Current and Potential Applications of Atmospheric Cold Plasma in the Food Industry
Abstract
:1. Introduction
2. Mechanism of ACP
3. Atmospheric Cold Plasma (ACP) in Food Technology
3.1. Microbial Inactivation
3.2. Active Food Packaging
3.3. Food Allergen Mitigation
3.4. Enzyme Inactivation
Enzyme Inactivation | |||||||||
---|---|---|---|---|---|---|---|---|---|
Food Product | Plasma Device | Enzymes | Reduction of Enzyme Activity | Parameters | Reference | ||||
Exposure Time (s) | Exposure Distance (mm) | Input Power (W) | Voltage (kV) | Frequency | |||||
White mushroom | DBD | β-1,3-glucanase, MDA, and PPO | 46.2%; 47.5%; 42.0% | 60 | 100 | 30 | - | 13.6 MHz | [7] |
Mushroom (Agaricus bisporus) | DBD | PPO | 70.0% | 600 | 38 | - | 50 | - | [54] |
Milk | DBD | ALP | 50.0% | 120 | 40 | - | 60 | 50.0 Hz | [55] |
Wheatgerm | DBD | Lipase and lipoxygenase | 25.0%; 50.0% | 1500 | 20 | - | 24 | 50.0 Hz | [53] |
Hen egg white | DBD | Lysozyme | 50.0% | 720 | 3 | - | 0.14 | 16.0 kHz | [56] |
Hen egg white | Plasma jet | Lysozyme | 60.0% | 720 | 6 | - | 0.08 | 24.0 kHz | [56] |
Fresh-cut melon | DBD | POD and PME | 17.0%; 7.0% | 900 | 5 | - | 15 | 12.5 kHz | [57] |
Bananas | DBD | POD and PPO | 64.4%; 62.6% | 120 | 6 | - | 0.040 | 10.0 kHz | [58] |
3.5. Food Drying Pre-Treatment
3.6. Pesticide Decontamination
Pesticide Decontamination | |||||||||
---|---|---|---|---|---|---|---|---|---|
Food Product | Plasma Device | Pesticide Active Ingredients | Degradation of Pesticides | Parameters | Reference | ||||
Time (s) | Distance (mm) | Input Power (W) | Voltage (kV) | Frequency | |||||
Strawberries | DBD | Azoxystrobin, cyprodinil, fludioxonil, and pyriproxyfen | 69%; 45%; 71%; 46% | 300 | 40 | - | 80 | 50.0 Hz | [75] |
Blueberries | DBD | Boscalid and imidacloprid | 80.2%; 75.6% | 300 | 40 | - | 80 | 50.0 Hz | [76] |
Corn | DBD | Chlorpyrifos and carbaryl | 86.2%; 66.6% | 60 | 6 | 20 | - | 12.0 kHz | [73] |
Mango | Gliding arc | Chlorpyrifos and cypermethrin | 74%; 62.9% | 300 | 2.5 | 600 | 8 | - | [77] |
Apple | DBD | Chlorpyrifos and diazinon | 87.0%; 87.4% | 600 | 7 | - | 13 | 13.0 kHz | [74] |
Cucumber | DBD | Chlorpyrifos and diazinon | 33.7%; 82.2% | 600 | 7 | - | 13 | 13.0 kHz | [74] |
Lettuce | DBD | Chlorpyrifos and malathion | 51.4%; 53.1% | 120 | 35 | - | 80 | 50.0 Hz | [78] |
3.7. Food Modification
Food Modification | |||||||||
---|---|---|---|---|---|---|---|---|---|
Food Product | Plasma Device | Modification | Results | Parameters | Reference | ||||
Time (s) | Distance (mm) | Input Power (W) | Voltage (kV) | Frequency | |||||
Fenugreek | DBD | Galactomannand yield | 122% | 1800 | 40 | - | 80 | 60 Hz | [82] |
Maize | DBD | Increase in crystallinity | 36.90% | 600 | 5 | - | 0.138 | 50 Hz | [83] |
Wheat | DBD | Increase in viscosity | 17.60% | 1800 | 30 | - | 80 | 50 Hz | [81] |
Whey protein isolate | DBD | Emulsification enhancement | 25.00% | 300 | 44 | - | 70 | - | [84] |
Xanthan gum | SBD | Increase in viscosity | 40.00% | 1800 | 53 | 250 | 3.5 | 15 kHz | [85] |
Pomegranate juice | Plasma jet | Increase in phenolic compounds | 33.00% | 300 | 22 | 6 | 2.5 | 25 kHz | [86] |
White grapes | Plasma jet | Drying speed | 20.00% | 36,000 | 10 | 500 | - | 25 kHz | [61] |
Chili pepper | Gliding arc | Drying speed | 16.70% | 30 | 60 | 750 | - | 20 kHz | [64] |
Wolfberry | Gliding arc | Drying speed | 14.10% | 60 | 60 | 750 | - | 20 kHz | [68] |
3.8. Nutrient Extraction
3.9. Food Waste Processing
Food Waste Processing | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Food Waste | Plasma Device | Products | Results | Parameters | Reference | |||||
Gas Type | Time (s) | Distance (mm) | Input Power (W) | Voltage (V) | Frequency (Hz) | |||||
Grape pomace | DBD | Phenolic compounds | 22.8% | Air | 900 | 52 | - | 120 | 60 | [96] |
Pineapple peel | DBD | Bacterial cellulose | 3.82 g/L | Ar, Air | 900 | 10 | 600 | - | - | [111] |
Sugarcane bagasse | Plasma jet | Bioethanol production | 38.5% | Ar | 1500 | 10 | 80–200 | - | - | [109] |
Bacterial cellulose | 1.68 g/L | Ar | 1500 | 10 | 200 | - | - | [110] | ||
Wheat straw | DBD | Methane | 45.0% | Air | 3600 | 20 | 230 | - | 10 kHz | [112] |
4. Challenges of ACP in Food Industry
5. Conclusions and Future Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Loke, X.-J.; Chang, C.-K.; Hou, C.-Y.; Cheng, K.-C.; Hsieh, C.-W. Plasma-treated polyethylene coated with polysaccharide and protein containing cinnamaldehyde for active packaging films and applications on tilapia (Orechromis niloticus) fillet preservation. Food Control 2021, 125, 108016. [Google Scholar] [CrossRef]
- Moradi, E.; Moosavi, M.H.; Hosseini, S.M.; Mirmoghtadaie, L.; Moslehishad, M.; Khani, M.R.; Jannatyha, N.; Shojaee-Aliabadi, S. Prolonging shelf life of chicken breast fillets by using plasma-improved chitosan/low density polyethylene bilayer film containing summer savory essential oil. Int. J. Biol. Macromol. 2020, 156, 321–328. [Google Scholar] [CrossRef]
- Bermudez-Aguirre, D. Advances in Cold Plasma Applications for Food Safety and Preservation; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Contini, C.; Katsikogianni, M.G.; O’Neill, F.; O’Sullivan, M.; Boland, F.; Dowling, D.; Monahan, F. Storage stability of an antioxidant active packaging coated with citrus extract following a plasma jet pretreatment. Food Bioprocess Technol. 2014, 7, 2228–2240. [Google Scholar] [CrossRef]
- Kang, J.H.; Jeon, Y.J.; Min, S.C. Effects of packaging parameters on the microbial decontamination of Korean steamed rice cakes using in-package atmospheric cold plasma treatment. Food Sci. Biotechnol. 2021, 30, 1535–1542. [Google Scholar] [CrossRef]
- Oldham, C.J. Applications of Atmospheric Plasmas; North Carolina State University: Raleigh, NC, USA, 2009. [Google Scholar]
- Chang, C.-K.; Cheng, K.-C.; Hou, C.-Y.; Wu, Y.-S.; Hsieh, C.-W. Development of Active Packaging to Extend the Shelf Life of Agaricus bisporus by Using Plasma Technology. Polymers 2021, 13, 2120. [Google Scholar] [CrossRef] [PubMed]
- Dobslaw, C.; Glocker, B. Plasma Technology and Its Relevance in Waste Air and Waste Gas Treatment. Sustainability 2020, 12, 8981. [Google Scholar] [CrossRef]
- Misra, N.N.; Schlüter, O.; Cullen, P.J. Chapter 1—Plasma in Food and Agriculture. In Cold Plasma in Food and Agriculture; Academic Press: San Diego, CA, USA, 2016; pp. 1–16. [Google Scholar]
- Lin, S.-P.; Khumsupan, D.; Chou, Y.-J.; Hsieh, K.-C.; Hsu, H.-Y.; Ting, Y.; Cheng, K.-C. Applications of atmospheric cold plasma in agricultural, medical, and bioprocessing industries. Appl. Microbiol. Biotechnol. 2022, 106, 7737–7750. [Google Scholar] [CrossRef]
- Conrads, H.; Schmidt, M. Plasma generation and plasma sources. Plasma Sources Sci. Technol. 2000, 9, 441. [Google Scholar] [CrossRef] [Green Version]
- Mouele, E.S.M.; Tijani, J.O.; Badmus, K.O.; Pereao, O.; Babajide, O.; Fatoba, O.O.; Zhang, C.; Shao, T.; Sosnin, E.; Tarasenko, V. A critical review on ozone and co-species, generation and reaction mechanisms in plasma induced by dielectric barrier discharge technologies for wastewater remediation. J. Environ. Chem. Eng. 2021, 9, 105758. [Google Scholar] [CrossRef]
- Fröhling, A.; Durek, J.; Schnabel, U.; Ehlbeck, J.; Bolling, J.; Schlüter, O. Indirect plasma treatment of fresh pork: Decontamination efficiency and effects on quality attributes. Innov. Food Sci. Emerg. Technol. 2012, 16, 381–390. [Google Scholar] [CrossRef]
- Nasiru, M.M.; Frimpong, E.B.; Muhammad, U.; Qian, J.; Mustapha, A.T.; Yan, W.; Zhuang, H.; Zhang, J. Dielectric barrier discharge cold atmospheric plasma: Influence of processing parameters on microbial inactivation in meat and meat products. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2626–2659. [Google Scholar] [CrossRef]
- Varilla, C.; Marcone, M.; Annor, G.A. Potential of cold plasma technology in ensuring the safety of foods and agricultural produce: A review. Foods 2020, 9, 1435. [Google Scholar] [CrossRef]
- Hensel, K.; Kučerová, K.; Tarabová, B.; Janda, M.; Machala, Z.; Sano, K.; Mihai, C.T.; Ciorpac, M.; Gorgan, L.D.; Jijie, R.; et al. Effects of air transient spark discharge and helium plasma jet on water, bacteria, cells, and biomolecules. Biointerphases 2015, 10, 029515. [Google Scholar] [CrossRef] [Green Version]
- Fridman, A.; Nester, S.; Kennedy, L.A.; Saveliev, A.; Mutaf-Yardimci, O. Gliding arc gas discharge. Prog. Energy Combust. Sci. 1999, 25, 211–231. [Google Scholar] [CrossRef]
- Ivanov, V.; Paunska, T.; Lazarova, S.; Bogaerts, A.; Kolev, S. Gliding arc/glow discharge for CO2 conversion: Comparing the performance of different discharge configurations. J. CO2 Util. 2023, 67, 102300. [Google Scholar] [CrossRef]
- Hertrich, S.M.; Boyd, G.; Sites, J.; Niemira, B.A. Cold Plasma Inactivation of Salmonella in Prepackaged, Mixed Salads Is Influenced by Cross-Contamination Sequence. J. Food Prot. 2017, 80, 2132–2136. [Google Scholar] [CrossRef] [PubMed]
- Kilonzo-Nthenge, A.; Liu, S.; Yannam, S.; Patras, A. Atmospheric Cold Plasma Inactivation of Salmonella and Escherichia coli on the Surface of Golden Delicious Apples. Front. Nutr. 2018, 5, 120. [Google Scholar] [CrossRef]
- Roh, S.H.; Oh, Y.J.; Lee, S.Y.; Kang, J.H.; Min, S.C. Inactivation of Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in processed chicken breast via atmospheric in-package cold plasma treatment. LWT 2020, 127, 109429. [Google Scholar] [CrossRef]
- Mahnot, N.K.; Mahanta, C.L.; Farkas, B.E.; Keener, K.M.; Misra, N.N. Atmospheric cold plasma inactivation of Escherichia coli and Listeria monocytogenes in tender coconut water: Inoculation and accelerated shelf-life studies. Food Control 2019, 106, 106678. [Google Scholar] [CrossRef]
- Wang, J.; Fu, T.; Wang, Y.; Zhang, J. Effects of High-Voltage Atmospheric Cold Plasma Treatment on Microbiological and Quality Characters of Tilapia Fillets. Foods 2022, 11, 2398. [Google Scholar] [CrossRef]
- Lacombe, A.; Niemira, B.A.; Gurtler, J.B.; Sites, J.; Boyd, G.; Kingsley, D.H.; Li, X.; Chen, H. Nonthermal inactivation of norovirus surrogates on blueberries using atmospheric cold plasma. Food Microbiol. 2017, 63, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagheri, H.; Abbaszadeh, S.; Salari, A. Optimization of decontamination conditions for Aspergillus flavus inoculated to military rations snack and physicochemical properties with atmospheric cold plasma. J. Food Saf. 2020, 40, e12850. [Google Scholar] [CrossRef]
- Devi, Y.; Thirumdas, R.; Sarangapani, C.; Deshmukh, R.; Annapure, U. Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Food Control 2017, 77, 187–191. [Google Scholar] [CrossRef]
- Yang, S.-C.; Lin, C.-H.; Aljuffali, I.A.; Fang, J.-Y. Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Arch. Microbiol. 2017, 199, 811–825. [Google Scholar] [CrossRef]
- Eng, S.-K.; Pusparajah, P.; Ab Mutalib, N.-S.; Ser, H.-L.; Chan, K.-G.; Lee, L.-H. Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Front. Life Sci. 2015, 8, 284–293. [Google Scholar] [CrossRef] [Green Version]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.-A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States--major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef]
- Camargo, A.C.; Woodward, J.J.; Nero, L.A. The continuous challenge of characterizing the foodborne pathogen Listeria monocytogenes. Foodborne Pathog. Dis. 2016, 13, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Sarangapani, C.; Patange, A.; Bourke, P.; Keener, K.; Cullen, P.J. Recent Advances in the Application of Cold Plasma Technology in Foods. Annu. Rev. Food Sci. Technol. 2018, 9, 609–629. [Google Scholar] [CrossRef]
- Li, X.; Ye, M.; Neetoo, H.; Golovan, S.; Chen, H. Pressure inactivation of Tulane virus, a candidate surrogate for human norovirus and its potential application in food industry. Int. J. Food Microbiol. 2013, 162, 37–42. [Google Scholar] [CrossRef]
- Filipić, A.; Gutierrez-Aguirre, I.; Primc, G.; Mozetič, M.; Dobnik, D. Cold plasma, a new hope in the field of virus inactivation. Trends Biotechnol. 2020, 38, 1278–1291. [Google Scholar] [CrossRef]
- Ryu, Y.-H.; Kim, Y.-H.; Lee, J.-Y.; Shim, G.-B.; Uhm, H.-S.; Park, G.; Choi, E.H. Effects of Background Fluid on the Efficiency of Inactivating Yeast with Non-Thermal Atmospheric Pressure Plasma. PLoS ONE 2013, 8, e66231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatnagar-Mathur, P.; Sunkara, S.; Bhatnagar-Panwar, M.; Waliyar, F.; Sharma, K.K. Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops. Plant Sci. 2015, 234, 119–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brody, A.L.; Strupinsky, E.; Kline, L.R. Active Packaging for Food Applications; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Wong, L.-W.; Loke, X.-J.; Chang, C.-K.; Ko, W.-C.; Hou, C.-Y.; Hsieh, C.-W. Use of the plasma-treated and chitosan/gallic acid-coated polyethylene film for the preservation of tilapia (Orechromis niloticus) fillets. Food Chem. 2020, 329, 126989. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J. Application of cold plasma in food packaging. In Applications of Cold Plasma in Food Safety; Springer: Berlin/Heidelberg, Germany, 2022; pp. 309–324. [Google Scholar]
- Guragain, R.P.; Baniya, H.B.; Dhungana, S.; Chhetri, G.K.; Gautam, S.; Pandey, B.P.; Joshi, U.M.; Subedi, D.P. Improvement of hydrophilicity of polypropylene film by dielectric barrier discharge generated in air at atmospheric pressure. Rev. Adhes. Adhes. 2021, 9, 153. [Google Scholar]
- Hosseini, S.; Kadivar, M.; Shekarchizadeh, H.; Abaee, M.S.; Alsharif, M.A.; Karevan, M. Cold plasma treatment to prepare active polylactic acid/ethyl cellulose film using wheat germ peptides and chitosan. Int. J. Biol. Macromol. 2022, 223, 1420–1431. [Google Scholar] [CrossRef]
- Wang, L.-J.; Mu, S.-C.; Lin, M.-I.; Sung, T.-C.; Chiang, B.-L.; Lin, C.-H. Clinical Manifestations of Pediatric Food Allergy: A Contemporary Review. Clin. Rev. Allergy Immunol. 2021, 62, 180–199. [Google Scholar] [CrossRef]
- Valenta, R.; Hochwallner, H.; Linhart, B.; Pahr, S. Food allergies: The basics. Gastroenterology 2015, 148, 1120–1131.e4. [Google Scholar] [CrossRef] [Green Version]
- Rahman, S.S.A.; Vaishnavi, T.; Vidyasri, G.S.; Sathya, K.; Priyanka, P.; Venkatachalam, P.; Karuppiah, S. Production of bacterial cellulose using Gluconacetobacter kombuchae immobilized on Luffa aegyptiaca support. Sci. Rep. 2021, 11, 2912. [Google Scholar] [CrossRef]
- Ng, S.W.; Lu, P.; Rulikowska, A.; Boehm, D.; O’Neill, G.; Bourke, P. The effect of atmospheric cold plasma treatment on the antigenic properties of bovine milk casein and whey proteins. Food Chem. 2021, 342, 128283. [Google Scholar] [CrossRef]
- Liu, Z.-W.; Liu, L.-J.; Zhou, Y.-X.; Tan, Y.-C.; Cheng, J.-H.; Bekhit, A.E.-D.; Inam-Ur-Raheem, M.; Aadil, R.M. Dielectric-barrier discharge (DBD) plasma treatment reduces IgG binding capacity of β-lactoglobulin by inducing structural changes. Food Chem. 2021, 358, 129821. [Google Scholar] [CrossRef]
- Venkataratnam, H.; Cahill, O.; Sarangapani, C.; Cullen, P.; Barry-Ryan, C. Impact of cold plasma processing on major peanut allergens. Sci. Rep. 2020, 10, 17038. [Google Scholar] [CrossRef] [PubMed]
- Meinlschmidt, P.; Ueberham, E.; Lehmann, J.; Reineke, K.; Schlüter, O.; Schweiggert-Weisz, U.; Eisner, P. The effects of pulsed ultraviolet light, cold atmospheric pressure plasma, and gamma-irradiation on the immunoreactivity of soy protein isolate. Innov. Food Sci. Emerg. Technol. 2016, 38, 374–383. [Google Scholar] [CrossRef]
- Liu, Z.-W.; Zhou, Y.-X.; Wang, F.; Tan, Y.-C.; Cheng, J.-H.; Bekhit, A.E.-D.; Aadil, R.M.; Liu, X.-B. Oxidation induced by dielectric barrier discharge (DBD) plasma treatment reduces IgG/IgE binding capacity and improves the functionality of glycinin. Food Chem. 2021, 363, 130300. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Cheng, Z.; Zhang, J.; Nasiru, M.M.; Wang, Y.; Fu, L. Atmospheric cold plasma treatment of soybean protein isolate: Insights into the structural, physicochemical, and allergenic characteristics. J. Food Sci. 2021, 86, 68–77. [Google Scholar] [CrossRef]
- Sharma, S.; Prabhakar, H.; Singh, R.K. Atmospheric Cold Plasma-Induced Changes in Milk Proteins. Food Bioprocess Technol. 2022, 15, 2737–2748. [Google Scholar] [CrossRef]
- Liburdi, K.; Benucci, I.; Esti, M. Lysozyme in Wine: An Overview of Current and Future Applications. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1062–1073. [Google Scholar] [CrossRef]
- Takai, E.; Kitano, K.; Kuwabara, J.; Shiraki, K. Protein Inactivation by Low-temperature Atmospheric Pressure Plasma in Aqueous Solution. Plasma Process. Polym. 2012, 9, 77–82. [Google Scholar] [CrossRef]
- Tolouie, H.; Mohammadifar, M.A.; Ghomi, H.; Yaghoubi, A.S.; Hashemi, M. The impact of atmospheric cold plasma treatment on inactivation of lipase and lipoxygenase of wheat germs. Innov. Food Sci. Emerg. Technol. 2018, 47, 346–352. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Elliot, M.; Zheng, Y.; Chen, J.; Chen, D.; Deng, S. Aggregation and conformational change of mushroom (Agaricus bisporus) polyphenol oxidase subjected to atmospheric cold plasma treatment. Food Chem. 2022, 386, 132707. [Google Scholar] [CrossRef]
- Segat, A.; Misra, N.N.; Cullen, P.J.; Innocente, N. Effect of atmospheric pressure cold plasma (ACP) on activity and structure of alkaline phosphatase. Food Bioprod. Process. 2016, 98, 181–188. [Google Scholar] [CrossRef]
- Choi, S.; Attri, P.; Lee, I.; Oh, J.; Yun, J.-H.; Park, J.H.; Choi, E.H.; Lee, W. Structural and functional analysis of lysozyme after treatment with dielectric barrier discharge plasma and atmospheric pressure plasma jet. Sci. Rep. 2017, 7, 1027. [Google Scholar] [CrossRef] [PubMed]
- Tappi, S.; Gozzi, G.; Vannini, L.; Berardinelli, A.; Romani, S.; Ragni, L.; Rocculi, P. Cold plasma treatment for fresh-cut melon stabilization. Innov. Food Sci. Emerg. Technol. 2016, 33, 225–233. [Google Scholar] [CrossRef]
- Gu, Y.; Shi, W.; Liu, R.; Xing, Y.; Yu, X.; Jiang, H. Cold plasma enzyme inactivation on dielectric properties and freshness quality in bananas. Innov. Food Sci. Emerg. Technol. 2021, 69, 102649. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Z.; Shen, J.; Li, X.; Ding, L.; Ma, J.; Lan, Y.; Xia, W.; Cheng, C.; Sun, Q.; et al. Effects and Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasmaon Lactate Dehydrogenase (LDH) Enzyme. Sci. Rep. 2015, 5, 10031. [Google Scholar] [CrossRef] [Green Version]
- Bermúdez-Aguirre, D.; Guerrero-Beltrán, J.Á.; Barbosa-Cánovas, G.V.; Welti-Chanes, J. Study of the inactivation of Escherichia coli and pectin methylesterase in mango nectar under selected high hydrostatic pressure treatments. Food Sci. Technol. Int. 2011, 17, 541–547. [Google Scholar] [CrossRef]
- Huang, C.-C.; Wu, J.S.-B.; Wu, J.-S.; Ting, Y. Effect of novel atmospheric-pressure jet pretreatment on the drying kinetics and quality of white grapes. J. Sci. Food Agric. 2019, 99, 5102–5111. [Google Scholar] [CrossRef]
- Ashtiani, S.-H.M.; Rafiee, M.; Morad, M.M.; Khojastehpour, M.; Khani, M.R.; Rohani, A.; Shokri, B.; Martynenko, A. Impact of gliding arc plasma pretreatment on drying efficiency and physicochemical properties of grape. Innov. Food Sci. Emerg. Technol. 2020, 63, 102381. [Google Scholar] [CrossRef]
- Li, S.; Chen, S.; Liang, Q.; Ma, Z.; Han, F.; Xu, Y.; Jin, Y.; Wu, W. Low temperature plasma pretreatment enhances hot-air drying kinetics of corn kernels. J. Food Process. Eng. 2019, 42, e13195. [Google Scholar] [CrossRef]
- Zhang, X.-L.; Zhong, C.-S.; Mujumdar, A.S.; Yang, X.-H.; Deng, L.-Z.; Wang, J.; Xiao, H.-W. Cold plasma pretreatment enhances drying kinetics and quality attributes of chili pepper (Capsicum annuum L.). J. Food Eng. 2019, 241, 51–57. [Google Scholar] [CrossRef]
- Karim, N.; Shishir, M.R.I.; Bao, T.; Chen, W. Effect of cold plasma pretreated hot-air drying on the physicochemical characteristics, nutritional values and antioxidant activity of shiitake mushroom. J. Sci. Food Agric. 2021, 101, 6271–6280. [Google Scholar] [CrossRef]
- Loureiro, A.d.C.; Souza, F.d.C.d.A.; Sanches, E.A.; Bezerra, J.d.A.; Lamarão, C.V.; Rodrigues, S.; Fernandes, F.A.; Campelo, P.H. Cold plasma technique as a pretreatment for drying fruits: Evaluation of the excitation frequency on drying process and bioactive compounds. Food Res. Int. 2021, 147, 110462. [Google Scholar] [CrossRef] [PubMed]
- Bao, T.; Hao, X.; Shishir, M.R.I.; Karim, N.; Chen, W. Green alternative methods for pretreatment of whole jujube before the drying process. J. Sci. Food Agric. 2021, 102, 1030–1039. [Google Scholar] [CrossRef]
- Zhou, Y.-H.; Vidyarthi, S.K.; Zhong, C.-S.; Zheng, Z.-A.; An, Y.; Wang, J.; Wei, Q.; Xiao, H.-W. Cold plasma enhances drying and color, rehydration ratio and polyphenols of wolfberry via microstructure and ultrastructure alteration. LWT 2020, 134, 110173. [Google Scholar] [CrossRef]
- Tabibian, S.; Labbafi, M.; Askari, G.; Rezaeinezhad, A.; Ghomi, H. Effect of gliding arc discharge plasma pretreatment on drying kinetic, energy consumption and physico-chemical properties of saffron (Crocus sativus L.). J. Food Eng. 2020, 270, 109766. [Google Scholar] [CrossRef]
- Li, S.; Chen, S.; Han, F.; Xv, Y.; Sun, H.; Ma, Z.; Chen, J.; Wu, W. Development and optimization of cold plasma pretreatment for drying on corn kernels. J. Food Sci. 2019, 84, 2181–2189. [Google Scholar] [CrossRef]
- Gavahian, M.; Khaneghah, A.M. Cold plasma as a tool for the elimination of food contaminants: Recent advances and future trends. Crit. Rev. Food Sci. Nutr. 2020, 60, 1581–1592. [Google Scholar] [CrossRef]
- Watts, M. Chlorpyrifos as a Possible Global POP; Pesticide Action Network North America: Oakland, CA, USA, 2012. [Google Scholar]
- Liu, H.; Guo, D.; Feng, X. Plasma Degradation of Pesticides on the Surface of Corn and Evaluation of Its Quality Changes. Sustainability 2021, 13, 8830. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Imani, S.; Dorranian, D.; Larijani, K.; Shojaee, M. Effect of cold plasma on degradation of organophosphorus pesticides used on some agricultural products. J. Plant Prot. Res. 2017, 57, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Misra, N.N.; Pankaj, S.K.; Walsh, T.; O’Regan, F.; Bourke, P.; Cullen, P.J. In-package nonthermal plasma degradation of pesticides on fresh produce. J. Hazard. Mater. 2014, 271, 33–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarangapani, C.; O’Toole, G.; Cullen, P.J.; Bourke, P. Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innov. Food Sci. Emerg. Technol. 2017, 44, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Phan, K.T.K.; Phan, H.T.; Boonyawan, D.; Intipunya, P.; Brennan, C.S.; Regenstein, J.M.; Phimolsiripol, Y. Non-thermal plasma for elimination of pesticide residues in mango. Innov. Food Sci. Emerg. Technol. 2018, 48, 164–171. [Google Scholar] [CrossRef]
- Cong, L.; Huang, M.; Zhang, J.; Yan, W. Effect of dielectric barrier discharge plasma on the degradation of malathion and chlorpyrifos on lettuce. J. Sci. Food Agric. 2021, 101, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Cullen, P.J.; Lalor, J.; Scally, L.; Boehm, D.; Milosavljević, V.; Bourke, P.; Keener, K. Translation of plasma technology from the lab to the food industry. Plasma Process. Polym. 2018, 15, 1700085. [Google Scholar] [CrossRef]
- Wu, T.-Y.; Chang, C.-R.; Chang, T.-J.; Chang, Y.-J.; Liew, Y.; Chau, C.-F. Changes in physicochemical properties of corn starch upon modifications by atmospheric pressure plasma jet. Food Chem. 2019, 283, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Chaple, S.; Sarangapani, C.; Jones, J.; Carey, E.; Causeret, L.; Genson, A.; Duffy, B.; Bourke, P. Effect of atmospheric cold plasma on the functional properties of whole wheat (Triticum aestivum L.) grain and wheat flour. Innov. Food Sci. Emerg. Technol. 2020, 66, 102529. [Google Scholar] [CrossRef]
- Rashid, F.; Bao, Y.; Ahmed, Z.; Huang, J.-Y. Effect of high voltage atmospheric cold plasma on extraction of fenugreek galactomannan and its physicochemical properties. Food Res. Int. 2020, 138, 109776. [Google Scholar] [CrossRef]
- Trinh, K.S.; Nguyen, T.L. Structural, functional properties and in vitro digestability of maize starch under heat-moisture and atmospheric-cold plasma treatments. Vietnam J. Sci. Technol. 2018, 56, 751–760. [Google Scholar]
- Segat, A.; Misra, N.N.; Cullen, P.J.; Innocente, N. Atmospheric pressure cold plasma (ACP) treatment of whey protein isolate model solution. Innov. Food Sci. Emerg. Technol. 2015, 29, 247–254. [Google Scholar] [CrossRef]
- Misra, N.N.; Yong, H.I.; Phalak, R.; Jo, C. Atmospheric pressure cold plasma improves viscosifying and emulsion stabilizing properties of xanthan gum. Food Hydrocoll. 2018, 82, 29–33. [Google Scholar] [CrossRef]
- Herceg, Z.; Kovačević, D.B.; Kljusurić, J.G.; Jambrak, A.R.; Zorić, Z.; Dragović-Uzelac, V. Gas phase plasma impact on phenolic compounds in pomegranate juice. Food Chem. 2016, 190, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Bulbul, V.; Bhushette, P.R.; Zambare, R.S.; Deshmukh, R.; Annapure, U.S. Effect of cold plasma treatment on Xanthan gum properties. Polym. Test. 2019, 79, 106056. [Google Scholar] [CrossRef]
- Xu, L.; Hou, H.; Farkas, B.; Keener, K.M.; Garner, A.L.; Tao, B. High voltage atmospheric cold plasma modification of bovine serum albumin. LWT 2021, 149, 111995. [Google Scholar] [CrossRef]
- Chen, G.; Dong, S.; Zhao, S.; Li, S.; Chen, Y. Improving functional properties of zein film via compositing with chitosan and cold plasma treatment. Ind. Crops Prod. 2019, 129, 318–326. [Google Scholar] [CrossRef]
- Han, Y.; Cheng, J.-H.; Sun, D.-W. Activities and conformation changes of food enzymes induced by cold plasma: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 794–811. [Google Scholar] [CrossRef]
- Ji, H.; Dong, S.; Han, F.; Li, Y.; Chen, G.; Li, L.; Chen, Y. Effects of dielectric barrier discharge (DBD) cold plasma treatment on physicochemical and functional properties of peanut protein. Food Bioprocess Technol. 2018, 11, 344–354. [Google Scholar] [CrossRef]
- Pan, Y.-W.; Cheng, J.-H.; Sun, D.-W. Inhibition of fruit softening by cold plasma treatments: Affecting factors and applications. Crit. Rev. Food Sci. Nutr. 2021, 61, 1935–1946. [Google Scholar] [CrossRef]
- Yu, J.-j.; Zhang, Y.-f.; Yan, J.; Li, S.-h.; Chen, Y. A novel glycoprotein emulsion using high-denatured peanut protein and sesbania gum via cold plasma for encapsulation of β-carotene. Innov. Food Sci. Emerg. Technol. 2021, 74, 102840. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, R.; Gan, Z.; Shao, T.; Zhang, X.; He, M.; Sun, A. Effect of cold plasma on blueberry juice quality. Food Chem. 2019, 290, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Reddivari, L.; Huang, J.-Y. Development of cold plasma pretreatment for improving phenolics extractability from tomato pomace. Innov. Food Sci. Emerg. Technol. 2020, 65, 102445. [Google Scholar] [CrossRef]
- Bao, Y.; Reddivari, L.; Huang, J.-Y. Enhancement of phenolic compounds extraction from grape pomace by high voltage atmospheric cold plasma. LWT 2020, 133, 109970. [Google Scholar] [CrossRef]
- Măgureanu, M.; Sîrbu, R.; Dobrin, D.; Gîdea, M. Stimulation of the Germination and Early Growth of Tomato Seeds by Non-thermal Plasma. Plasma Chem. Plasma Process. 2018, 38, 989–1001. [Google Scholar] [CrossRef]
- Sajib, S.A.; Billah, M.; Mahmud, S.; Miah, M.; Hossain, F.; Omar, F.B.; Roy, N.C.; Hoque, K.M.F.; Talukder, M.R.; Kabir, A.H. Plasma activated water: The next generation eco-friendly stimulant for enhancing plant seed germination, vigor and increased enzyme activity, a study on black gram (Vigna mungo L.). Plasma Chem. Plasma Process. 2020, 40, 119–143. [Google Scholar] [CrossRef]
- Rodríguez, Ó.; Gomes, W.F.; Rodrigues, S.; Fernandes, F.A. Effect of indirect cold plasma treatment on cashew apple juice (Anacardium occidentale L.). LWT 2017, 84, 457–463. [Google Scholar] [CrossRef]
- Kashfi, A.S.; Ramezan, Y.; Khani, M.R. Simultaneous study of the antioxidant activity, microbial decontamination and color of dried peppermint (Mentha piperita L.) using low pressure cold plasma. LWT 2020, 123, 109121. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Wan, Z.; Colonna, W.; Keener, K.M. Effect of high voltage atmospheric cold plasma on white grape juice quality. J. Sci. Food Agric. 2017, 97, 4016–4021. [Google Scholar] [CrossRef] [PubMed]
- Almeida, F.D.L.; Cavalcante, R.S.; Cullen, P.J.; Frias, J.M.; Bourke, P.; Fernandes, F.A.; Rodrigues, S. Effects of atmospheric cold plasma and ozone on prebiotic orange juice. Innov. Food Sci. Emerg. Technol. 2015, 32, 127–135. [Google Scholar] [CrossRef]
- Chen, C.; Liu, C.; Jiang, A.; Guan, Q.; Sun, X.; Liu, S.; Hao, K.; Hu, W. The effects of cold plasma-activated water treatment on the microbial growth and antioxidant properties of fresh-cut pears. Food Bioprocess Technol. 2019, 12, 1842–1851. [Google Scholar] [CrossRef]
- Fernandes, F.A.; Santos, V.O.; Rodrigues, S. Effects of glow plasma technology on some bioactive compounds of acerola juice. Food Res. Int. 2019, 115, 16–22. [Google Scholar] [CrossRef]
- Silveira, M.R.; Coutinho, N.M.; Esmerino, E.A.; Moraes, J.; Fernandes, L.M.; Pimentel, T.C.; Freitas, M.Q.; Silva, M.C.; Raices, R.S.; Ranadheera, C.S. Guava-flavored whey beverage processed by cold plasma technology: Bioactive compounds, fatty acid profile and volatile compounds. Food Chem. 2019, 279, 120–127. [Google Scholar] [CrossRef]
- Poomanee, W.; Wattananapakasem, I.; Panjan, W.; Kiattisin, K. Optimizing anthocyanins extraction and the effect of cold plasma treatment on the anti-aging potential of purple glutinous rice (Oryza sativa L.) extract. Cereal Chem. 2021, 98, 571–582. [Google Scholar] [CrossRef]
- Faria, G.; Souza, M.; Oliveira, J.; Costa, C.; Collares, M.; Prentice, C. Effect of ultrasound-assisted cold plasma pretreatment to obtain sea asparagus extract and its application in Italian salami. Food Res. Int. 2020, 137, 109435. [Google Scholar] [CrossRef] [PubMed]
- Keshavarzi, M.; Najafi, G.; Ahmadi Gavlighi, H.; Seyfi, P.; Ghomi, H. Enhancement of polyphenolic content extraction rate with maximal antioxidant activity from green tea leaves by cold plasma. J. Food Sci. 2020, 85, 3415–3422. [Google Scholar] [CrossRef]
- Lin, S.-P.; Kuo, T.-C.; Wang, H.-T.; Ting, Y.; Hsieh, C.-W.; Chen, Y.-K.; Hsu, H.-Y.; Cheng, K.-C. Enhanced bioethanol production using atmospheric cold plasma-assisted detoxification of sugarcane bagasse hydrolysate. Bioresour. Technol. 2020, 313, 123704. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-P.; Huang, S.-H.; Ting, Y.; Hsu, H.-Y.; Cheng, K.-C. Evaluation of detoxified sugarcane bagasse hydrolysate by atmospheric cold plasma for bacterial cellulose production. Int. J. Biol. Macromol. 2022, 204, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Santoso, S.P.; Lin, S.-P.; Wang, T.-Y.; Ting, Y.; Hsieh, C.-W.; Yu, R.-C.; Angkawijaya, A.E.; Soetaredjo, F.E.; Hsu, H.-Y.; Cheng, K.-C. Atmospheric cold plasma-assisted pineapple peel waste hydrolysate detoxification for the production of bacterial cellulose. Int. J. Biol. Macromol. 2021, 175, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Heiske, S.; Schultz-Jensen, N.; Leipold, F.; Schmidt, J.E. Improving Anaerobic Digestion of Wheat Straw by Plasma-Assisted Pretreatment. J. At. Mol. Phys. 2013, 2013, 791353. [Google Scholar] [CrossRef] [Green Version]
- Kodama, S.; Thawatchaipracha, B.; Sekiguchi, H. Enhancement of essential oil extraction for steam distillation by DBD surface treatment. Plasma Process. Polym. 2014, 11, 126–132. [Google Scholar] [CrossRef]
- Pragna, C.; Gracy, T.R.; Mahendran, R.; Anandharamakrishnan, C. Effects of microwave and cold plasma assisted Hydrodistillation on lemon Peel oil extraction. Int. J. Food Eng. 2019, 15, 20190093. [Google Scholar] [CrossRef]
Food Product | Plasma Device | Microbial Strains | Reduction (log CFU) | Parameters | Reference | ||||
---|---|---|---|---|---|---|---|---|---|
Exposure Time (s) | Exposure Distance (mm) | Input Power (W) | Treatment Voltage (kV) | Frequency | |||||
Prepackaged mixed salad | DBD | Salmonella | 0.8/g | 180 | 30 | - | 35 | 1.1 kHz | [19] |
Golden Delicious apples | DBD | Salmonella and E. coli | 5.3/cm2; 5.5/cm2 | 240 | 35 | 200 | - | 50 Hz | [20] |
Boiled chicken breast cubes | DBD | Salmonella, E. coli, L. monocytogenes, and Tulane virus | 3.7/cube; 3.9/cube; 3.5/cube; 2.2 PFU/cube | 210 | 12 | - | 39 | - | [21] |
Tender coconut water | DBD | L. monocytogenes and E. coli | 2.0/mL; 2.2/mL | 120 | 10 | - | 90 | 60 Hz | [22] |
Tilapia fillet | DBD | V. parahaemolyticus | 1.8/g | 60 | 100 | 30 | - | 13.6 MHz | [1] |
S. enteritis, L. monocytogenes | 2.34 log CFU/g; 1.69 log CFU/g | 300 | 52 | 70 | 80 | 60 | [23] | ||
Blueberries | Plasma jet | Tulane virus and murine norovirus | 3.5/g; 5.0/g | 120; 90 | 75 | 549 | - | 47 kHz | [24] |
Military rations snack | Plasma jet | A. flavus, yeast-mold, and aflatoxin | 4.3/g; 4.6/g; 3.0/g | 360 | 30 | - | 9 | - | [25] |
Groundnuts | DBD | A. flavus, A. parasiticus, and aflatoxin | 1.2/g; 1.2/g; 0.3/g | 720 | 30 | 60 | 2 | - | [26] |
Food Matrix | Plasma Device | Film Materials | Treatment Conditions | Physicochemical Change (Optimisation Methods Were Chosen) | Reference | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Input Power (W) | Treatment Time (s) | Frequency (MHz) | Thickness (mm) | Tensile Strength (MPa) | Elastic Modulus (Mpa) | Elongation at Break | Water Vapour Permeability | ||||
Tilapia fillets | RF- plasma | CNMA- CMC/LDPE | 30 | 60 | 13.56 | +29.97% | +13.58% | - | - | - | [1] |
Chicken breast fillets | - | 1–3% SEO- CS/LDPE | 84 | 10 | - | +650% | −3% | - | −27% | −96.7% | [2] |
Cooked turkey meat | Plasma Jet | Citrus/PET | - | - | 30 kHz | +150% | - | - | - | - | [4] |
Korean steamed rice cakes | DBD- plasma | Nylon/PP Nylon/LDPE | 21 kW | 180 | - | - | Nylon/PP + 1.6% Nylon/PE − 0.5% | Nylon/PP + 1.2% Nylon/PE + 0.5% | Nylon/PP − 0.3% Nylon/PE + 0.9% | Nylon/PP − 6.25% Nylon/PE − 7.7% | [5] |
Button mushroom (Agaricus bisporus) | RF- Plasma | CMC, COL/LDPE | 30 | 60 | 13.56 | - | +7.6% | +47.43% | - | +114% | [7] |
Food Allergen Mitigation | |||||||||
---|---|---|---|---|---|---|---|---|---|
Allergens | Plasma Device | Sample Types | Antibody Binding Capacity | Parameters | Reference | ||||
Exposure Time (min) | Exposure Distance (mm) | Input Power | Input Voltage (kV) | Frequency | |||||
Casein | Plasma jet (spark discharge) | Allergenic protein solution | ↓ 49.9% | 30 | 2.5 | - | 8 | 25 kHz | [44] |
α-lactalbumin | ↓ 49.5% | ||||||||
β-lactoglobulin | ↑ 250% | 10 | |||||||
Casein | Plasma jet (glow discharge) | ↓ 91.1% | 30 | 5 | - | 5 | 25 kHz | ||
α-lactalbumin | ↓ 45.5% | ||||||||
β-lactoglobulin | ↑ 300% | 10 | |||||||
β-lactoglobulin | DBD | Allergenic protein solution | ↓ 58.21% | 4 | - | - | 40 | 12 kHz | [45] |
Ara h 1 | Plasma jet (pin-to-plate) | Whole peanut | ↓ 39.32% | 60 | 70 | - | 32 | 52 kHz | [46] |
Defatted peanut flour | ↓ 65% | ||||||||
Ara h 2 | Whole peanut | ↓ 46% | |||||||
Defatted peanut flour | ↓ 66% | ||||||||
β-conglycinin (Gly m5) | Plasma jet | Soy protein isolate | ↓ 89% | 90 | - | 12 kW | - | 2.45 GHz | [47] |
Glycinin | DBD | Allergenic protein solution | ↓ 91.64% | 5 | 50 | 40 | 20 kHz | [48] | |
↓ 81.49% * | |||||||||
Soy allergens | DBD | Soy protein isolate | ↓ 75% * | 5 | 35 | - | 40 | 120 Hz | [49] |
Food Drying Processing | |||||||||
---|---|---|---|---|---|---|---|---|---|
Food Product | Plasma Device | Drying Temperature (°C) | Reduction of Drying Time | Parameters | Reference | ||||
Exposure Time | Exposure Distance (mm) | Input Power (W) | Input Voltage (kV) | Frequency | |||||
Grape | Plasma jet | 70 | 20% | 3 times | 10 | 500 | - | 25 kHz | [61] |
Plasma jet | 60 | 26.27% | 50 s | 35 | 300 | 27 | 50 Hz | [62] | |
Corn kernels | DBD | 37.5 | 21.52% | 30 s | - | 500 | - | 40 kHz | [63] |
Chili pepper | Plasma jet | 70 | ~16.6% | 30 s | 60 | 750 | - | 20 kHz | [64] |
Shiitake mushroom | Plasma jet | 50, 60, 70 | The higher drying rate at 50 and 60 °C. | 60 s | 50 | 650 | - | - | [65] |
Plasma-activated water | - | ||||||||
Tucumã | DBD | 60 | 61.1% | 10 min | 15 | - | 20 | 200 Hz | [66] |
Jujube | Plasma jet | 70 | 12.08% | 1 min | 50 | 650 | 5 | 40 kHz | [67] |
Plasma-activated water | Non-effect | 10 min | - | ||||||
Wolfberry | Plasma jet | 65 | 50% | 30 s | 60 | 750 | - | 20 kHz | [68] |
Saffron | Plasma jet | 60 | 54.05% | 60 s | - | 1000 | 8 | 50 Hz | [69] |
Nutrient Extraction | |||||||||
---|---|---|---|---|---|---|---|---|---|
Food Matrix | Plasma Device | Parameters | Results | Reference | |||||
Input Power (W) | Voltage (kV) | Time (min) | Working Gas | Frequency (kHz) | Gas Flow Rate (L/min) | ||||
White grapes | Jet plasma | 500 | - | 3–7 | Air | 25.00 | 40.00 | TPC and antioxidant capacity increased more than twofold | [61] |
Blueberry juice | Jet plasma | - | 11 | - | Ar, O2 | 1.00 | 1.00 | TPC increased by 7.34%, and antioxidant capacity increased | [94] |
Tomato pomace | DBD plasma | - | 60 | 15 | Ar, He, N2, air | - | - | TPC increased by 24.07%, and antioxidant capacity by 30% | [95] |
Grape pomace | DBD plasma | - | 60 | 5–15 | He | - | - | Increased the yield of phenolic extracts; improved antioxidant capacity | [96] |
Fenugreek | DBD plasma | - | 120 V | 30 | air | 0.06 | - | Increased the extraction yield of fenugreek galactomannan | [82] |
Tomato | DBD-plasma | 0.55–1.43 | 13–17 | 5–45 | air | 0.05 | 15.00 | Increased the weight of tomato by 20–40% | [97] |
Black gram | Jet plasma | - | 3–6 | 3–15 | O2 | 3.00–10.00 | 0.25 | Chlorophyll content increased by 23.80% and total soluble protein and sugar concentrations increased by 33.28% and 51.73%, respectively | [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khumsupan, D.; Lin, S.-P.; Hsieh, C.-W.; Santoso, S.P.; Chou, Y.-J.; Hsieh, K.-C.; Lin, H.-W.; Ting, Y.; Cheng, K.-C. Current and Potential Applications of Atmospheric Cold Plasma in the Food Industry. Molecules 2023, 28, 4903. https://doi.org/10.3390/molecules28134903
Khumsupan D, Lin S-P, Hsieh C-W, Santoso SP, Chou Y-J, Hsieh K-C, Lin H-W, Ting Y, Cheng K-C. Current and Potential Applications of Atmospheric Cold Plasma in the Food Industry. Molecules. 2023; 28(13):4903. https://doi.org/10.3390/molecules28134903
Chicago/Turabian StyleKhumsupan, Darin, Shin-Ping Lin, Chang-Wei Hsieh, Shella Permatasari Santoso, Yu-Jou Chou, Kuan-Chen Hsieh, Hui-Wen Lin, Yuwen Ting, and Kuan-Chen Cheng. 2023. "Current and Potential Applications of Atmospheric Cold Plasma in the Food Industry" Molecules 28, no. 13: 4903. https://doi.org/10.3390/molecules28134903
APA StyleKhumsupan, D., Lin, S. -P., Hsieh, C. -W., Santoso, S. P., Chou, Y. -J., Hsieh, K. -C., Lin, H. -W., Ting, Y., & Cheng, K. -C. (2023). Current and Potential Applications of Atmospheric Cold Plasma in the Food Industry. Molecules, 28(13), 4903. https://doi.org/10.3390/molecules28134903