United Kingdom. Results of the Reporting 2011–2013 under the drinking Water Directive 98/83/EC, European Topic Centre: Inland, Coastal and Marine Waters; European Topic Centre: Copenhagen, Denmark, 2016. [Google Scholar]
- NI Water. Drinking Water Quality Annual Report 2018; Northern Ireland Water: Belfast, UK, 2018. [Google Scholar]
- EC. Council of the European Commission Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption; European Parliament and of the Council: Brussels, Belgium, 1998. [Google Scholar]
- McManus, S.L.; Richards, K.G.; Grant, J.; Mannix, A.; Coxon, C.E. Pesticide occurrence in groundwater and the physical characteristics in association with these detections in Ireland. Environ. Monit. Assess. 2014, 186, 7819–7836. [Google Scholar] [CrossRef]
- Kock-Schulmeyer, M.; Ginebreda, A.; Postigo, C.; Garrido, T.; Fraile, J.; de Alda, M.L.; Barcelo, D. Four-year advanced monitoring program of polar pesticides in groundwater of Catalonia (NE-Spain). Sci. Total Environ. 2014, 470, 1087–1098. [Google Scholar] [CrossRef]
- McManus, S.L.; Coxon, C.E.; Mellander, P.E.; Danaher, M.; Richards, K.G. Hydrogeological characteristics influencing the occurrence of pesticides and pesticide metabolites in groundwater across the Republic of Ireland. Sci. Total Environ. 2017, 601, 594–602. [Google Scholar] [CrossRef]
- Loos, R.; Tavazzi, S.; Mariani, G.; Suurkuusk, G.; Paracchini, B.; Umlauf, G. Analysis of emerging organic contaminants in water, fish and suspended particulate matter (SPM) in the Joint Danube Survey using solid-phase extraction followed by UHPLC-MS-MS and GC-MS analysis. Sci. Total Environ. 2017, 607, 1201–1212. [Google Scholar] [CrossRef] [PubMed]
- Spycher, S.; Mangold, S.; Doppler, T.; Junghans, M.; Wittmer, I.; Stamm, C.; Singer, H. Pesticide risks in small streams-How to get as close as possible to the stress imposed on aquatic organisms. Environ. Sci. Technol. 2018, 52, 4526–4535. [Google Scholar] [CrossRef]
- McManus, S.L.; Moloney, M.; Richards, K.G.; Coxon, C.E.; Danaher, M. Determination and occurrence of phenoxyacetic acid herbicides and their transformation products in groundwater using ultra high performance liquid chromatography coupled to tandem mass spectrometry. Molecules 2014, 19, 20627–20649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrero-Hernandez, E.; Rodriguez-Gonzalo, E.; Andrades, M.S.; Sanchez-Gonzalez, S.; Carabias-Martinez, R. Occurrence of phenols and phenoxyacid herbicides in environmental waters using an imprinted polymer as a selective sorbent. Sci. Total 2013, 454, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Glozier, N.E.; Struger, J.; Cessna, A.J.; Gledhill, M.; Rondeau, M.; Ernst, W.R.; Sekela, M.A.; Cagampan, S.J.; Sverko, E.; Murphy, C.; et al. Occurrence of glyphosate and acidic herbicides in select urban rivers and streams in Canada, 2007. Environ. Sci. Pollut. Res. 2012, 19, 821–834. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, W.; Kusmierek, K.; Swiatkowski, A. Sorption equilibrium prediction of competitive adsorption of herbicides 2,4-D and MCPA from aqueous solution on activated carbon using ANN. Adsorption 2014, 20, 899–904. [Google Scholar] [CrossRef]
- Kusmierek, K.; Sankowska, M.; Swiatkowski, A. Kinetic and equilibrium studies of simultaneous adsorption of monochlorophenols and chlorophenoxy herbicides on activated carbon. Desalination Water Treat. 2014, 52, 178–183. [Google Scholar] [CrossRef]
- Kusmierek, K.; Bialek, A.; Swiatkowski, A. Effect of activated carbon surface chemistry on adsorption of phenoxy carboxylic acid herbicides from aqueous solutions. Desalination Water Treat. 2020, 186, 450–459. [Google Scholar] [CrossRef]
- Derylo-Marczewska, A.; Blachnio, M.; Marczewski, A.W.; Swiatkowski, A.; Tarasiuk, B. Adsorption of selected herbicides from aqueous solutions on activated carbon. J. Therm. Anal. Calorim. 2010, 101, 785–794. [Google Scholar] [CrossRef] [Green Version]
- Derylo-Marczewska, A.; Blachnio, M.; Marczewski, A.W.; Swiatkowski, A.; Buczek, B. Adsorption of chlorophenoxy pesticides on activated carbon with gradually removed external particle layers. Chem. Eng. J. 2017, 308, 408–418. [Google Scholar] [CrossRef]
- Doczekalska, B.; Kusmierek, K.; Swiatkowski, A.; Bartkowiak, M. Adsorption of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-metylphenoxyacetic acid onto activated carbons derived from various lignocellulosic materials. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2018, 53, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Blachnio, M.; Derylo-Marczewska, A.; Charmas, B.; Zienkiewicz-Strzalka, M.; Bogatyrov, V.; Galaburda, M. Activated Carbon from Agricultural Wastes for Adsorption of Organic Pollutants. Molecules 2020, 25, 5105. [Google Scholar] [CrossRef] [PubMed]
- Gimeno, O.; Plucinski, P.; Kolaczkowski, S.T.; Rivas, F.J.; Alvarez, P.M. Removal of the herbicide MCPA by commercial activated carbons: Equilibrium, kinetics, and reversibility. Ind. Eng. Chem. Res. 2003, 42, 1076–1086. [Google Scholar] [CrossRef]
- Aksu, Z.; Kabasakal, E. Batch adsorption of 2,4-dichlorophenoxy-acetic acid (2,4-D) from aqueous solution by granular activated carbon. Sep. Purif. Technol. 2004, 35, 223–240. [Google Scholar] [CrossRef]
- Cho, S.Y.; Park, S.S.; Kim, S.J.; Kim, T.Y. Adsorption and desorption characteristics of 2-methyl-4-chlorophenoxyacetic acid onto activated carbon. Korean J. Chem. Eng. 2006, 23, 638–644. [Google Scholar] [CrossRef]
- Kim, T.Y.; Park, S.S.; Kim, S.J.; Cho, S.Y. Separation characteristics of some phenoxy herbicides from aqueous solution. Adsorption 2008, 14, 611–619. [Google Scholar] [CrossRef]
- Ignatowicz, K. Selection of sorbent for removing pesticides during water treatment. J. Hazard. Mater. 2009, 169, 953–957. [Google Scholar] [CrossRef]
- Salman, J.M.; Hameed, B.H. Adsorption of 2,4-dichlorophenoxyacetic acid and carbofuran pesticides onto granular activated carbon. Desalination 2010, 256, 129–135. [Google Scholar] [CrossRef]
- Daiem, M.M.A.; Rivera-Utrilla, J.; Sanchez-Polo, M.; Ocampo-Perez, R. Single, competitive, and dynamic adsorption on activated carbon of compounds used as plasticizers and herbicides. Sci. Total Environ. 2015, 537, 335–342. [Google Scholar] [CrossRef]
- Skrzypczynska, K.; Kusmierek, K.; Swiatkowski, A. Carbon paste electrodes modified with various carbonaceous materials for the determination of 2,4-dichlorophenoxyacetic acid by differential pulse voltammetry. J. Electroanal. Chem. 2016, 766, 8–15. [Google Scholar] [CrossRef]
- Bialek, A.; Skrzypczynska, K.; Kusmierek, K.; Swiatkowski, A. Sensitivity change of the modified carbon paste electrodes for detection of chlorinated phenoxyacetic acids. Chem. Process Eng. 2019, 40, 315–325. [Google Scholar] [CrossRef]
- Blachnio, M.; Derylo-Marczewska, A.; Seczkowska, M. Influence of pesticide properties on adsorption capacity and rate on activated carbon from aqueous solution. In Sorption in 2020s; Kyzas, G., Lazaridis, N., Eds.; IntechOpen: London, UK, 2019. [Google Scholar]
- Cocco, N.M.; Pauletto, P.S.; Dotto, G.L.; Salau, N.P.G. Mass transfer models for the adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) and atrazine herbicides from agricultural wastewaters. Chem. Eng. Commun. 2022, 210, 247–258. [Google Scholar] [CrossRef]
- Marsolla, L.D.; Brito, G.M.; Freitas, J.C.C.; Coelho, E.R.C. Removing 2,4-D micropollutant herbicide using powdered activated carbons: The influence of different aqueous systems on adsorption process. J. Environ. Sci. Health Part B 2022, 57, 588–596. [Google Scholar] [CrossRef]
- Yang, M.; Hubble, J.; Lockett, A.D.; Rathbone, R.R. Thermal monitoring of phenoxyacid herbicide absorption on granular activated carbon. Water Res. 1997, 31, 2356–2362. [Google Scholar] [CrossRef]
- Hu, J.Y.; Aizawa, T.; Ookubo, Y.; Morita, T.; Magara, Y. Adsorptive characteristics of ionogenic aromatic pesticides in water on powdered activated carbon. Water Res. 1998, 32, 2593–2600. [Google Scholar] [CrossRef]
- Belmouden, M.; Assabbane, A.; Ichou, Y.A. Removal of 2.4-dichloro phenoxyacetic acid from aqueous solution by adsorption on activated carbon. A kinetic study. Ann. Chim. Sci. Des Mater. 2001, 26, 79–85. [Google Scholar] [CrossRef]
- Cho, S.Y.; Kim, S.J.; Kim, T.Y.; Moon, H. Adsorption characteristics of 2,4-dichlorophenoxyacetic acid and 2,4-dinitrophenol in a fixed bed adsorber. Korean J. Chem. Eng. 2003, 20, 365–374. [Google Scholar] [CrossRef]
- Chingombe, P.; Saha, B.; Wakeman, R.J. Effect of surface modification of an engineered activated carbon on the sorption of 2,4-dichlorophenoxy acetic acid and benazolin from water. J. Colloid Interface Sci. 2006, 297, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Spaltro, A.; Pila, M.; Simonetti, S.; Alvarez-Torrellas, S.; Rodriguez, J.G.; Ruiz, D.; Company, A.D.; Juan, A.; Allegretti, P. Adsorption and removal of phenoxy acetic herbicides from water by using commercial activated carbons: Experimental and computational studies. J. Contam. Hydrol. 2018, 218, 84–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aksu, Z.; Kabasakal, E. Adsorption characteristics of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous solution on powdered activated carbon. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2005, 40, 545–570. [Google Scholar] [CrossRef]
- Marczewski, A.W.; Seczkowska, M.; Derylo-Marczewska, A.; Blachnio, M. Adsorption equilibrium and kinetics of selected phenoxyacid pesticides on activated carbon: Effect of temperature. Adsorption 2016, 22, 777–790. [Google Scholar] [CrossRef] [Green Version]
- Kusmierek, K.; Pakula, M.; Biniak, S.; Swiatkowski, A.; Dabek, L. Adsorption and electrodegradation of phenoxyacetic acids on various activated carbons. Int. J. Electrochem. Sci. 2020, 15, 5770–5781. [Google Scholar] [CrossRef]
- Kusmierek, K.; Swiatkowski, A.; Skrzypczynska, K.; Dabek, L. Adsorptive and electrochemical properties of carbon nanotubes, activated carbon, and graphene oxide with relatively similar specific surface area. Materials 2021, 14, 496. [Google Scholar] [CrossRef]
- Salman, J.M.; Njoku, V.O.; Hameed, B.H. Batch and fixed-bed adsorption of 2,4-dichlorophenoxyacetic acid onto oil palm frond activated carbon. Chem. Eng. J. 2011, 174, 33–40. [Google Scholar] [CrossRef]
- Hameed, B.H.; Salman, J.M.; Ahmad, A.L. Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones. J. Hazard. Mater. 2009, 163, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Salman, J.M.; Njoku, V.O.; Hameed, B.H. Adsorption of pesticides from aqueous solution onto banana stalk activated carbon. Chem. Eng. J. 2011, 174, 41–48. [Google Scholar] [CrossRef]
- Njoku, V.O.; Hameed, B.H. Preparation and characterization of activated carbon from corncob by chemical activation with H3PO4 for 2,4-dichlorophenoxyacetic acid adsorption. Chem. Eng. J. 2011, 173, 391–399. [Google Scholar] [CrossRef]
- Njoku, V.O.; Foo, K.Y.; Hameed, B.H. Microwave-assisted preparation of pumpkin seed hull activated carbon and its application for the adsorptive removal of 2,4-dichlorophenoxyacetic acid. Chem. Eng. J. 2013, 215, 383–388. [Google Scholar] [CrossRef]
- Njoku, V.O.; Islam, M.A.; Asif, M.; Hameed, B.H. Adsorption of 2,4-dichlorophenoxyacetic acid by mesoporous activated carbon prepared from H3PO4-activated langsat empty fruit bunch. J. Environ. Manag. 2015, 154, 138–144. [Google Scholar] [CrossRef]
- Njoku, V.O.; Asif, M.; Hameed, B.H. 2,4-Dichlorophenoxyacetic acid adsorption onto coconut shell-activated carbon: Isotherm and kinetic modeling. Desalination Water Treat. 2015, 55, 132–141. [Google Scholar] [CrossRef]
- Gupta, V.K.; Ali, I.; Saini, V.K. Adsorption of 2,4-D and carbofuran pesticides using fertilizer and steel industry wastes. J. Colloid Interface Sci. 2006, 299, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Cansado, I.P.P.; Belo, C.R.; Mourao, P.A.M. Pesticides abatement using activated carbon produced from a mixture of synthetic polymers by chemical activation with KOH and K2CO3. Environ. Nanotechnol. Monit. Manag. 2019, 12, 100261. [Google Scholar] [CrossRef] [Green Version]
- Cansado, I.P.P.; Galacho, C.; Nunes, A.S.; Carrott, M.L.R.; Carrott, P.J.M. Adsorption properties of activated carbons prepared from recycled PET in the removal of organic pollutants from aqueous solutions. Adsorpt. Sci. Technol. 2010, 28, 807–821. [Google Scholar] [CrossRef]
- Cansado, I.P.P.; Mourao, P.A.M.; Gomes, J.; Almodovar, V. Adsorption of MCPA, 2,4-D and diuron onto activated carbons from wood composites. Cienc. Tecnol. Mater. 2017, 29, E224–E228. [Google Scholar] [CrossRef]
- Nyazi, K.; Bacaoui, A.; Yaacoubi, A.; Darmstadt, H.; Adnot, A.; Roy, C. Influence of carbon black surface chemistry on the adsorption of model herbicides from aqueous solution. Carbon 2005, 43, 2218–2221. [Google Scholar] [CrossRef]
- Kusmierek, K.; Szala, M.; Swiatkowski, A. Adsorption of 2,4-dichlorophenol and 2,4-dichlorophenoxyacetic acid from aqueous solutions on carbonaceous materials obtained by combustion synthesis. J. Taiwan Inst. Chem. Eng. 2016, 63, 371–378. [Google Scholar] [CrossRef]
- Qiu, Y.P.; Xiao, X.Y.; Cheng, H.Y.; Zhou, Z.L.; Sheng, G.D. Influence of environmental factors on pesticide adsorption by black carbon: pH and model dissolved organic matter. Environ. Sci. Technol. 2009, 43, 4973–4978. [Google Scholar] [CrossRef]
- Legocka, I.; Kusmierek, K.; Swiatkowski, A.; Wierzbicka, E. Adsorption of 2,4-D and MCPA herbicides on carbon black modified with hydrogen peroxide and aminopropyltriethoxysilane. Materials 2022, 15, 8433. [Google Scholar] [CrossRef]
- Pyrzynska, K.; Stafiej, A.; Biesaga, M. Sorption behavior of acidic herbicides on carbon nanotubes. Microchim. Acta 2007, 159, 293–298. [Google Scholar] [CrossRef]
- Bahrami, M.; Amiri, M.J.; Beigzadeh, B. Adsorption of 2,4-dichlorophenoxyacetic acid using rice husk biochar, granular activated carbon, and multi-walled carbon nanotubes in a fixed bed column system. Water Sci. Technol. 2018, 78, 1812–1821. [Google Scholar] [CrossRef] [Green Version]
- de Martino, A.; Iorio, M.; Xing, B.S.; Capasso, R. Removal of 4-chloro-2-methylphenoxyacetic acid from water by sorption on carbon nanotubes and metal oxide nanoparticles. RSC Adv. 2012, 2, 5693–5700. [Google Scholar] [CrossRef]
- Bazrafshan, E.; Mostafapour, F.K.; Faridi, H.; Farzadkia, M.; Sargazi, S.; Sohrabi, A. Removal of 2, 4-dichlorophenoxyacetic acid (2, 4-D) from aqueous environments using single-walled carbon nanotubes. Health Scope 2013, 2, 39–46. [Google Scholar] [CrossRef]
- Kamaraj, R.; Pandiarajan, A.; Gandhi, M.R.; Shibayama, A.; Vasudevan, S. Eco-friendly and easily prepared graphene nanosheets for safe drinking water: Removal of chlorophenoxyacetic acid herbicides. ChemistrySelect 2017, 2, 342–355. [Google Scholar] [CrossRef]
- Goscianska, J.; Olejnik, A. Removal of 2,4-D herbicide from aqueous solution by aminosilane-grafted mesoporous carbons. Adsorption 2019, 25, 345–355. [Google Scholar] [CrossRef] [Green Version]
- Khoshnood, M.; Azizian, S. Adsorption of 2,4-dichlorophenoxyacetic acid pesticide by graphitic carbon nanostructures prepared from biomasses. J. Ind. Eng. Chem. 2012, 18, 1796–1800. [Google Scholar] [CrossRef]
- Li, Q.; Sun, J.; Ren, T.H.; Guo, L.; Yang, Z.L.; Yang, Q.; Chen, H. Adsorption mechanism of 2,4-dichlorophenoxyacetic acid onto nitric-acid-modified activated carbon fiber. Environ. Technol. 2018, 39, 895–906. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Zhang, S.; Zeng, G.M.; Zhang, Y.; Yang, G.D.; Chen, J.; Wang, J.J.; Zhou, Y.Y.; Deng, Y.C. Rapid adsorption of 2,4-dichlorophenoxyacetic acid by iron oxide nanoparticles-doped carboxylic ordered mesoporous carbon. J. Colloid Interface Sci. 2015, 445, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Momcilovic, M.Z.; Randelovic, M.S.; Zarubica, A.R.; Onjia, A.E.; Kokunesoski, M.; Matovic, B.Z. SBA-15 templated mesoporous carbons for 2,4-dichlorophenoxyacetic acid removal. Chem. Eng. J. 2013, 220, 276–283. [Google Scholar] [CrossRef]
- Liu, W.; Yang, Q.; Yang, Z.L.; Wang, W.J. Adsorption of 2,4-D on magnetic graphene and mechanism study. Colloids Surf. A Physicochem. Eng. Asp. 2016, 509, 367–375. [Google Scholar] [CrossRef]
- Nethaji, S.; Sivasamy, A. Graphene oxide coated with porous iron oxide ribbons for 2, 4-Dichlorophenoxyacetic acid (2,4-D) removal. Ecotoxicol. Environ. Saf. 2017, 138, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Hajighasemkhan, A.; Taghavi, L.; Moniri, E.; Hassani, A.H.; Panahi, H.A. Adsorption kinetics and isotherms study of 2,4-dichlorophenoxyacetic acid by 3dimensional/graphene oxide/magnetic from aquatic solutions. Int. J. Environ. Anal. Chem. 2022, 102, 1171–1191. [Google Scholar] [CrossRef]
- Vinayagam, R.; Pai, S.; Murugesan, G.; Varadavenkatesan, T.; Narayanasamy, S.; Selvaraj, R. Magnetic activated charcoal/Fe2O3 nanocomposite for the adsorptive removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous solutions: Synthesis, characterization, optimization, kinetic and isotherm studies. Chemosphere 2022, 286, 131938. [Google Scholar] [CrossRef]
- Khaloo, S.S.; Bagheri, A.; Gholamnia, R.; Saeedi, R. Graphene oxide/MIL 101(Cr) (GO/MOF) nano-composite for adsorptive removal of 2,4-dichlorophenoxyacetic acid (2,4 D) from aqueous media: Synthesis, characterization, kinetic and isotherm studies. Water Sci. Technol. 2022, 86, 1496–1509. [Google Scholar] [CrossRef]
- Demiti, G.M.M.; Barbosa de Andrade, M.; Marcuzzo, J.S.; Vieira, M.F.; Bergamasco, R. A novel magnetic adsorbent from activated carbon fiber and iron oxide nanoparticles for 2,4-D removal from aqueous medium. Environ. Technol. 2022, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Mahramanlioglu, M.; Guclu, K. Removal of MCPA (4-chloro-2-methylphenoxy-acetic acid) from aqueous solutions using adsorbent produced from elutrilithe. Energy Sources 2003, 25, 1–13. [Google Scholar] [CrossRef]
- Kong, X.P.; Zhang, B.H.; Wang, J. Multiple roles of mesoporous silica in safe pesticide application by nanotechnology: A review. J. Agric. Food Chem. 2021, 69, 6735–6754. [Google Scholar] [CrossRef]
- Andrunik, M.; Bajda, T. Removal of pesticides from waters by adsorption: Comparison between synthetic zeolites and mesoporous silica materials. A review. Materials 2021, 14, 3532. [Google Scholar] [CrossRef]
- Marocco, A.; Dell’Agli, G.; Sannino, F.; Esposito, S.; Bonelli, B.; Allia, P.; Tiberto, P.; Barrera, G.; Pansini, M. Removal of agrochemicals from waters by adsorption: A critical comparison among humic-like substances, zeolites, porous oxides, and magnetic nanocomposites. Processes 2020, 8, 141. [Google Scholar] [CrossRef] [Green Version]
- Moritz, M.; Geszke-Moritz, M. Application of nanoporous silicas as adsorbents for chlorinated aromatic compounds. A comparative study. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 41, 42–51. [Google Scholar] [CrossRef]
- Clausen, L.; Fabricius, I.; Madsen, L. Adsorption of pesticides onto quartz, calcite, kaolinite, and alpha-alumina. J. Environ. Qual. 2001, 30, 846–857. [Google Scholar] [CrossRef] [PubMed]
- Goyne, K.W.; Chorover, J.; Zimmerman, A.R.; Komarneni, S.; Brantley, S.L. Influence of mesoporosity on the sorption of 2,4-dichlorophenoxyacetic acid onto alumina and silica. J. Colloid Interface Sci. 2004, 272, 10–20. [Google Scholar] [CrossRef]
- Shankar, M.V.; Anandan, S.; Venkatachalam, N.; Arabindoo, B.; Murugesan, V. Fine route for an efficient removal of 2.4-dichlorophenoxyacetic acid (2,4-D) by zeolite-supported TiO2. Chemosphere 2006, 63, 1014–1021. [Google Scholar] [CrossRef]
- Otalvaro, J.O.; Avena, M.; Brigante, M. Adsorption of organic pollutants by amine functionalized mesoporous silica in aqueous solution. Effects of pH, ionic strength and some consequences of APTES stability. J. Environ. Chem. Eng. 2019, 7, 5. [Google Scholar] [CrossRef]
- Alotaibi, K.M. Mesoporous silica nanoparticles modified with stimuli-responsive polymer brush as an efficient adsorbent for chlorophenoxy herbicides removal from contaminated water. Int. J. Environ. Anal. Chem. 2021, 1–14. [Google Scholar] [CrossRef]
- Prado, A.G.S.; Airoldi, C. Adsorption and preconcentration of 2,4-dichlorophenoxyacetic acid on a chemically modified silica gel surface. Fresenius J. Anal. Chem. 2001, 371, 1028–1030. [Google Scholar] [CrossRef] [PubMed]
- Han, D.M.; Jia, W.P.; Liang, H.D. Selective removal of 2,4-dichlorophenoxyacetic acid from water by molecularly-imprinted amino-functionalized silica gel sorbent. J. Environ. Sci. 2010, 22, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Isiyaka, H.A.; Jumbri, K.; Sambudi, N.S.; Zango, Z.U.; Abdullah, N.A.F.; Saad, B.; Mustapha, A. Adsorption of dicamba and MCPA onto MIL-53(Al) metal-organic framework: Response surface methodology and artificial neural network model studies. RSC Adv. 2020, 10, 43213–43224. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E.; Wilson, L.D.; Morin-Crini, N. Conventional and non-conventional adsorbents for wastewater treatment. Environ. Chem. Lett. 2019, 17, 195–213. [Google Scholar] [CrossRef]
- Ali, I.; Asim, M.; Khan, T.A. Low cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manag. 2012, 113, 170–183. [Google Scholar] [CrossRef]
- Barriuso, E.; Feller, C.; Calvet, R.; Cerri, C. Sorption of atrazine, terbutryn and 2,4-D herbicides in two Brazilian oxisols. Geoderma 1992, 53, 155–167. [Google Scholar] [CrossRef]
- Socias-Viciana, M.H.; Fernandez-Perez, M.; Villafranca-Sanchez, R.; Gonzalez-Pradas, E.; Flores-Cespedes, F. Sorption and leaching of atrazine and MCPA in natural and peat-amended calcareous soils from Spain. J. Agric. Food Chem. 1999, 47, 1236–1241. [Google Scholar] [CrossRef] [PubMed]
- Boivin, A.; Amellal, S.; Schiavon, M.; van Genuchten, M.T. 2,4-dichlorophenoxyacetic acid (2,4-D) sorption and degradation dynamics in three agricultural soils. Environ. Pollut. 2005, 138, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Mon, E.E.; Hirata, T.; Kawamoto, K.; Hiradate, S.; Komatsu, T.; Møldrup, P. Adsorption of 2,4-dichlorophenoxyacetic acid onto volcanic ash soils: Effects of pH and soil organic matter. Environ. Asia 2009, 2, 1–9. [Google Scholar]
- Paszko, T. Adsorption and desorption processes of MCPA in Polish mineral soils. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2011, 46, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Mon, E.E.; Sharma, A.; Kawamoto, K.; Hamamoto, S.; Komatsu, T.; Hiradate, S.; Moldrup, P. The pH dependency of 2,4-dichlorophenoxyacetic acid adsorption and desorption in andosol and kaolinite. Soil Sci. 2012, 177, 12–21. [Google Scholar] [CrossRef]
- Piwowarczyk, A.A.; Holden, N.M. Phenoxyalkanoic acid herbicide sorption and the effect of co-application in a Haplic Cambisol with contrasting management. Chemosphere 2013, 90, 535–541. [Google Scholar] [CrossRef]
- Spuler, M.J.; Briceno, G.; Duprat, F.; Jorquera, M.; Cespedes, C.; Palma, G. Sorption kinetics of 2,4-D and diuron herbicides in a urea-fertilized andisol. J. Soil Sci. Plant Nutr. 2019, 19, 313–320. [Google Scholar] [CrossRef]
- Buerge, I.J.; Pavlova, P.; Hanke, I.; Bachli, A.; Poiger, T. Degradation and sorption of the herbicides 2,4-D and quizalofop-P-ethyl and their metabolites in soils from railway tracks. Environ. Sci. Eur. 2020, 32, 1–15. [Google Scholar] [CrossRef]
- Paszko, T.; Muszynski, P.; Materska, M.; Bojanowska, M.; Kostecka, M.; Jackowska, I. Adsorption and degradation of phenoxyalkanoic acid herbicides in soils: A review. Environ. Toxicol. Chem. 2016, 35, 271–286. [Google Scholar] [CrossRef] [Green Version]
- Bakhtiary, S.; Shirvani, M.; Shariatmadari, H. Adsorption-desorption behavior of 2,4-D on NCP-modified bentonite and zeolite: Implications for slow-release herbicide formulations. Chemosphere 2013, 90, 699–705. [Google Scholar] [CrossRef]
- de Souza, F.M.; dos Santos, O.A.A.; Vieira, M.G.A. Adsorption of herbicide 2,4-D from aqueous solution using organo-modified bentonite clay. Environ. Sci. Pollut. Res. 2019, 26, 18329–18342. [Google Scholar] [CrossRef]
- Kusmierek, K.; Dabek, L.; Swiatkowski, A. Comparative study on the adsorption kinetics and equilibrium of common water contaminants onto bentonite. Desalination Water Treat. 2020, 186, 373–381. [Google Scholar] [CrossRef]
- Jacobo-Azuara, A.; Leyva-Ramos, R.; Padilla-Ortega, E.; Aragon-Pina, A.; Guerrero-Coronado, R.M.; Mendoza-Barron, J. Removal of toxic pollutants from aqueous solutions by adsorption onto an organobentonite. Adsorpt. Sci. Technol. 2006, 24, 687–699. [Google Scholar] [CrossRef]
- Li, J.F.; Li, Y.M.; Lu, J.H. Adsorption of herbicides 2,4-D and acetochlor on inorganic-organic bentonites. Appl. Clay Sci. 2009, 46, 314–318. [Google Scholar] [CrossRef]
- Manzotti, F.; dos Santos, O.A.A. Evaluation of removal and adsorption of different herbicides on commercial organophilic clay. Chem. Eng. Commun. 2019, 206, 1526–1543. [Google Scholar] [CrossRef]
- Duran, E.; Bueno, S.; Hermosin, M.C.; Cox, L.; Gamiz, B. Optimizing a low added value bentonite as adsorbent material to remove pesticides from water. Sci. Total Environ. 2019, 672, 743–751. [Google Scholar] [CrossRef]
- Bueno, S.; Duran, E.; Gamiz, B.; Hermosin, M.C. Formulating low cost modified bentonite with natural binders to remove pesticides in a pilot water filter system. J. Environ. Chem. Eng. 2021, 9, 104623. [Google Scholar] [CrossRef]
- Akcay, G.; Yurdakoc, K. Removal of various phenoxyalkanoic acid herbicides from water by organo-clays. Acta Hydrochim. Hydrobiol. 2000, 28, 300–304. [Google Scholar]
- Akcay, G.; Akcay, M.; Yurdakoc, K. Removal of 2,4-dichlorophenoxy acetic acid from aqueous solutions by partially characterized organophilic sepiolite: Thermodynamic and kinetic calculations. J. Colloid Interface Sci. 2005, 281, 27–32. [Google Scholar] [CrossRef]
- Pluangklang, C.; Rangsriwatananon, K. Facile method by bentonite treated with heat and acid to enhance pesticide adsorption. Appl. Sci. 2021, 11, 5147. [Google Scholar] [CrossRef]
- Bakhtiary, S.; Shirvani, M.; Shariatmadari, H. Characterization and 2,4-D adsorption of sepiolite nanofibers modified by N-cetylpyridinium cations. Microporous Mesoporous Mater. 2013, 168, 30–36. [Google Scholar] [CrossRef]
- Bhardwaj, D.; Sharma, P.; Sharma, M.; Tomar, R. Surfactant modified tectosilicates and phyllosilicates for 2,4-D removal and slow release formulation. RSC Adv. 2014, 4, 4504–4514. [Google Scholar] [CrossRef]
- Pukcothanung, Y.; Siritanon, T.; Rangsriwatananon, K. The efficiency of zeolite Y and surfactant-modified zeolite Y for removal of 2,4-dichlorophenoxyacetic acid and 1,1 ’-dimethyl-4,4 ’-bipyridinium ion. Microporous Mesoporous Mater. 2018, 258, 131–140. [Google Scholar] [CrossRef]
- Hermosin, M.C.; Celis, R.; Facenda, G.; Carrizosa, M.J.; Ortega-Calvo, J.J.; Cornejo, J. Bioavailability of the herbicide 2,4-D formulated with organoclays. Soil Biol. Biochem. 2006, 38, 2117–2124. [Google Scholar] [CrossRef]
- Natarelli, C.V.L.; Claro, P.I.C.; Miranda, K.W.E.; Ferreira, G.M.D.; de Oliveira, J.E.; Marconcini, J.M. 2,4-Dichlorophenoxyacetic acid adsorption on montmorillonite organoclay for controlled release applications. Sn Appl. Sci. 2019, 1, 1212. [Google Scholar] [CrossRef] [Green Version]
- Hermosin, M.C.; Cornejo, J. Binding mechanism of 2,4-dichlorophenoxyacetic acid by organo-clays. J. Environ. Qual. 1993, 22, 325–331. [Google Scholar] [CrossRef]
- Celis, R.; Trigo, C.; Facenda, G.; Hermosin, M.; Cornejo, J. Selective modification of clay minerals for the adsorption of herbicides widely used in olive groves. J. Agric. Food Chem. 2007, 55, 6650–6658. [Google Scholar] [CrossRef]
- Santiago, C.C.; Fernandez, M.A.; Sanchez, R.M.T. Adsorption and characterization of MCPA on DDTMA- and raw-montmorillonite: Surface sites involved. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2016, 51, 245–253. [Google Scholar] [CrossRef]
- Akcay, G.; Akcay, M.; Yurdakoc, K. The characterization of prepared organomontmorillonite (DEDMAM) and sorption of phenoxyalkanoic acid herbicides from aqueous solution. J. Colloid Interface Sci. 2006, 296, 428–433. [Google Scholar] [CrossRef]
- Xi, Y.F.; Mallavarapu, M.; Naidu, R. Adsorption of the herbicide 2,4-D on organo-palygorskite. Appl. Clay Sci. 2010, 49, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Pavlovic, I.; Barriga, C.; Hermosin, M.C.; Cornejo, J.; Ulibarri, M.A. Adsorption of acidic pesticides 2,4-D, clopyralid and picloram on calcined hydrotalcite. Appl. Clay Sci. 2005, 30, 125–133. [Google Scholar] [CrossRef]
- Ayar, N.; Bilgin, B.; Atun, G. Kinetics and equilibrium studies of the herbicide 2,4-dichlorophenoxyacetic acid adsorption on bituminous shale. Chem. Eng. J. 2008, 138, 239–248. [Google Scholar] [CrossRef]
- Ayar, N.; Bilgin, B.; Atun, G. Applicability of equilibrium and kinetic models on the herbicide 4-chloro-2-methyl phenoxyacetic acid adsorption on bituminous shale. Cent. Eur. J. Chem. 2008, 6, 284–292. [Google Scholar] [CrossRef]
- Kavanagh, B.V.; Posner, A.M.; Quirk, J.P. The adsorption of phenoxyacetic acid herbicides on goethite. J. Colloid Interface Sci. 1977, 61, 545–553. [Google Scholar] [CrossRef]
- Kersten, M.; Tunega, D.; Georgieva, I.; Vlasova, N.; Branscheid, R. Adsorption of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) by goethite. Environ. Sci. Technol. 2014, 48, 11803–11810. [Google Scholar] [CrossRef]
- Iglesias, A.; Lopez, R.; Gondar, D.; Antelo, J.; Fiol, S.; Arce, F. Adsorption of MCPA on goethite and humic acid-coated goethite. Chemosphere 2010, 78, 1403–1408. [Google Scholar] [CrossRef]
- Kusmierek, K.; Dabek, L.; Swiatkowski, A. Removal of phenoxy herbicides from aqueous solutions using lignite as a low-cost adsorbent. Desalination Water Treat. 2022, 260, 111–118. [Google Scholar] [CrossRef]
- El Harmoudi, H.; El Gaini, L.; Daoudi, E.; Rhazi, M.; Boughaleb, Y.; El Mhammedi, M.A.; Migalska-Zalas, A.; Bakasse, M. Removal of 2,4-D from aqueous solutions by adsorption processes using two biopolymers: Chitin and chitosan and their optical properties. Opt. Mater. 2014, 36, 1471–1477. [Google Scholar] [CrossRef]
- Deng, S.B.; Ma, R.; Yu, Q.; Huang, J.; Yu, G. Enhanced removal of pentachlorophenol and 2,4-D from aqueous solution by an aminated biosorbent. J. Hazard. Mater. 2009, 165, 408–414. [Google Scholar] [CrossRef]
- Aswani, M.T.; Kumar, M.V.P. A novel water hyacinth based biosorbent for 2,4-dichlorophenoxyacetic acid (2,4-D) removal from aqueous solution. Desalination Water Treat. 2019, 165, 163–176. [Google Scholar] [CrossRef]
- Georgin, J.; Franco, D.S.P.; Netto, M.S.; Allasia, D.; Foletto, E.L.; Oliveira, L.F.S.; Dotto, G.L. Transforming shrub waste into a high-efficiency adsorbent: Application of Physalis peruvian chalice treated with strong acid to remove the 2,4-dichlorophenoxyacetic acid herbicide. J. Environ. Chem. Eng. 2021, 9, 104574. [Google Scholar] [CrossRef]
- Aswani, M.T.; Yadav, M.; Kumar, A.V.; Tiwari, S.; Kumar, T.; Kumar, M.V.P. Ultrasound-acid modified Merremia vitifolia biomass for the biosorption of herbicide 2,4-D from aqueous solution. Water Sci. Technol. 2020, 82, 468–480. [Google Scholar] [CrossRef] [PubMed]
- Aswani, M.T.; Kumar, M.V.P. Acid-thermally modified Merremia vitifolia for the removal of 2,4-dichlorophenoxyacetic acid. Chem. Eng. Technol. 2021, 44, 875–883. [Google Scholar] [CrossRef]
- Manna, S.; Saha, P.; Roy, D.; Sen, R.; Adhikari, B. Removal of 2,4-dichlorophenoxyacetic acid from aqueous medium using modified jute. J. Taiwan Inst. Chem. Eng. 2016, 67, 292–299. [Google Scholar] [CrossRef]
- Ozdemir, S.; Bekler, F.M.; Okumus, V.; Dundar, A.; Kilinc, E. Biosorption of 2,4-D, 2,4-DP, and 2,4-DB from aqueous solution by using thermophilic Anoxybacillus flavithermus and analysis by high-performance thin layer chromatography: Equilibrium and kinetic studies. Environ. Prog. Sustain. Energy 2012, 31, 544–552. [Google Scholar] [CrossRef]
- Kumar, D.; Prakash, B.; Pandey, L.K.; Gaur, J.P. Sorption of paraquat and 2,4-D by an Oscillatoria sp.-dominated cyanobacterial mat. Appl. Biochem. Biotechnol. 2010, 160, 2475–2485. [Google Scholar] [CrossRef]
- Matias, C.A.; Vilela, P.B.; Becegato, V.A.; Paulino, A.T. Adsorption kinetic, isotherm and thermodynamic of 2,4-dichlorophenoxyacetic acid herbicide in novel alternative natural adsorbents. Water Air Soil Pollut. 2019, 230, 276. [Google Scholar] [CrossRef]
- Alam, J.B.; Dikshit, A.K.; Bandyopadhyay, M. Efficacy of adsorbents for 2,4-D and atrazine removal from water environment. Glob. NEST Int. J. 2000, 2, 139–148. [Google Scholar] [CrossRef]
- Alam, M.J.B.; Dikshit, A.K.; Banerjee, M.; Reza, I.; Rahman, A.M. Study of sorption of 2,4-D on outer peristaltic part of waste tire rubber granules. J. Dispers. Sci. Technol. 2006, 27, 843–849. [Google Scholar] [CrossRef]
- Alam, J.B.; Dikshit, A.K.; Bandyopadhyay, M. Kinetic study of sorption of 2,4-D and atrazine on rubber granules. J. Dispers. Sci. Technol. 2007, 28, 511–517. [Google Scholar] [CrossRef]
- Deokar, S.K.; Mandavgane, S.A.; Kulkarni, B.D. Adsorptive removal of 2,4-dichlorophenoxyacetic acid from aqueous solution using bagasse fly ash as adsorbent in batch and packed-bed techniques. Clean Technol. Environ. Policy 2016, 18, 1971–1983. [Google Scholar] [CrossRef]
- Deokar, S.K.; Theng, P.G.; Mandavgane, S.A. Batch and packed bed techniques for adsorptive aqueous phase removal of selected phenoxyacetic acid herbicide using sugar industry waste ash. Int. J. Chem. React. Eng. 2020, 18, 1–14. [Google Scholar] [CrossRef]
- Kusmierek, K.; Swiatkowski, A. Adsorption of 2,4-dichlorophenoxyacetic acid from an aqueous solution on fly ash. Water Environ. Res. 2016, 88, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Koner, S.; Pal, A.; Adak, A. Use of surface modified silica gel factory waste for removal of 2,4-D pesticide from agricultural wastewater: A case study. Int. J. Environ. Res. 2012, 6, 995–1006. [Google Scholar] [CrossRef]
- Mahramanlioglu, M.; Kizilcikli, I.; Bicer, I.O.; Tuncay, M. Removal of MCPA from aqueous solutions by acid-activated spent bleaching earth. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2003, 38, 813–827. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shi, C.X.; Pan, L.; Zhang, X.W.; Zou, J.J. Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: A review. Nanoscale 2020, 12, 4790–4815. [Google Scholar] [CrossRef]
- Kamaraj, R.; Davidson, D.J.; Sozhan, G.; Vasudevan, S. Adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) from water by in situ generated metal hydroxides using sacrificial anodes. J. Taiwan Inst. Chem. Eng. 2014, 45, 2943–2949. [Google Scholar] [CrossRef]
- Addorisio, V.; Esposito, S.; Sannino, F. Sorption capacity of mesoporous metal oxides for the removal of MCPA from polluted waters. J. Agric. Food Chem. 2010, 58, 5011–5016. [Google Scholar] [CrossRef]
- Inacio, J.; Taviot-Gueho, C.; Forano, C.; Besse, J.P. Adsorption of MCPA pesticide by MgAl-layered double hydroxides. Appl. Clay Sci. 2001, 18, 255–264. [Google Scholar] [CrossRef]
- Cardoso, L.P.; Valim, J.B. Study of acids herbicides removal by calcined Mg—Al—CO3—LDH. J. Phys. Chem. Solids 2006, 67, 987–993. [Google Scholar] [CrossRef]
- Nejati, K.; Davary, S.; Saati, M. Study of 2,4-dichlorophenoxyacetic acid (2,4-D) removal by Cu-Fe-layered double hydroxide from aqueous solution. Appl. Surf. Sci. 2013, 280, 67–73. [Google Scholar] [CrossRef]
- Nejati, K.; Davari, S.; Rezvani, Z.; Dadashzadeh, M. Adsorption of 4-chloro-2-methylphenoxy acetic acid (MCPA) from aqueous solution onto Cu-Fe-NO3 layered double hydroxide nanoparticles. J. Chin. Chem. Soc. 2015, 62, 371–379. [Google Scholar] [CrossRef]
- Legrouri, A.; Lakraimi, M.; Barroug, A.; De Roy, A.; Besse, J.P. Removal of the herbicide 2,4-dichlorophenoxyacetate from water to zinc-aluminium-chloride layered double hydroxides. Water Res. 2005, 39, 3441–3448. [Google Scholar] [CrossRef]
- Calisto, J.S.; Pacheco, I.S.; Freitas, L.L.; Santana, L.K.; Fagundes, W.S.; Amaral, F.A.; Canobre, S.C. Adsorption kinetic and thermodynamic studies of the 2, 4-dichlorophenoxyacetate (2,4-D) by the Co-Al-Cl layered double hydroxide. Heliyon 2019, 5, e02553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.R.; Song, Y.W.; Song, S.; Zhang, R.J.; Hou, W.G. Synthesis of magnetite-graphene oxide-layered double hydroxide composites and applications for the removal of Pb(II) and 2,4-dichlorophenoxyacetic acid from aqueous solutions. ACS Appl. Mater. Interfaces 2015, 7, 7251–7263. [Google Scholar] [CrossRef]
- Kazak, O.; Eker, Y.R.; Akin, I.; Bingol, H.; Tor, A. Green preparation of a novel red mud@carbon composite and its application for adsorption of 2,4-dichlorophenoxyacetic acid from aqueous solution. Environ. Sci. Pollut. Res. 2017, 24, 23057–23068. [Google Scholar] [CrossRef]
- Zhou, T.; Fang, L.Y.; Wang, X.W.; Han, M.Y.; Zhang, S.S.; Han, R.P. Adsorption of the herbicide 2,4-dichlorophenoxyacetic acid by Fe-crosslinked chitosan complex in batch mode. Desalination Water Treat. 2017, 70, 294–301. [Google Scholar] [CrossRef] [Green Version]
- Vieira, T.; Becegato, V.A.; Paulino, A.T. Equilibrium isotherms, kinetics, and thermodynamics of the adsorption of 2,4-dichlorophenoxyacetic acid to chitosan-based hydrogels. Water Air Soil Pollut. 2021, 232, 1–16. [Google Scholar] [CrossRef]
- Mansab, S.; Rafique, U. In situ remediation of 2,4-dicholrophenoxyacetic acid herbicide using amine-functionalized imidazole coordination complexes. Environ. Sci. Pollut. Res. 2021, 28, 15099–15113. [Google Scholar] [CrossRef]
- Jung, B.K.; Hasan, Z.; Jhung, S.H. Adsorptive removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from water with a metal-organic framework. Chem. Eng. J. 2013, 234, 99–105. [Google Scholar] [CrossRef]
- Isiyaka, H.A.; Jumbri, K.; Sambudi, N.S.; Zango, Z.U.; Saad, B.; Mustapha, A. Removal of 4-chloro-2-methylphenoxyacetic acid from water by MIL-101(Cr) metal-organic framework: Kinetics, isotherms and statistical models. R. Soc. Open Sci. 2021, 8, 201553. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Feng, D.; Xia, Y. Fast adsorption and removal of 2-methyl-4-chlorophenoxy acetic acid from aqueous solution with amine functionalized zirconium metal–organic framework. RSC Adv. 2016, 6, 96339–96346. [Google Scholar] [CrossRef]
- Isaeva, V.I.; Kulaishin, S.A.; Vedenyapina, M.D.; Chernyshev, V.V.; Kapustin, G.I.; Vergun, V.V.; Kustov, L.M. Influence of the porous structure and functionality of the MIL type metal-organic frameworks and carbon matrices on the adsorption of 2,4-dichlorophenoxyacetic acid. Russ. Chem. Bull. 2021, 70, 67–74. [Google Scholar] [CrossRef]
- Tan, K.L.; Foo, K.Y. Preparation of MIL-100 via a novel water-based heatless synthesis technique for the effective remediation of phenoxyacetic acid-based pesticide. J. Environ. Chem. Eng. 2021, 9, 104923. [Google Scholar] [CrossRef]
- Liu, B.; Guo, N.; Wang, Z.; Wang, Y.; Hao, X.; Yang, Z.; Yang, Q. Adsorption of 2,4-dichlorophenoxyacetic acid over Fe–Zr-based metal-organic frameworks: Synthesis, characterization, kinetics, and mechanism studies. J. Environ. Chem. Eng. 2022, 10, 107472. [Google Scholar] [CrossRef]
- Zaghloul, E.E.; Amin, A.S.; Diab, M.A.; Elsonbati, A.; Ibrahim, M.S. Removing 2,4-dichlorophenoxyacetic acid (2,4-D) from polluted water using zinc ferrite nanoparticles. Egypt. J. Chem. 2020, 63, 1411–1428. [Google Scholar] [CrossRef]
- Mohammadi, F.; Esrafili, A.; Kermani, M.; Behbahani, M. Application of modified magnetic nanoparticles with amine groups as an efficient solid sorbent for simultaneous removal of 2,4-dichlorophenoxyacetic acid and 2-methyl-4-chlorophenoxyacetic acid from aqueous solution: Optimization and modeling. J. Iran. Chem. 2018, 15, 421–429. [Google Scholar] [CrossRef]
- Sayğılı, G.A.; Sayğılı, H. Fabrication of a magnetic hydrochar composite via an in situ one-pot hydrocarbonization strategy for efficient herbicide removal. Diam. Relat. Mater. 2022, 128, 109302. [Google Scholar] [CrossRef]
- Valente, A.J.M.; Pirozzi, D.; Cinquegrana, A.; Utzeri, G.; Murtinho, D.; Sannino, F. Synthesis of β-cyclodextrin-based nanosponges for remediation of 2,4-D polluted waters. Environ. Res. 2022, 215, 114214. [Google Scholar] [CrossRef]
- Wei, T.; Wu, H.; Li, Z. Lignin immobilized cyclodextrin composite microspheres with multifunctionalized surface chemistry for non-competitive adsorption of co-existing endocrine disruptors in water. J. Hazard. Mater. 2023, 441, 129969. [Google Scholar] [CrossRef]
Parameter | 4-CPA | 2,4-D | 2,4,5-T | MCPA | Ref. |
---|---|---|---|---|---|
Molecular formula/ structure | C8H7ClO3 | C8H6Cl2O3 | C8H5Cl3O3 | C9H9ClO3 | |
Molecular weight, g mol−1 | 186.59 | 221.04 | 255.48 | 200.62 | |
Ionization constant, (pKa) | 3.14 | 2.80 2.81 | 2.56 2.85 | 3.36 3.07 | [23,24,25] |
Solubility, g dm−3 at 20–25 °C | 0.848 0.957 | 0.682 0.900 | 0.268 0.278 0.281 0.280 | 0.825 0.734 | [25,26,27,28] |
Kow (logP) | 1.85 3.2 | 2.37 | 2.89 3.13 | 3.25 | [29,30] |
Dmin/Dmax, Å | 4.33/9.38 | 4.88/9.49 | 6.22/8.88 | 5.47/9.52 | [31] |
Melting/boiling point, °C | 157–158/160 | 136–140/160 | 157–158/ above 200 (decomposition) | 108–112/ 160 118–119 | [26,27,28] |
Vapour pressure, Pa at 20–25 °C | 9 × 10−2 | 1 × 10−5 2 × 10−5 | 0.7 × 10−6 | 2.3 × 10−5 2 × 10−4 | [25,27,28] |
Activated Carbon | SBET, m2 g−1 | Adsorption Capacity (qm), mg g−1 | Isotherm Model | Kinetic Model | Ref. | |
---|---|---|---|---|---|---|
2,4-D | MCPA | |||||
F400 (Chemviron, Feluy, Belgium) (water washed) | No data | - | 388 | L | - | [88] |
F400 (Calgon Co, Moon Township, PA, USA) SLS103(Calgon Co) WWL (Calgon Co) (washed with distilled water) | 800 1040 670 | 135.9 142.8 126.2 | - | L, F, S | kf, Ds, Dp, ks, DL, Dm | [91] |
Norit 0.8 Aquacarb 207C Aquacarb 208A Aquacarb 208EA | 1150 ~1100 ~1125 ~1175 | - | 133.6 117.6 106.2 105.3 | L, F, D-R | Deff, βL | [76] |
Nuchar WV-H (Westvaco, Covington, GA, USA) (washed with distilled water) | 600–650 | 555.5 | - | F, L, R-P, K-C | PFO, PSO, k1,k2,W-M, kL, K, | [77] |
PAC Sigma C-5510 (Aldrich Co, St. Louis, MI, USA) (washed with phosphoric and sulfuric acid) | 750 | 333.3 | - | F, L, R-P | PFO, PSO, W-M | [94] |
F400 (Calgon Co) | 800 | - | 389.2 | L, F, S | kf, Ds, Dp, Bi, DL, Dm | [78] |
F400 (Chemviron) F400AN (washed and HT in H2 3 h 1173 K) | 790 960 | 8.11 11.8 | - | L, F | PSO, B, k2, Di | [92] |
F400 (Calgon Co) | 800 | 137.0 | 108.3 | L, F, S | kf, Ds, Dp, Bi, DL, Dm | [79] |
F300 (Calgon Co) (non-modified) | 731.5 | 181.8 | - | L, F | PFO, PSO | [81] |
F300 (Chemviron) (washed with boiling water) | 1098 | - | - | L-F | m-exp, PSO | [72] |
Sorbo Norit Ceca AC40 | 1225 1201 | 329.3 344.8 | 417.2 521.6 | L, F | - | [82] |
exp. activated carbon RIB from Norit, washed with conc. HCl, 60 °C, 6 h | 1190 | - | - | GL | MOE, f-MOE, IDM, PDM | [95] |
Norit R3ex (deashed) L2S (Ceca, La Garenne-Colombes, France) | 1530 925 | 340.3 194.5 | - | - | PFO, PSO | [83] |
AG (Gryfskand, Gryfin, Poland): G0, G33 (after 33%wt abrasion), G66 (after 66%wt abrasion) | 800 770 740 | - | - | GL, L-F | m-exp, f-MOE, McKay | [73] |
GAB CBP (washed with boiling water) | 1189 1288 | 367.1 273.1 | 599.9 399.9 | L, F | - | [93] |
F300 (washed 8 h with boiling distilled water) | 762 | 815.6 | - | GL, GF, L, T | PFO, PSO, MOE, f-MOE | [23] |
Norit SX2 F300 | 885 965 | 180.3 191.2 | - | F, L | - | [84] |
Norit R3ex (deashed) Norit R3ex ox. with conc. HNO3 Norit R3ex heated 900 °C (NH3) | 1390 1296 1212 | - | 380.3 276.0 542.2 | L, F | PFO, PSO | [71] |
Norit SX2 F400 Norit R3ex (deashed and HT1800) | 870 995 550 | 269.8 352.7 233.6 | - | F, L | PFO, PSO | [96] |
Norit R3ex (deashed and HT1800) | 554 | 365.1 | - | F, L | PFO, PSO | [97] |
Powdered PAC1 | 630 | 23.95 | - | L, F | - | [87] |
Powdered PAC2 | 568 | 36.95 | - | L, F | - | [87] |
CAL 12 × 40 (Calgon Co) | 1893 | 100.1 | - | L, F | contact time | [86] |
Adsorbent | SBET m2 g−1 | Adsorption Capacity (qm), mg g−1 | Isotherm Model | Kinetic Model | Ref. | |
---|---|---|---|---|---|---|
2,4-D | MCPA | |||||
AC from date stones | 763.4 | 238.1 | - | L, F, Te | PFO, PSO | [99] |
AC from oil palm frond | - | 352.9 | - | L, F | PFO, PSO | [98] |
AC from corncob | 1274 | 300.2 | - | L, F | PFO, PSO, W-M, Boyd | [101] |
AC from banana stalk | - | 196.3 | - | L, F | PFO, PSO | [100] |
AC from pumpkin seed hull | 737.9 | 260.8 | - | L, F, Te | PFO, PSO | [102] |
AC from coconut shell | 986.2 | 368.0 | - | L, F, Te | PFO, PSO, E | [104] |
AC from langsat empty fruit bunch | 1070 | 261.2 | - | L, F | PFO, PSO | [103] |
Waste slurry AC | 710 | 212 | - | L, F | PFO, PSO, Bangham | [105] |
AC from a waste PET | 1334 | - | 298.9 | L, F | Contact time | [107] |
Oxidized AC from PET | 885 | - | 182.6 | L, F | Contact time | [107] |
Temperature-modified AC from PET | 604 | - | 214.7 | L, F | Contact time | [107] |
NaOH-modified AC from PET | 1110 | - | 441.4 | L, F | Contact time | [107] |
Urea modified AC from PET | 1167 | - | 491.5 | L, F | Contact time | [107] |
AC from particleboard | 1211 | 302.8 | 375.1 | L, F | Contact time | [108] |
AC from medium-density fiberboard | 1195 | 263.0 | 292.9 | L, F | Contact time | [108] |
AC from PET (K2CO3) | 1206 | 430.9 | 491.5 | L, F | Contact time | [106] |
AC from PAN (KOH) | 2828 | 550.3 | 527.6 | L, F | Contact time | [106] |
Adsorbent | SBET m2 g−1 | Adsorption Capacity (qm), mg g−1 | Isotherm Model | Kinetic Model | Ref. | |
---|---|---|---|---|---|---|
2,4-D | MCPA | |||||
SRB N762 carbon black | 24.3 | 6.7 | 5.8 | L | - | [109] |
CA N660 carbon black | 36.0 | 21.2 | 18.9 | L | - | [109] |
CO N539 carbon black | 39.4 | 24.3 | 23.0 | L | - | [109] |
CA N375 carbon black | 90.4 | 52.6 | 44.9 | L | - | [109] |
CO N375 carbon black | 94.6 | 54.7 | 48.2 | L | - | [109] |
CA N115 carbon black | 137.0 | 41.6 | 37.1 | L | - | [109] |
Carbopack B carbon black | 97 | 68.3 | - | L, F | PFO, PSO, W-M | [110] |
Vulcan XC 72 carbon black | 227 | 71.8 | - | L, F | PFO, PSO, W-M | [110] |
Carbopack B carbon black | 98 | 34.5 | - | - | PFO, PSO | [83] |
Vulcan XC 72 carbon black | 230 | 63.2 | - | - | PFO, PSO | [83] |
Carboxen 1000 carbon molecular sieve | 1200 | 199.4 | - | - | PFO, PSO | [83] |
Carboxen 1021 carbon molecular sieve | 600 | 94.2 | - | - | PFO, PSO | [83] |
Carbon black | 1085 | 64.0 | - | L, F | - | [111] |
N-220 carbon black | 108 | 30.5 | 36.3 | L, F, Te | PFO, PSO, W-M, B | [112] |
H2O2 oxidized carbon black | 95 | 27.4 | 27.9 | L, F, Te | PFO, PSO, W-M, B | [112] |
APTES-modified carbon black | 82 | 75.2 | 69.8 | L, F, Te | PFO, PSO, W-M, B | [112] |
MWCNT | 200 | 21.87 | - | - | - | [114] |
SWCNT | 700 | 192.3 | - | L, F | - | [116] |
SWCNT | 597 | 442.3 | - | L, F | - | [97] |
rGO | 512 | 270.1 | - | L, F | - | [97] |
Graphene nano sheets | - | 295.8 | 411.1 | L, F, Te, D-R | PFO, PSO, E, W-M | [117] |
Aminosilane grafted mesoporous carbons CKIT-6 | 834 | 110 | - | L, F | PFO, PSO | [118] |
Carbon materials from filter paper | 182.4 | 77 | - | L, F, Te, R-P, To, L-F | PFO, PSO, E | [119] |
Carbon materials from cotton | 27.4 | 33 | - | L, F, Te, R-P, To, L-F | PFO, PSO, E | [119] |
Modified activated carbon fiber | 743.3 | 555.6 | - | L, F, Te, D-R | PFO, PSO, W-M | [120] |
Fe/OMC | 882 | 300.4 | - | L, F, Te | PFO, PSO | [121] |
Carbon-SBA-15 replica | 739 | 175.4 | - | L, F, Te, D-R | PFO, PSO, W-M | [122] |
Magnetic Fe3O4@graphene nanocomposite | - | 32.3 | - | L, F | PFO, PSO | [123] |
GO-Fe3O4 | - | 67.3 | - | L, F, Te | PFO, PSO, W-M, B | [124] |
3D/GO/Fe3O4 | - | 5.26 | - | L, F, Te, R-P | PFO, PSO, W-M | [125] |
Activated charcoal/Fe2O3 nanocomposite | 560.1 | 255.1 | - | L, F, Te, D-R | PFO, PSO, E, W-M | [126] |
Graphene oxide/MIL 101(Cr) | - | 476.9 | - | L, F | PFO, PSO | [127] |
Activated carbon fiber—Fe3O4 | - | 51.10 | - | L, F, Te | PFO, PSO, W-M | [128] |
Adsorbent from elutrilithe A(700) | 122.4 | - | 32.1 | L | PSO | [129] |
Adsorbent from elutrilithe A(800) | 119.4 | - | 30.7 | L | PSO | [129] |
Adsorbent from elutrilithe A(900) | 161.9 | - | 38.7 | L | PSO | [129] |
Adsorbent | BET m2 g−1 | Adsorption Capacity (qm) mg g−1 | Isotherm Model | Kinetic Model | Ref. | |
---|---|---|---|---|---|---|
2,4-D | MCPA | |||||
MCM-41 | 572.7 | 2.48 | - | L | - | [137] |
APTES modified MCM-41 | 173.8 | 187.3 | - | L | - | [137] |
SBA-15 | 722 | 40.7 | - | L, F | PSO | [133] |
APTES modified SBA-15 | 511 | 278 | - | L, F | PSO | [133] |
TMSPU modified SBA-15 | 498 | 70.9 | - | L, F | PSO | [133] |
MCF | 593 | 31.6 | - | L, F | PSO | [133] |
APTES modified MCF | 415 | 286 | - | L, F | PSO | [133] |
TMSPU modified MCF | 410 | 57.1 | - | L, F | PSO | [133] |
APTES-modified silica gel | - | 10.32 | - | L | - | [139] |
Molecularly-imprinted APTES-modified silica gel | 185 | 125 | - | - | Contact time | [140] |
APTES-modified silica gel | 355 | 50 | - | - | Contact time | [140] |
Aluminum-based metal-organic framework | 1104 | - | 231.9 | F | PFO, PSO, W-M | [141] |
Adsorbent | BET m2 g−1 | Adsorption Capacity (qm) mg g−1 | Isotherm Model | Kinetic Model | Ref. | |
---|---|---|---|---|---|---|
2,4-D | MCPA | |||||
Magnetite-GO-LDH composites | 74.9 | 173 | - | L, F | PFO, PSO | [209] |
Red mud@carbon composite | 89.5 | 111.1 | - | L, F, R-P | PFO, PSO, W-M | [210] |
Fe-crosslinked chitosan complex | - | 473 | - | L | PFO, PSO, | [211] |
Chitosan-based hydrogel | - | 64.34 | - | L, F, R-P, S | PFO, PSO, E | [212] |
Chitosan/magnetite-based composite hydrogel | - | 43.95 | - | L, F, R-P, S | PFO, PSO, E | [212] |
Zn(Hiba)2 complexes | 409.1 | 12.7 | - | L, F | PFO, PSO, W-M | [213] |
Zn(NH2Hiba)2 complexes | 256.7 | 13.0 | - | L, F | PFO, PSO, W-M | [213] |
Zn(NH-Hiba)2COCH3 complexes | 183.1 | 43.1 | - | L, F | PFO, PSO, W-M | [213] |
MOF-MIL-53 | 1438 | 556 | - | L | PSO | [214] |
MOF-MIL-101(Cr) | 1439 | - | 370.4 | L, F, Te | PFO, PSO, W-M | [215] |
MOF-UiO-66-NH2 | 694 | - | 300.3 | L, F | PFO, PSO | [216] |
MOF-NH2-MIL-53(Al) | 79 | 241 | - | - | contact time | [217] |
MOF-MIL-53(Al) | 633 | 336 | - | - | contact time | [217] |
MOF-NH2-MIL-101(Al) | 2895 | 172 | - | - | contact time | [217] |
MOF-MIL-100(Fe) | 1893 | 858 | - | L, F, S, D-R, R-P | PFO, PSO, W-M, Ba | [218] |
Zr-MOF-MIL-101(Fe) | 1003 | 357.1 | - | L, F | PFO, PSO | [219] |
ZnFe2O4 nanoparticles | - | 48.30 | - | L, F | PFO, PSO | [220] |
Fe3O4@SiO2@NH2 | - | 166.6 | 153.8 | L, F | PFO, PSO | [221] |
Fe@PWHC | 1893 | 100.1 | - | L, F | - | [222] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blachnio, M.; Kusmierek, K.; Swiatkowski, A.; Derylo-Marczewska, A. Adsorption of Phenoxyacetic Herbicides from Water on Carbonaceous and Non-Carbonaceous Adsorbents. Molecules 2023, 28, 5404. https://doi.org/10.3390/molecules28145404
Blachnio M, Kusmierek K, Swiatkowski A, Derylo-Marczewska A. Adsorption of Phenoxyacetic Herbicides from Water on Carbonaceous and Non-Carbonaceous Adsorbents. Molecules. 2023; 28(14):5404. https://doi.org/10.3390/molecules28145404
Chicago/Turabian StyleBlachnio, Magdalena, Krzysztof Kusmierek, Andrzej Swiatkowski, and Anna Derylo-Marczewska. 2023. "Adsorption of Phenoxyacetic Herbicides from Water on Carbonaceous and Non-Carbonaceous Adsorbents" Molecules 28, no. 14: 5404. https://doi.org/10.3390/molecules28145404
APA StyleBlachnio, M., Kusmierek, K., Swiatkowski, A., & Derylo-Marczewska, A. (2023). Adsorption of Phenoxyacetic Herbicides from Water on Carbonaceous and Non-Carbonaceous Adsorbents. Molecules, 28(14), 5404. https://doi.org/10.3390/molecules28145404