Modeling of Nitrogen Removal from Natural Gas in Rotating Packed Bed Using Artificial Neural Networks
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Influences of High Gravity Factor on Removal Efficiency
Author | Applications | ANN Modelling | ||
---|---|---|---|---|
Input Parameters | Output Parameter | Results | ||
Wang et al., 2022 [63] | Degradation of bisphenol A (BPA) ozonation |
| BPA degradation efficiency | R2 = 0.9827 MSE = 0.0003305 |
Li, 2021 [70] | Volatile organic compound removal |
| VOC removal efficiency | R2 = 0.9697 MSE = 0.0364 |
Wei et al., 2018 [71] | Biosorption process absorption using agricultural waste |
| Biosorption time | R2 = 0.996 MSE = 0.0000904 |
Li et al., 2017 [62] | Dust removal via absorption process |
| Separation efficiency | R2 = 0.9952 MSE = 0.00013 |
Li et al., 2016 [72] | Wastewater treatment using adsorption process |
| Adsorption efficiency | R2 = 0.9965 MSE = 0.00016 |
Zhao et al., 2014 [60] | CO2 capture in RPB using absorption process |
| CO2 capture efficiency | R2 = 0.9457 MSE = 0.0012 |
Lashkarbolooki et al., 2012 [59] | Prediction of pressure drop |
| Pressure drops | R2 = 0.9985 MSE = 0.00003 |
Saha,2009 [58] | Mass transfer coefficient prediction |
| MTC | Not reported |
2.2. Comparisons between the ANN Models
3. Methodology
3.1. Experimental Setup
3.2. Model Development with Neural Networks
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lal, B.; Shariff, A.M.; Mukhtar, H.; Nasir, Q.; Qasim, A. An overview of cryogenic separation techniques for natural gas with high CO2content. J. Eng. Appl. Sci. 2018, 13, 2152–2155. [Google Scholar] [CrossRef]
- Rufford, T.; Smart, S.; Watson, G.; Graham, B.; Boxall, J.; da Costa, J.D.; May, E. The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies. J. Pet. Sci. Eng. 2012, 94–95, 123–154. [Google Scholar] [CrossRef]
- Ott, C.; Roberts, M.; Trautmann, S.; Krishnamurthy, G. State-of-the-Art Nitrogen Removal Methods from Air Products for Liquefaction Plants. LNG J. 2015. Available online: http://www.airproducts.com/~/media/Files/PDF/industries/lng/en-LNG-journal-paper.pdf (accessed on 10 November 2022).
- Meyer, H.S.; Henson, M.S. Methane Selective Membranes for Nitrogen Removal from Low Quality Natural Gas—High Permeation Is Not Enough. In Proceedings of the Natural Gas Technologies II: Ingenuity and Innovation, Phoenix, AZ, USA, 8–11 February 2004. [Google Scholar]
- Abdulrahman, I.; Máša, V.; Teng, S.Y. Process intensification in the oil and gas industry: A technological framework. Chem. Eng. Process.-Process. Intensif. 2021, 159, 108208. [Google Scholar] [CrossRef]
- Bucci, V.P. Process Intensification Transforming Chemical Engineering. Macromolecules 2000, 22–34. Available online: https://www.aiche.org/sites/default/files/docs/news/010022_cep_stankiewicz.pdf (accessed on 15 December 2022).
- Ramshaw, C. The opportunities for exploiting centrifugal fields. Heat Recover. Syst. CHP 1993, 13, 493–513. [Google Scholar] [CrossRef]
- Reay, D.; Ramshaw, C.; Harvey, A. Process Intensification: Engineering for Efficiency, Sustainability and Flexibility; Butterworth-Heinemann: Oxford, UK, 2013; Volume 53. [Google Scholar] [CrossRef]
- Harmsen, J. Process intensification in the petrochemicals industry: Drivers and hurdles for commercial implementation. Chem. Eng. Process.-Process. Intensif. 2010, 49, 70–73. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Park, L.K.; Yiacoumi, S.; Tsouris, C. Modular Chemical Process Intensification: A Review. Annu. Rev. Chem. Biomol. Eng. 2017, 8, 359–380. [Google Scholar] [CrossRef] [PubMed]
- Bielenberg, J.; El-Halwagi, M.; Ng, K.M. Editorial overview: Engineering and design approaches to process intensification. Curr. Opin. Chem. Eng. 2019, 25, A4–A5. [Google Scholar] [CrossRef]
- Rivas, D.F.; Castro-Hernández, E.; Perales, A.L.V.; van der Meer, W. Evaluation method for process intensification alternatives. Chem. Eng. Process.-Process. Intensif. 2018, 123, 221–232. [Google Scholar] [CrossRef]
- Pask, S.D.; Nuyken, O.; Cai, Z. The spinning disk reactor: An example of a process intensification technology for polymers and particles. Polym. Chem. 2012, 3, 2698–2707. [Google Scholar] [CrossRef]
- Costello, R.C. Process intensification: Think small. Chem. Eng. 2004, 111, 27–31. [Google Scholar]
- Moorthy, R.K.; Baksi, S.; Bisws, S. Process intensification—An insight. Chem. Eng. World 2016, 51, 41–47. [Google Scholar] [CrossRef]
- Ramshaw, C.; Mallinson, R.H. Mass Transfer Process. U.S. Patent 4,283,255, 11 August 1981. Available online: https://patents.google.com/patent/US4283255A/en (accessed on 18 December 2022).
- Zhao, H.; Shao, L.; Chen, J.-F. High-gravity process intensification technology and application. Chem. Eng. J. 2010, 156, 588–593. [Google Scholar] [CrossRef]
- Boodhoo, K. Spinning Disc Reactor for Green Processing and Synthesis. In Process Intensification for Green Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 59–90. [Google Scholar] [CrossRef]
- Meeuwse, M.; van der Schaaf, J.; Schouten, J.C. Mass Transfer in a Rotor−Stator Spinning Disk Reactor with Cofeeding of Gas and Liquid. Ind. Eng. Chem. Res. 2009, 49, 1605–1610. [Google Scholar] [CrossRef]
- Chianese, A.; Picano, A.; Stoller, M. Spinning disc reactor to produce nanoparticles: Applications and best operating variables. Chem. Eng. Trans. 2021, 84, 121–126. [Google Scholar] [CrossRef]
- Al Taweel, A.; Azizi, F.; Sirijeerachai, G. Static mixers: Effective means for intensifying mass transfer limited reactions. Chem. Eng. Process.-Process. Intensif. 2013, 72, 51–62. [Google Scholar] [CrossRef]
- Ghanem, A.; Lemenand, T.; Della Valle, D.; Peerhossaini, H. Static mixers: Mechanisms, applications, and characterization methods—A review. Chem. Eng. Res. Des. 2014, 92, 205–228. [Google Scholar] [CrossRef]
- Thakur, R.; Vial, C.; Nigam, K.; Nauman, E.; Djelveh, G. Static Mixers in the Process Industries—A Review. Chem. Eng. Res. Des. 2003, 81, 787–826. [Google Scholar] [CrossRef]
- Geng, S.; Mao, Z.-S.; Huang, Q.; Yang, C. Process Intensification in Pneumatically Agitated Slurry Reactors. Engineering 2021, 7, 304–325. [Google Scholar] [CrossRef]
- Li, Y.; Lu, Y.; Liu, X.; Wang, G.; Nie, Y.; Ji, J. Mass-transfer characteristics in a rotating zigzag bed as a Higee device. Sep. Purif. Technol. 2017, 186, 156–165. [Google Scholar] [CrossRef]
- Wang, G.; Xu, Z.; Ji, J. Progress on Higee distillation—Introduction to a new device and its industrial applications. Chem. Eng. Res. Des. 2011, 89, 1434–1442. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Wang, Y.; Chen, Y.; Ji, J.; Yu, Y.; Xu, Z. Distillation in a Counterflow Concentric-Ring Rotating Bed. Ind. Eng. Chem. Res. 2014, 53, 4821–4837. [Google Scholar] [CrossRef]
- Wang, G.Q.; Zhou, Z.J.; Li, Y.M.; Ji, J.B. Qualitative relationships between structure and performance of rotating zigzag bed in distillation. Chem. Eng. Process.-Process. Intensif. 2018, 135, 141–147. [Google Scholar] [CrossRef]
- Guo, J.; Jiao, W.; Qi, G.; Yuan, Z.; Liu, Y. Applications of high-gravity technologies in gas purifications: A review. Chin. J. Chem. Eng. 2019, 27, 1361–1373. [Google Scholar] [CrossRef]
- Boodhoo, K.; Harvey, A. Process Intensification: An Overview of Principles and Practice. In Process Intensification for Green Chemistry: Engineering Solutions for Sustainable Chemical Processing; Newcastle University: Newcastle upon Tyne, UK, 2013; pp. 3–30. [Google Scholar] [CrossRef] [Green Version]
- Yue, X.-J.; Luo, Y.; Chen, Q.-Y.; Chu, G.-W.; Luo, J.-Z.; Zhang, L.-L.; Chen, J.-F. Investigation of micromixing and precipitation process in a rotating packed bed reactor with PTFE packing. Chem. Eng. Process. Process. Intensif. 2018, 125, 227–233. [Google Scholar] [CrossRef]
- Sung, W.-D.; Chen, Y.-S. Characteristics of a rotating packed bed equipped with blade packings and baffles. Sep. Purif. Technol. 2012, 93, 52–58. [Google Scholar] [CrossRef]
- Neumann, K.; Hunold, S.; Groß, K.; Górak, A. Experimental investigations on the upper operating limit in rotating packed beds. Chem. Eng. Process.-Process. Intensif. 2017, 121, 240–247. [Google Scholar] [CrossRef]
- Qammar, H.; Hecht, F.; Skiborowski, M.; Górak, A. Experimental investigation and design of rotating packed beds for distillation. Chem. Eng. Trans. 2018, 69, 655–660. [Google Scholar] [CrossRef]
- Li, W.; Song, B.; Li, X.; Liu, Y. Modelling of vacuum distillation in a rotating packed bed by Aspen. Appl. Therm. Eng. 2017, 117, 322–329. [Google Scholar] [CrossRef]
- Lu, X.; Xie, P.; Ingham, D.; Ma, L.; Pourkashanian, M. Modelling of CO2 absorption in a rotating packed bed using an Eulerian porous media approach. Chem. Eng. Sci. 2019, 199, 302–318. [Google Scholar] [CrossRef]
- Luo, X.; Wang, M.; Lee, J.; Hendry, J. Dynamic modelling based on surface renewal theory, model validation and process analysis of rotating packed bed absorber for carbon capture. Appl. Energy 2021, 301, 117462. [Google Scholar] [CrossRef]
- Yu, C.-H.; Lin, Y.-J.; Wong, D.S.-H.; Chen, C.-C. Process Modeling of CO2 Absorption with Monoethanolamine Aqueous Solutions Using Rotating Packed Beds. Ind. Eng. Chem. Res. 2022, 61, 12142–12152. [Google Scholar] [CrossRef]
- Chen, W.-C.; Fan, Y.-W.; Zhang, L.-L.; Sun, B.-C.; Luo, Y.; Zou, H.-K.; Chu, G.-W.; Chen, J.-F. Computational fluid dynamic simulation of gas-liquid flow in rotating packed bed: A review. Chin. J. Chem. Eng. 2021, 41, 85–108. [Google Scholar] [CrossRef]
- Yang, Y.; Ouyang, Y.; Zhang, N.; Yu, Q.; Arowo, M. A review on computational fluid dynamic simulation for rotating packed beds. J. Chem. Technol. Biotechnol. 2018, 94, 1017–1031. [Google Scholar] [CrossRef]
- Zhang, W.; Xie, P.; Li, Y.; Teng, L.; Zhu, J. Hydrodynamic characteristics and mass transfer performance of rotating packed bed for CO2 removal by chemical absorption: A review. J. Nat. Gas Sci. Eng. 2020, 79, 103373. [Google Scholar] [CrossRef]
- Yang, Y.; Xiang, Y.; Chu, G.; Zou, H.; Sun, B.; Arowo, M.; Chen, J.-F. CFD modeling of gas–liquid mass transfer process in a rotating packed bed. Chem. Eng. J. 2016, 294, 111–121. [Google Scholar] [CrossRef]
- Al-Shathr, A.; Shakor, Z.M.; Majdi, H.S.; AbdulRazak, A.A.; Albayati, T.M. Comparison between Artificial Neural Network and Rigorous Mathematical Model in Simulation of Industrial Heavy Naphtha Reforming Process. Catalysts 2021, 11, 1034. [Google Scholar] [CrossRef]
- Osuolale, F.N.; Zhang, J. Energy efficiency optimisation for distillation column using artificial neural network models. Energy 2016, 106, 562–578. [Google Scholar] [CrossRef] [Green Version]
- Paul, A.; Prasad, A.; Kumar, A. Review on Artificial Neural Network and its Application in the Field of Engineering. J. Mech. Eng. Prakash 2022, 1, 53–61. [Google Scholar] [CrossRef]
- Cavalcanti, F.M.; Kozonoe, C.E.; Pacheco, K.A.; Alves, R.M.D.B. Application of Artificial Neural Networks to Chemical and Process Engineering. In Deep Learning Applications; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Sun, L.; Liang, F.; Cui, W. Artificial Neural Network and Its Application Research Progress in Chemical Process. Asian J. Res. Comput. Sci. 2021, 177–185. [Google Scholar] [CrossRef]
- Sun, J.; Tang, Q. Review of Artificial Neural Network and Its Application Research in Distillation. J. Eng. Res. Rep. 2021, 44–54. [Google Scholar] [CrossRef]
- Kwon, H.; Oh, K.C.; Choi, Y.; Chung, Y.G.; Kim, J. Development and application of machine learning-based prediction model for distillation column. Int. J. Intell. Syst. 2021, 36, 1970–1997. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Guajardo, E.A.; Delgado-Licona, F.; Álvarez, A.J.; Nigam, K.D.; Montesinos-Castellanos, A.; Morales-Menendez, R. Process intensification 4.0: A new approach for attaining new, sustainable and circular processes enabled by machine learning. Chem. Eng. Process.-Process. Intensif. 2021, 180, 108671. [Google Scholar] [CrossRef]
- Popoola, L.T.; Susu, A.A. Application of Artificial Neural Networks Based Monte Carlo Simulation in the Expert System Design and Control of Crude Oil Distillation Column of a Nigerian Refinery. Adv. Chem. Eng. Sci. 2014, 4, 266–283. [Google Scholar] [CrossRef] [Green Version]
- Taqvi, S.A.; Tufa, L.D.; Muhadizir, S. Optimization and Dynamics of Distillation Column Using Aspen Plus®. Procedia Eng. 2016, 148, 978–984. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wang, C. Application of Artificial Neural Network in the Control and Optimization of Distillation Tower. arXiv 2021, arXiv:2107.13713. [Google Scholar]
- Zhao, N.; Lu, J. Review of Neural Network Algorithm and its Application in Temperature Control of Distillation Tower. J. Eng. Res. Rep. 2021, 20, 50–61. [Google Scholar] [CrossRef]
- Shin, Y.; Smith, R.; Hwang, S. Development of model predictive control system using an artificial neural network: A case study with a distillation column. J. Clean. Prod. 2020, 277, 124124. [Google Scholar] [CrossRef]
- Ali, A.; Abdulrahman, A.; Garg, S.; Maqsood, K.; Murshid, G. Application of artificial neural networks (ANN) for vapor-liquid-solid equilibrium prediction for CH4-CO2binary mixture. Greenh. Gases: Sci. Technol. 2018, 9, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Saha, D. Prediction of mass transfer coefficient in rotating bed contactor (Higee) using artificial neural network. Heat Mass Transf. 2008, 45, 451–457. [Google Scholar] [CrossRef]
- Lashkarbolooki, M.; Vaferi, B.; Mowla, D. Using Artificial Neural Network to Predict the Pressure Drop in a Rotating Packed Bed. Sep. Sci. Technol. 2012, 47, 2450–2459. [Google Scholar] [CrossRef]
- Zhao, B.; Su, Y.; Tao, W. Mass transfer performance of CO2 capture in rotating packed bed: Dimensionless modeling and intelligent prediction. Appl. Energy 2014, 136, 132–142. [Google Scholar] [CrossRef]
- Gupta, K.N.; Kumar, R. Fixed bed utilization for the isolation of xylene vapor: Kinetics and optimization using response surface methodology and artificial neural network. Environ. Eng. Res. 2020, 26, 200105. [Google Scholar] [CrossRef]
- Li, W.; Wu, X.; Jiao, W.; Qi, G.; Liu, Y. Modelling of dust removal in rotating packed bed using artificial neural networks (ANN). Appl. Therm. Eng. 2017, 112, 208–213. [Google Scholar] [CrossRef]
- Wang, L.; Qi, C.; Lu, Y.; Arowo, M.; Shao, L. Degradation of Bisphenol A by ozonation in a rotating packed bed: Modeling by response surface methodology and artificial neural network. Chemosphere 2021, 286, 131702. [Google Scholar] [CrossRef]
- Taherdangkoo, R.; Tatomir, A.; Taherdangkoo, M.; Qiu, P.; Sauter, M. Nonlinear Autoregressive Neural Networks to Predict Hydraulic Fracturing Fluid Leakage into Shallow Groundwater. Water 2020, 12, 841. [Google Scholar] [CrossRef] [Green Version]
- Guzman, S.M.; Paz, J.O.; Tagert, M.L.M. The Use of NARX Neural Networks to Forecast Daily Groundwater Levels. Water Resour. Manag. 2017, 31, 1591–1603. [Google Scholar] [CrossRef]
- Tamhankar, Y. Design of a High Gravity Distillation. Bachelor’s Thesis, University of Pune, Pune, India, 2006. [Google Scholar]
- Qian, Z.; Xu, L.-B.; Li, Z.-H.; Li, H.; Guo, K. Selective Absorption of H2S from a Gas Mixture with CO2 by Aqueous N-Methyldiethanolamine in a Rotating Packed Bed. Ind. Eng. Chem. Res. 2010, 49, 6196–6203. [Google Scholar] [CrossRef]
- Cheng, H.-H.; Tan, C.-S. Removal of CO2 from indoor air by alkanolamine in a rotating packed bed. Sep. Purif. Technol. 2011, 82, 156–166. [Google Scholar] [CrossRef]
- Lin, C.-C.; Wei, T.-Y.; Liu, W.-T.; Shen, K.-P. Removal of VOCs from Gaseous Streams in a High-Voidage Rotating Packed Bed. J. Chem. Eng. Jpn. 2004, 37, 1471–1477. [Google Scholar] [CrossRef]
- Liu, L. VOC removal in rotating packed bed: ANN model vs empirical model. Alex. Eng. J. 2021, 61, 4507–4517. [Google Scholar] [CrossRef]
- Liu, Z.-W.; Liang, F.-N.; Liu, Y.-Z. Artificial neural network modeling of biosorption process using agricultural wastes in a rotating packed bed. Appl. Therm. Eng. 2018, 140, 95–101. [Google Scholar] [CrossRef]
- Li, W.; Wei, S.; Jiao, W.; Qi, G.; Liu, Y. Modelling of adsorption in rotating packed bed using artificial neural networks (ANN). Chem. Eng. Res. Des. 2016, 114, 89–95. [Google Scholar] [CrossRef]
- Singh, S.P.; Wilson, J.H.; Counce, R.M.; Lucero, A.J.; Reed, G.D.; Ashworth, R.A.; Elliott, M.G. Removal of volatile organic compounds from groundwater using a rotary air stripper. Ind. Eng. Chem. Res. 1992, 31, 574–580. [Google Scholar] [CrossRef]
- Pirdashti, M.; Curteanu, S.; Kamangar, M.H.; Hassim, M.H.; Khatami, M.A. Artificial neural networks: Applications in chemical engineering. Rev. Chem. Eng. 2013, 29, 205–239. [Google Scholar] [CrossRef]
Parameters | Model Specifications |
---|---|
Model |
|
Samples’ distribution [63] |
|
Number of inputs | 4 |
Number of outputs | 1 |
Hidden layer transfer function | Sigmoid |
Output layer transfer function | Linear |
Number of data sets | 45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surmi, A.; Shariff, A.M.; Lock, S.S.M. Modeling of Nitrogen Removal from Natural Gas in Rotating Packed Bed Using Artificial Neural Networks. Molecules 2023, 28, 5333. https://doi.org/10.3390/molecules28145333
Surmi A, Shariff AM, Lock SSM. Modeling of Nitrogen Removal from Natural Gas in Rotating Packed Bed Using Artificial Neural Networks. Molecules. 2023; 28(14):5333. https://doi.org/10.3390/molecules28145333
Chicago/Turabian StyleSurmi, Amiza, Azmi Mohd Shariff, and Serene Sow Mun Lock. 2023. "Modeling of Nitrogen Removal from Natural Gas in Rotating Packed Bed Using Artificial Neural Networks" Molecules 28, no. 14: 5333. https://doi.org/10.3390/molecules28145333
APA StyleSurmi, A., Shariff, A. M., & Lock, S. S. M. (2023). Modeling of Nitrogen Removal from Natural Gas in Rotating Packed Bed Using Artificial Neural Networks. Molecules, 28(14), 5333. https://doi.org/10.3390/molecules28145333