Recent Progress in Crystalline Borates with Edge-Sharing BO4 Tetrahedra
Abstract
:1. Introduction
2. High Pressure Synthesis of Borates with Edge-Sharing [BO4] Tetrahedra
2.1. Rare Earth Borates
2.2. Transition Metal Borates
2.3. Borates with Monovalent or Divalent A-Site Cations
3. Ambient Pressure Synthesis of Borates with Edge-Sharing [BO4] Tetrahedra
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mutailipu, M.; Poeppelmeier, K.R.; Pan, S. Borates: A rich source for optical materials. Chem. Rev. 2021, 121, 1130–1202. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Hu, C.; Kong, F.; Mao, J. High-performance second-harmonic-generation (SHG) materials: New developments and new strategies. Acc. Chem. Res. 2021, 54, 2775–2783. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.T.; Yu, H.; Rondinelli, J.M.; Poeppelmeier, K.R.; Halasyamani, P.S. Deep ultraviolet nonlinear optical materials. Chem. Mater. 2016, 28, 5238–5258. [Google Scholar] [CrossRef]
- Halasyamani, P.S.; Zhang, W. Viewpoint: Inorganic materials for UV and deep-UV nonlinear-optical applications. Inorg. Chem. 2017, 56, 12077–12085. [Google Scholar] [CrossRef]
- Kang, L.; Lin, Z. Deep-ultraviolet nonlinear optical crystals: Concept development and materials discovery. Light Sci. Appl. 2022, 11, 201. [Google Scholar] [CrossRef]
- Mutailipu, M.; Yang, Z.; Pan, S. Toward the enhancement of critical performance for deep-ultraviolet frequency-doubling crystals utilizing covalent tetrahedra. Acc. Mater. Res. 2021, 2, 282–291. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Cheng, J.; Yang, G. Two acentric aluminoborates incorporated d10 cations: Syntheses, structures, and nonlinear optical properties. Inorg. Chem. 2023, 62, 1264–1271. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Z.; Zhao, S.; Liang, F.; Ding, Q.; Sun, J.; Lin, Z.; Hong, M.; Luo, J. A deep-UV nonlinear optical borosulfate with incommensurate modulations. Angew. Chem. Int. Ed. 2021, 60, 11457–11463. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, S.; Luo, J. The role of cations in second-order nonlinear optical materials based on π-conjugated [BO3]3− groups. Coord. Chem. Rev. 2018, 366, 1–28. [Google Scholar] [CrossRef]
- Bai, S.; Wang, D.; Liu, H.; Wang, Y. Recent advances of oxyfluorides for nonlinear optical applications. Inorg. Chem. Front. 2021, 8, 1637–1654. [Google Scholar] [CrossRef]
- Lin, Z.; Yang, G. Oxo boron clusters and their open frameworks. Eur. J. Inorg. Chem. 2011, 26, 3857–3867. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, C.; Chen, J.; Cheng, J.; Li, J.; Yang, G. Two porous-layered borates built by B7O13(OH) clusters and AlO4/GaO4 tetrahedra. Cryst. Eng. Comm. 2022, 24, 8027–8033. [Google Scholar] [CrossRef]
- Peng, G.; Lin, C.; Fan, H.; Chen, K.; Li, B.; Zhang, G.; Ye, N. Be2(BO3)(IO3): The first anion-mixed van der waals member in the KBe2BO3F2 family with a very strong second harmonic generation response. Angew. Chem. Int. Ed. 2021, 60, 17415–17418. [Google Scholar] [CrossRef]
- Pan, Y.; Guo, S.; Liu, B.; Xue, H.; Guo, G. Second-order nonlinear optical crystals with mixed anions. Coord. Chem. Rev. 2018, 374, 464–469. [Google Scholar] [CrossRef]
- Song, J.; Hu, C.; Xu, X.; Kong, F.; Mao, J. A facile synthetic route to a new SHG material with two types of parallel π-conjugated planar triangular units. Angew. Chem. Int. Ed. 2015, 54, 3679–3682. [Google Scholar] [CrossRef]
- Chen, C.; Pan, R.; Li, X.; Qin, D.; Yang, G. Four inorganic-organic hybrid borates: From 2D layers to 3D oxoboron cluster organic frameworks. Inorg. Chem. 2021, 60, 18283–18290. [Google Scholar] [CrossRef]
- Wu, C.; Jiang, X.; Lin, L.; Dan, W.; Lin, Z.; Huang, Z.; Humphrey, M.G.; Zhang, C. Strong SHG responses in a beryllium-free deep-UV-transparent hydroxyborate via covalent bond modification. Angew. Chem. Int. Ed. 2021, 60, 27151–27157. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Q.; Chen, B.; Lan, Y.; Cheng, J.; Yang, G. Na3B6O10(HCOO): An ultraviolet nonlinear optical sodium borate-formate. Inorg. Chem. Front. 2022, 9, 5032–5038. [Google Scholar] [CrossRef]
- Jin, C.; Li, F.; Li, X.; Lu, J.; Yang, Z.; Pan, S.; Mutailipu, M. Difluoro(oxalato)borates as short-wavelength optical crystals with bifunctional [BF2C2O4] units. Chem. Mater. 2022, 34, 7516–7525. [Google Scholar] [CrossRef]
- Jin, C.; Li, F.; Cheng, B.; Qiu, H.; Yang, Z.; Pan, S.; Mutailipu, M. Double-modification oriented design of a deep-UV birefringent crystal functionalized by [B12O16F4(OH)4] Clusters. Angew. Chem. Int. Ed. 2022, 61, e202203984. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, F.; Wang, X.; Zhou, J.; Ju, J.; Huang, L.; Gao, D.; Bi, J.; Zou, G. Deep-ultraviolet mixed-alkali-metal borates with induced enlarged birefringence derived from the structure rearrangement of the LiB3O5. Inorg. Chem. 2019, 58, 5949–5955. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lee, M.-H.; Li, C.; Meng, X.; Yao, J. Growth, structure, and optical properties of a nonlinear optical niobium borate crystal CsNbOB2O5 with distorted NbO5 square pyramids. Inorg. Chem. 2022, 61, 19302–19308. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Jin, C.; Xu, P.; Gong, P.; Lin, Z.; Cheng, J.; Yang, G. Li2CsB7O10(OH)4: A deep-ultraviolet nonlinear-optical mixed-alkaline borate constructed by unusual heptaborate anions. Inorg. Chem. 2019, 58, 1755–1758. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Zhang, J.; Yu, F.; Dai, B. NaK5Zn2(B5O10)2 and β-K3ZnB5O10: Two zincoborates with deep-UV cutoff edge. Inorg. Chem. 2022, 61, 16533–16538. [Google Scholar] [CrossRef]
- Tian, H.; Wang, W.; Gao, Y.; Deng, T.; Wang, J.; Feng, Y.; Cheng, J. Facile assembly of an unusual lead borate with different cluster building units via a hydrothermal process. Inorg. Chem. 2013, 52, 6242–6244. [Google Scholar] [CrossRef]
- Cao, G.; Wei, Q.; Cheng, J.; Cheng, L.; Yang, G. A zeolite CAN-type aluminoborate with gigantic 24-ring channels. Chem. Commun. 2016, 52, 1729–1732. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, Q.; Wang, T.; Kang, L.; Lin, Z.; Wang, Y.; Xia, M. Polymorphism of LiCdBO3: Crystal structures, phase transitions and optical characterizations. Chin. J. Struct. Chem. 2023, 42, 100026. [Google Scholar] [CrossRef]
- Pan, R.; Cheng, J.; Yang, B.; Yang, G. CsBxGe6-xO12 (x = 1): A zeolite sodalite-type borogermanate with a high Ge/B ratio by partial boron substitution. Inorg. Chem. 2017, 56, 2371–2374. [Google Scholar] [CrossRef]
- Li, W.; Deng, J.; Pan, C. BO3 Triangle and B@Zn2O3 cationic layer in the structure of the hybrid zinc acetate borate [ZnAc]·[ZnBO3]. Inorg. Chem. 2021, 60, 1289–1293. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, R.; Cheng, J.; He, H.; Yang, B.; Zhang, Q.; Yang, G. A series of aluminoborates templated or supported by zinc-amine complexes. Chem. Eur. J. 2015, 21, 15732–15739. [Google Scholar] [CrossRef]
- Yu, S.; Gu, X.; Deng, T.; Huang, J.; Cheng, J.; Yang, G. Centrosymmetric (Hdima)2[Ge5B3O15(OH)] and noncentrosymmetric Na4Ga3B4O12(OH): Solvothermal/surfactant-thermal synthesis of open-framework borogermanate and galloborate. Inorg. Chem. 2017, 56, 12695–12698. [Google Scholar] [CrossRef]
- Wu, B.; Tang, D.; Ye, N.; Chen, C. Linear and nonlinear optical properties of the KBe2BO3F2 (KBBF) crystal. Opt. Mater. 1996, 5, 105–109. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Jiang, A.; Wu, B.; You, G.; Li, R.; Lin, S. New nonlinear-optical crystal: LiB3O5. J. Opt. Soc. Am. B 1989, 6, 616–621. [Google Scholar] [CrossRef]
- Chen, C.; Wu, B.; Jiang, A.; You, G. A new-type ultraviolet SHG crystal β-BaB2O4. Sci. Sin. Ser. B 1985, 28, 235–243. [Google Scholar]
- Zhou, G.; Xu, J.; Chen, X.; Zhong, H.; Wang, S.; Xu, K.; Deng, P.; Gan, F. Growth and spectrum of a novel birefringent α-BaB2O4 crystal. J. Cryst. Growth 1998, 191, 517–519. [Google Scholar]
- Huang, C.; Mutailipu, M.; Zhang, F.; Griffith, K.J.; Hu, C.; Yang, Z.; Griffin, J.M.; Poeppelmeier, K.R.; Pan, S. Expanding the chemistry of borates with functional [BO2]− anions. Nat. Commun. 2021, 12, 2597. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, F.; Yang, R.; Yang, Y.; Zhang, F.; Yang, Z.; Pan, S. Rb5Ba2(B10O17)2(BO2): The formation of unusual functional [BO2]− in borates with deep-ultraviolet transmission window. Sci. China Chem. 2022, 65, 719–725. [Google Scholar] [CrossRef]
- Ding, F.; Griffith, K.J.; Zhang, W.; Cui, S.; Zhang, C.; Wang, Y.; Kamp, K.; Yu, H.; Halasyamani, P.S.; Yang, Z.; et al. NaRb6(B4O5(OH)4)3(BO2) featuring noncentrosymmetry, chirality, and the linear anionic group BO2. J. Am. Chem. Soc. 2023, 145, 4928–4933. [Google Scholar] [CrossRef]
- Nowogrocki, G.; Penin, N.; Touboul, M. Crystal structure of Cs3B7O12 containing a new large polyanion with 63 boron atoms. Solid State Sci. 2003, 5, 795–803. [Google Scholar] [CrossRef]
- Wang, J.; Yang, G. A novel supramolecular magnesoborate framework with snowflake-like channels built by unprecedented huge B69 cluster cages. Chem. Commun. 2017, 53, 10398–10401. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, Y.; Lan, Y.; Cheng, J.; Yang, G. Ba2B10O16(OH)2·(H3BO3)(H2O): A possible deep-ultraviolet nonlinear-optical barium borate. Inorg. Chem. 2022, 61, 4246–4250. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wei, Q.; Cheng, J.; He, H.; Yang, B.; Yang, G. Na2B10O17·H2en: A three dimensional open-framework layered borate co-templated by inorganic cations and organic amines. Chem. Commun. 2015, 51, 5066–5068. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Cheng, J.; He, C.; Yang, G. An acentric calcium borate Ca2[B5O9]·(OH)·H2O: Synthesis, structure, and nonlinear optical property. Inorg. Chem. 2014, 53, 11757–11763. [Google Scholar] [CrossRef]
- Li, X.; Yang, G. LiB9O15·H2dap·H2O: A cotemplated acentric layer-pillared borate built by mixed oxoboron clusters. Inorg. Chem. 2021, 60, 16085–16089. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, G. Two mixed alkali-metal borates templated from cations to clusters. Inorg. Chem. 2022, 61, 10205–10210. [Google Scholar] [CrossRef]
- Wang, E.; Huang, J.; Yu, S.; Lan, Y.; Cheng, J.; Yang, G. An ultraviolet nonlinear optic borate with 13-ring channels constructed from different building units. Inorg. Chem. 2017, 56, 6780–6783. [Google Scholar] [CrossRef]
- Wei, Q.; Wang, J.; He, C.; Cheng, J.; Yang, G. Deep-ultraviolet nonlinear optics in a borate framework with 21-Ring channels. Chem. Eur. J. 2016, 22, 10759–10762. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, J.; Wei, Q.; He, H.; Yang, B.; Yang, G. NaB3O5·0.5H2O and NH4NaB6O10: Two cluster open frameworks with chiral quartz and achiral primitive cubic nets constructed from oxo boron cluster building units. Eur. J. Inorg. Chem. 2014, 2014, 4079–4083. [Google Scholar] [CrossRef]
- Zhi, S.; Wang, Y.; Sun, L.; Cheng, J.; Yang, G. Linking 1D transition-metal coordination polymers and different inorganic boron oxides to construct a series of 3D inorganic-organic hybrid borates. Inorg. Chem. 2018, 57, 1350–1355. [Google Scholar] [CrossRef]
- Huppertz, H.; von der Eltz, B. Multianvil high-pressure synthesis of Dy4B6O15: The first oxoborate with edge-sharing BO4 tetrahedra. J. Am. Chem. Soc. 2002, 124, 9376–9377. [Google Scholar] [CrossRef]
- Jin, S.; Cai, G.; Wang, W.; He, M.; Wang, S.; Chen, X. Stable oxoborate with edge-sharing BO4 tetrahedra synthesized under ambient pressure. Angew. Chem. Int. Ed. 2010, 49, 4967–4970. [Google Scholar] [CrossRef]
- Ouyang, T.; Shen, Y.; Zhao, S. Accurate design and synthesis of nonlinear optical crystals employing KBe2BO3F2 as structural template. Chin. J. Struct. Chem. 2023, 42, 100024. [Google Scholar] [CrossRef]
- Su, H.; Yan, Z.; Hou, X.; Zhang, M. Fluorooxoborates: A precious treasure of deep-ultraviolet nonlinear optical materials. Chin. J. Struct. Chem. 2023, 42, 100027. [Google Scholar] [CrossRef]
- Mutailipu, M.; Zhang, M.; Yang, Z.; Pan, S. Targeting the next generation of deep-ultraviolet nonlinear optical materials: Expanding from borates to borate fluorides to fluorooxoborates. Acc. Chem. Res. 2019, 52, 791–801. [Google Scholar] [CrossRef]
- Leonyuk, N.I.; Maltsev, V.V.; Volkova, E.A. Crystal chemistry of high-temperature borates. Molecules 2020, 25, 2450. [Google Scholar] [CrossRef]
- Huppertz, H. New synthetic discoveries via high-pressure solid-state chemistry. Chem. Commun. 2011, 47, 131–140. [Google Scholar] [CrossRef]
- Silver, M.A.; Albrecht-Schmitt, T.E. Evaluation of f-element borate chemistry. Coord. Chem. Rev. 2016, 323, 36–51. [Google Scholar] [CrossRef] [Green Version]
- Schubert, D.M. Hydrated zinc borates and their industrial use. Molecules 2019, 24, 2419. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhang, M.; Mutailipu, M.; Poeppelmeier, K.R.; Pan, S. Research and development of zincoborates: Crystal growth, structural chemistry and physicochemical properties. Molecules 2019, 24, 2763. [Google Scholar] [CrossRef] [Green Version]
- Jiao, J.; Zhang, M.; Pan, S. Aluminoborates as nonlinear optical materials. Angew. Chem. Int. Ed. 2022, 61, e202217037. [Google Scholar]
- Li, Q.; Chen, W.; Lan, Y.; Cheng, J. Recent progress in ultraviolet and deep-ultraviolet nonlinear optical aluminoborates. Chin. J. Struct. Chem. 2023, 42, 100036. [Google Scholar] [CrossRef]
- Zhang, J.; Kong, F.; Xu, X.; Mao, J. Crystal structures and second-order NLO properties of borogermanates. J. Solid State Chem. 2012, 195, 63–72. [Google Scholar] [CrossRef]
- Xin, S.; Zhou, M.; Beckett, M.A.; Pan, C. Recent advances in crystalline oxidopolyborate complexes of d-block or p-block metals: Structural aspects, syntheses, and physical properties. Molecules 2021, 26, 3815. [Google Scholar] [CrossRef] [PubMed]
- Beckett, M.A. Recent advances in crystalline hydrated borates with non-metal or transition-metal complex cations. Coord. Chem. Rev. 2016, 323, 2–14. [Google Scholar] [CrossRef] [Green Version]
- Huppertz, H. High-pressure preparation, crystal structure, and properties of RE4B6O15 (RE = Dy, Ho) with an extension of the “fundamental building block”-descriptors. Z. Naturforsch. 2003, 58, 278–290. [Google Scholar] [CrossRef]
- Emme, H.; Huppertz, H. Gd2B4O9: Ein weiteres oxoborat mit kanten-verknüpften BO4-tetraedern. Z. Anorg. Allg. Chem. 2002, 628, 2165. [Google Scholar] [CrossRef]
- Emme, H.; Huppertz, H. High-pressure preparation, crystal structure, and properties of α-(RE)2B4O9 (RE = Eu, Gd, Tb, Dy): Oxoborates displaying a new type of structure with edge-sharing BO4 tetrahedra. Chem. Eur. J. 2003, 9, 3623–3633. [Google Scholar] [CrossRef]
- Emme, H.; Huppertz, H. High-pressure syntheses of α-RE2B4O9 (RE = Sm, Ho), with a structure type displaying edge-sharing BO4 tetrahedra. Acta Crystallogr. C 2005, 61, I29–I31. [Google Scholar] [CrossRef]
- Schmitt, M.K.; Huppertz, H. High-pressure synthesis and crystal structure of α-Y2B4O9. Z. Naturforsch. 2017, 72, 977–982. [Google Scholar] [CrossRef]
- Fuchs, B.; Heymann, G.; Wang, X.F.; Tudi, A.; Bayarjargal, L.; Siegel, R.; Schmutzler, A.; Senker, J.; Joachim-Mrosko, B.; Saxer, A.; et al. La3B6O13(OH): The first acentric high-pressure borate displaying edge-sharing BO4 tetrahedra. Chem. Eur. J. 2020, 26, 6851–6861. [Google Scholar] [CrossRef]
- Knyrim, J.S.; Roeßner, F.; Jakob, S.; Johrendt, D.; Kinski, I.; Glaum, R.; Huppertz, H. Formation of edge-sharing BO4 tetrahedra in the high-pressure borate HP-NiB2O4. Angew. Chem. Int. Ed. 2007, 46, 9097–9100. [Google Scholar] [CrossRef]
- Neumair, S.C.; Glaum, R.; Huppertz, H. Synthesis and crystal structure of the high-pressure iron borate β-FeB2O4. Z. Naturforsch. 2009, 64b, 883–890. [Google Scholar] [CrossRef]
- Neumair, S.C.; Kaindl, R.; Huppertz, H. Synthesis and crystal structure of the high-pressure cobalt borate HP-CoB2O4. Z. Naturforsch. 2010, 65b, 1311–1317. [Google Scholar] [CrossRef]
- Pakhomova, A.; Fuchs, B.; Dubrovinsky, L.S.; Natalia Dubrovinskaia, N.; Huppertz, H. Polymorphs of the gadolinite-type borates ZrB2O5 and HfB2O5 under extreme pressure. Chem. Eur. J. 2021, 27, 6007–6014. [Google Scholar] [CrossRef]
- Neumair, S.C.; Knyrim, J.S.; Oeckler, O.; Glaum, R.; Kaindl, R.; Stalder, R.; Huppertz, H. Intermediate states on the way to edge-sharing BO4 tetrahedra in M6B22O39·H2O (M = Fe, Co). Chem. Eur. J. 2010, 16, 13659–13670. [Google Scholar] [CrossRef]
- Neumair, S.C.; Kaindl, R.; Huppertz, H. The new high-pressure borate Co7B24O42(OH)2·2 H2O—Formation of edge-sharing BO4 tetrahedra in a hydrated borate. J. Solid State Chem. 2012, 185, 1–9. [Google Scholar] [CrossRef]
- Neumair, S.C.; Vanicek, S.; Kaindl, R.; Többens, D.M.; Martineau, C.; Taulelle, F.; Senker, J.; Huppertz, H. HP-KB3O5 highlights the structural diversity of borates: Corner-sharing BO3/BO4 groups in combination with edge-sharing BO4 tetrahedra. Eur. J. Inorg. Chem. 2011, 2011, 4147–4152. [Google Scholar] [CrossRef]
- Sohr, G.; Neumair, S.C.; Huppertz, H. High-pressure synthesis and characterization of the alkali metal borate HP-RbB3O5. Z. Naturforsch. 2012, 67b, 1197–1204. [Google Scholar] [CrossRef]
- Sohr, G.; Perfler, L.; Huppertz, H. The high-pressure thallium triborate HP-TlB3O5. Z. Naturforsch. 2014, 69b, 1260–1268. [Google Scholar] [CrossRef] [Green Version]
- Sohr, G.; Neumair, S.C.; Heymann, G.; Wurst, K.; Schmedt auf der Gunne, J.; Huppertz, H. Oxonium ions substituting cesium ions in the structure of the new high-pressure borate HP-Cs1 -x(H3O)xB3O5 (x = 0.5–0.7). Chem. Eur. J. 2014, 20, 4316–4323. [Google Scholar] [CrossRef]
- Sohr, G.; Tçbbens, D.M.; Schmedt auf der Gunne, J.; Huppertz, H. HP-CsB5O8: Synthesis and characterization of an outstanding borate exhibiting the simultaneous linkage of all structural units of borates. Chem. Eur. J. 2014, 20, 17059–17067. [Google Scholar] [CrossRef] [PubMed]
- Gorelova, L.; Pakhomova, A.; Aprilis, G.; Yin, Y.Q.; Laniel, D.; Winkler, B.; Krivovichev, S.; Pekov, I.; Dubrovinskaia, N.; Dubrovinsky, L. Edge-sharing BO4 tetrahedra and penta-coordinated silicon in the high-pressure modification of NaBSi3O8. Inorg. Chem. Front. 2022, 9, 1735–1742. [Google Scholar] [CrossRef]
- Tatyana, B.; Bekker, T.B.; Podborodnikov, I.V.; Sagatov, N.E.; Shatskiy, A.; Rashchenko, S.; Sagatova, D.N.; Davydov, A.; Litasov, K.D. γ-BaB2O4: High-pressure high-temperature polymorph of barium borate with edge-sharing BO4 tetrahedra. Inorg. Chem. 2022, 61, 2340–2350. [Google Scholar]
- Jen, I.-H.; Lee, Y.C.; Tsai, C.E.; Lii, K.H. Edge-sharing BO4 tetrahedra in the structure of hydrothermally synthesized barium borate: α-Ba3[B10O17(OH)2]. Inorg. Chem. 2019, 58, 4085–4088. [Google Scholar] [CrossRef]
- Wu, Y.; Yao, J.; Zhang, J.; Fu, P.Z.; Wu, Y. Potassium zinc borate, KZnB3O6. Acta. Cryst. E 2010, 66, i45. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Fan, W.; Li, Y.; Sun, H.; Wei, L.; Cheng, X.; Zhao, X. Theoretical insight into the structural stability of KZnB3O6 polymorphs with different BOx polyhedral networks. Inorg. Chem. 2012, 51, 6762–6770. [Google Scholar] [CrossRef]
- Lou, Y.; Li, D.; Li, Z.; Jin, S.; Chen, X. Unidirectional thermal expansion in edge-sharing BO4 tetrahedra contained KZnB3O6. Sci. Rep. 2015, 5, 10996. [Google Scholar] [CrossRef] [Green Version]
- Lou, Y.; Li, D.; Li, Z.; Zhang, H.; Jin, S.; Chen, X. Unidirectional thermal expansion in KZnB3O6: Role of alkali metals. Dalton Trans. 2015, 44, 19763–19767. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Sun, C.; Chang, X.; Xiao, W. Synthesis, crystal structure, spectrum properties, and electronic structure of anew three-borate Ba4Na2Zn4(B3O6)2(B12O24) with two isolated types of blocks:3[3Δ] and 3[2Δ + 1T]. J. Alloys Compd. 2013, 568, 60–67. [Google Scholar] [CrossRef]
- Mutailipu, M.; Zhang, M.; Li, H.; Fan, X.; Yang, Z.; Jin, S.; Wang, G.; Pan, S. Li4Na2CsB7O14: A new edge-sharing [BO4]5− tetrahedra containing borate with high anisotropic thermal expansion. Chem. Commun. 2019, 55, 1295–1298. [Google Scholar] [CrossRef]
- Guo, F.; Han, J.; Cheng, S.; Yu, S.; Yang, Z.; Pan, S. Transformation of the B−O units from corner-sharing to edge-sharing linkages in BaMBO4 (M = Ga, Al). Inorg. Chem. 2019, 58, 8237–8244. [Google Scholar] [CrossRef]
- Han, S.; Huang, C.; Tudi, A.; Hu, S.; Yang, Z.; Pan, S. β-CsB9O14: A triple-layered borate with edge-sharing BO4 tetrahedra exhibiting a short cutoff edge and a large birefringence. Chem.-Eur. J. 2019, 25, 11614–11619. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, W.; Yang, R.; Zhang, M.; Yang, Z.; Pan, S. Pb2.28Ba1.72B10O19 featuring a three-dimensional B–O anionic network with edge-sharing [BO4] obtained under ambient pressure. Inorg. Chem. Front. 2021, 8, 3716–3722. [Google Scholar] [CrossRef]
- Quarez, E.; Gautron, E.; Paris, M.; Gajan, D.; Mevellec, J. Toward the coordination fingerprint of the edge-sharing BO4. Inorg. Chem. 2021, 60, 2406–2413. [Google Scholar] [CrossRef]
- Xie, W.; Fang, Z.; Mao, J. Ba6Zn6(B3O6)6(B6O12): Barium zinc borate contains π-conjugated [B3O6]3− anions and [B6O12]6− anion with edge-sharing BO4 tetrahedra. Inorg. Chem. 2022, 61, 18260–18266. [Google Scholar] [CrossRef]
- Han, J.; Liu, K.; Chen, L.; Li, F.; Yang, Z.; Zhang, F.; Pan, S.; Mutailipu, M. Finding a deep-UV borate BaZnB4O8 with edge-sharing [BO4] tetrahedra and strong optical anisotropy. Chem. Eur. J. 2023, 29, e202203000. [Google Scholar] [CrossRef]
- Edwards, T.; Endo, T.; Walton, J.H.; Sen, S. Observation of the transition state for pressure-induced BO3→BO4 conversion in glass. Science 2014, 345, 1027–1029. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.-J.; Chen, W.-F.; Lan, Y.-Z.; Cheng, J.-W. Recent Progress in Crystalline Borates with Edge-Sharing BO4 Tetrahedra. Molecules 2023, 28, 5068. https://doi.org/10.3390/molecules28135068
Li J-J, Chen W-F, Lan Y-Z, Cheng J-W. Recent Progress in Crystalline Borates with Edge-Sharing BO4 Tetrahedra. Molecules. 2023; 28(13):5068. https://doi.org/10.3390/molecules28135068
Chicago/Turabian StyleLi, Jing-Jing, Wei-Feng Chen, You-Zhao Lan, and Jian-Wen Cheng. 2023. "Recent Progress in Crystalline Borates with Edge-Sharing BO4 Tetrahedra" Molecules 28, no. 13: 5068. https://doi.org/10.3390/molecules28135068
APA StyleLi, J. -J., Chen, W. -F., Lan, Y. -Z., & Cheng, J. -W. (2023). Recent Progress in Crystalline Borates with Edge-Sharing BO4 Tetrahedra. Molecules, 28(13), 5068. https://doi.org/10.3390/molecules28135068