Extended BODIPYs as Red–NIR Laser Radiation Sources with Emission from 610 nm to 750 nm
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Photophysical Properties
2.3. Laser Properties
3. Materials and Methods
3.1. Synthesis Details
3.1.1. Typical Procedure (TP1) for the L–S Cross-Coupling Reaction
3.1.2. Typical Procedure (TP2) for the Suzuki Cross–Coupling Reaction
3.2. Spectroscopic Measurements
3.3. Computational Calculations
3.4. Laser Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zhu, S.; Tian, R.; Antaris, A.L.; Chen, X.; Dai, H. Near-Infrared-II Molecular Dyes for Cancer Imaging and Surgery. Adv. Mater. 2019, 31, 1900321. [Google Scholar] [CrossRef]
- Cao, J.; Zhu, B.; Zheng, K.; He, S.; Meng, L.; Song, J.; Yang, H. Recent Progress in NIR-II Contrast Agent for Biological Imaging. Front. Bioeng. Biotechnol. 2020, 7, 487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Shi, Z.; Zhu, L.; Li, J.; Han, X.; Xu, M.; Hao, S.; Fan, Y.; Shao, T.; Bai, H.; et al. The Design and Bioimaging Applications of NIR Fluorescent Organic Dyes with High Brightness. Adv. Opt. Mater. 2022, 10, 2102514. [Google Scholar] [CrossRef]
- Shashkova, S.; Leake, M.C. Single-molecule fluorescence microscopy review: Shedding new light on old problems. Biosci. Rep. 2017, 37, BSR20170031. [Google Scholar] [CrossRef] [Green Version]
- Crawford, H.; Dimitriadi, M.; Basin, J.; Cook, M.T.; Abelha, T.F.; Calvo-Castro, J. Mitochondrial Targeting and Imaging with Small Organic Conjugated Fluorophores: A Review. Chem. Eur. J. 2022, 28, e202202366. [Google Scholar] [CrossRef]
- Zhao, W.; Tian, X.; Fang, Z.; Xiao, S.; Qiu, M.; He, Q.; Feng, W.; Li, F.; Zhang, Y.; Zhou, L.; et al. Engineering single-molecule fluorescence with asymmetric nano-antennas. Light Sci. Appl. 2021, 10, 79. [Google Scholar] [CrossRef]
- Li, L.; Dong, X.; Li, J.; Wei, J. A short review of NIR-II organic small molecule dyes. Dye. Pigment. 2020, 183, 108756. [Google Scholar] [CrossRef]
- Dai, H.; Shen, Q.; Shao, J.; Wang, W.; Gao, F.; Dong, X. Small Molecular NIR-II Fluorophores for Cancer Phototheranostics. Innovation 2021, 2, 100082. [Google Scholar] [CrossRef]
- Wang, S.; Li, B.; Zhang, F. Molecular Fluorophores for Deep-Tissue Bioimaging. ACS Cent. Sci. 2020, 6, 1302–1316. [Google Scholar] [CrossRef]
- Liu, P.; Mu, X.; Zhang, X.-D.; Ming, D. The Near-Infrared-II Fluorophores and Advanced Microscopy Technologies Development and Application in Bioimaging. Biconjug. Chem. 2020, 31, 260–275. [Google Scholar] [CrossRef] [Green Version]
- Leake, M.C.; Quinn, S.D. A guide to small fluorescent probes for single-molecule biophysics. Chem. Phys. Rev. 2023, 4, 011302. [Google Scholar] [CrossRef]
- Liu, B.-M.; Gu, S.-M.; Huang, L.; Zhou, R.-F.; Zhou, Z.; Ma, C.-G.; Zou, R.; Wang, J. Ultra-broadband and high-efficiency phosphors to brighten NIR-II light source applications. Cell Rep. Phys. Sci. 2022, 3, 101078. [Google Scholar] [CrossRef]
- Shen, L.; Ren, H.; Huang, M.; Wu, D.; Peacock, A.C. A review of nonlinear applications in silicon optical fibers from telecom wavelengths into the mid-infrared spectral region. Opt. Commun. 2020, 463, 125437. [Google Scholar] [CrossRef]
- Lavis, L.D.; Raines, R.T. Bright Ideas for Chemical Biology. ACS Chem. Biol. 2008, 3, 142–155. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.; Zhang, E.; Su, Y.; Cheng, T.; Shi, C. A review of NIR dyes in cancer targeting and imaging. Biomaterials 2011, 32, 7127–7138. [Google Scholar] [CrossRef]
- Lu, H.; Mack, J.; Yang, Y.; Zhen, Z. Structural modification strategies for the rational design of red/NIR region BODIPYs. Chem. Soc. Rev. 2014, 43, 4778–4823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shukla, V.K.; Chakraborty, G.; Ray, A.K.; Nagaiyan, S. Red and NIR emitting ring-fused BODIPY/aza-BODIPY dyes. Dye. Pigment. 2023, 215, 111245. [Google Scholar] [CrossRef]
- Boens, N.; Verbelen, B.; Ortiz, M.J.; Jiao, L.; Dehaen, W. Synthesis of BODIPY dyes through postfunctionalization of the boron dipyrromethene core. Coord. Chem. Rev. 2019, 399, 213024. [Google Scholar] [CrossRef]
- Bumagina, N.A.; Antina, E.V.; Ksenofontov, A.A.; Antina, L.A.; Kalyagin, A.A.; Berezin, M.B. Basic structural modifications for improving the practical properties of BODIPY. Coord. Chem. Rev. 2022, 469, 214684. [Google Scholar] [CrossRef]
- Avellanal-Zaballa, E.; Gartzia-Rivero, L.; Arbeloa, T.; Bañuelos, J. Fundamental photophysical concepts and key structural factors for the design of BODIPY-based tunable lasers. Int. Rev. Phys. Chem. 2022, 41, 177–203. [Google Scholar] [CrossRef]
- Li, Y.; Qiao, Z.; Li, T.-Y.; Zeika, O.; Leo, K. Highly Efficient Deep-Red- to Near-Infrared-Absorbing and Emissive Benzo/Naphtho[b]furan-Fused Boron Dipyrromethene (BODIPY). ChemPhotoChem 2018, 2, 1017–1021. [Google Scholar] [CrossRef]
- Jean-Gerard, L.; Vasseur, W.; Scherninski, F.; Andrioletti, B. Recent advances in the synthesis of [a]-benzo-fused BODIPY fluorophores. Chem. Commun. 2018, 54, 12914–12929. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhou, Z.; Lu, J. Recent advances in zig-zag-fused BODIPYs. Chem. Front. 2022, 9, 5989–6000. [Google Scholar] [CrossRef]
- Verbelen, B.; Boodts, S.; Hofkens, J.; Boens, N.; Dehaen, W. Radical C-H Arylation of the BODIPY Core with Aryldiazonium Salts: Synthesis of Highly Florescent Red-Shifted Dyes. Angew. Chem. Int. Ed. 2015, 54, 4612–4616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansteatt, S.; Meares, A.; Ptaszek, M. Amphiphilic Near-IR-Emitting 3,5-Bis(2-Pyrrolylethenyl)BODIPY Derivatives: Synthesis, Characterization, and Comparison with Other (Hetero)Arylethenyl-Substituted BODIPYs. J. Org. Chem. 2021, 86, 8755–8765. [Google Scholar] [CrossRef]
- Vazquez, J.L.; Velazco-Cabral, I.; Flóres-Álamo, M.; Turlakov, G.; Rodriguez, G.; Moggio, I.; Arias, E.; Peña-Cabrera, E.; Vázquez, M.A. Synthesis of Polysubstituted Symmetrical BODIPYs via Fischer Carbene Complexes: Theoretical, Photophysical and Electrochemical Evaluation. Chem. Eur. J. 2022, 20, e202202446. [Google Scholar] [CrossRef]
- Ge, Y.; O’Shea, D.F. Azadipyrromethenes: From traditional dye chemistry to leading edge applications. Chem. Soc. Rev. 2016, 45, 3846–3864. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Han, X.; Hu, W.; Bai, H.; Peng, B.; Ji, L.; Fan, Q.; Li, L.; Huang, W. Bioapplications of small molecule Aza-BODIPY: From rational structural design to in vivo investigations. Chem. Soc. Rev. 2020, 49, 7533–7567. [Google Scholar] [CrossRef]
- Martin, A.; Long, C.; Forster, R.J.; Keyes, T.E. Near IR emitting BODIPY fluorophores with mega-stokes shifts. Chem. Commun. 2012, 48, 5617–5619. [Google Scholar] [CrossRef]
- Rattanopas, S.; Chansaenpak, K.; Siwawannapong, K.; Ngamchuea, K.; Wet-osot, S.; Treekon, J.; Pewklang, T.; Jinaphon, T.; Sagarik, K.; Lai, R.-Y.; et al. Synthesis and Characterization of Push-Pull Aza-BODIPY Dyes Towards Application in NIR-II Photothermal Therapy. ChemPhotoChem 2020, 4, 5304–5311. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, Y.; Yu, C.; Liu, S.; Liu, Y.; Hao, E.; Jiao, L.; Xu, X.; Zhang, Z.; Li, J. A novel family of non-symmetric benzothieno[7,6-b]-fused BODIPYs: Synthesis, structures, photophysical properties and lipid droplet-specific imaging in vitro. Dye. Pigment. 2021, 196, 109748. [Google Scholar] [CrossRef]
- Belmonte-Vázquez, J.L.; Avellanal-Zaballa, E.; Enriquez-Palacios, E.; Cerdán, L.; Esnal, I.; Bañuelos, J.; Villegas-Gómez, C.; López Arbeloa, I.; Peña-Cabrera, E. Synthetic Approach to Readily Accessible Benzofuran-Fused Borondipyrromethenes as Red Emitting Laser Dyes. J. Org. Chem. 2019, 84, 2523–2541. [Google Scholar] [CrossRef] [PubMed]
- Liebeskind, L.S.; Srogl, J. Heteroaromatic Thioether-Boronic Acid Cross-Coupling under Neutral Reaction Conditions. Org. Lett. 2002, 4, 979–981. [Google Scholar] [CrossRef] [PubMed]
- Jiao, L.; Pang, W.; Zhou, J.; Wei, Y.; Mu, X.; Bai, G.; Hao, E. Regioselective Stepwise Bromination of Boron Dipyrromethene (BODIPY) Dyes. J. Org. Chem. 2011, 76, 9988–9996. [Google Scholar] [CrossRef]
- Lakshmi, V.; Ravikanth, M. Synthesis of Hexasubstituted Boron-Dipyrromethenes Having a Different Combination of Substituents. Eur. J. Org. Chem. 2014, 2014, 5757–5766. [Google Scholar] [CrossRef]
- Li, J.; Hu, B.; Hu, G.; Li, X.; Lu, P.; Wang, Y. An efficient synthesis of heptaaryldipyrromethenes from tetraarylcyclopentadienones and ammonium acetate and their extension to the corresponding BODIPYs. Org. Biomol. Chem. 2012, 10, 8848–8859. [Google Scholar] [CrossRef]
- Nguyen, V.-N.; Yan, Y.; Zhao, J.; Yoon, J. Heavy-Atom-Free Photosensitizers: From Molecular Design to Applications in the Photodynamic Therapy of Cancer. Acc. Chem. Res. 2021, 54, 207–220. [Google Scholar] [CrossRef]
- Ji, S.; Ge, J.; Escudero, D.; Wang, Z.; Zhao, J.; Jacquemin, J. Molecular Structure-Intesystem Crossing Relationship of Heavy-Atom-Free BODIPY Triplet Photosensitizers. J. Org. Chem. 2015, 80, 5958–5963. [Google Scholar] [CrossRef]
- Watley, R.L.; Awuah, S.G.; Bio, M.; Cantu, R.; Gobeze, H.B.; Nesterov, V.N.; Das, S.K.; D’Souza, F.; You, Y. Dual Functioning Thieno-Pyrrole Fused BODIPY Dyes for NIR Optical Imaging and Photodynamic Therapy: Singlet Oxygen Generation without Heavy Halogen Atom Assistance. Chem. Asian J. 2015, 10, 1335–1343. [Google Scholar] [CrossRef]
- Chen, K.; Dong, Y.; Zhao, X.; Imran, M.; Tang, G.; Zhao, J.; Liu, Q. Bodipy Derivatives as Triplet Photosensitizers and the Related Intersystem Crossing Mechanisms. Front. Chem. 2019, 7, 821. [Google Scholar] [CrossRef] [Green Version]
- Cerdán, L.; Costela, A.; García-Moreno, I.; Bañuelos, J.; López-Arbeloa, I. Singular laser behavior of hemicyanine dyes: Unsurpassed efficiency and finely structured spectrum in the near-IR region. Laser Phys. Lett. 2012, 9, 426–433. [Google Scholar] [CrossRef]
- Jones II, G.; Kumar, S.; Klueva, O.; Pacheco, D. Photoinduced Electron Transfer for Pyrromethene Dyes. J. Phys. Chem. A 2003, 107, 8429–8434. [Google Scholar] [CrossRef]
- Demchenko, A.P. Photobleaching of organic fluorophores: Quantitative characterization, mechanisms, protection. Methods Appl. Fluoresc. 2020, 8, 022001. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Jiao, L.; Feng, Y.; Yu, C.; Chen, N.; Wei, Y.; Mu, X.; Hao, E. Regioselective and Stepwise Syntheses of Functionalized BODIPY Dyes through Palladium-Catalyzed Cross-Coupling Reactions and Direct C–H Arylations. J. Org. Chem. 2016, 81, 6281–6291. [Google Scholar] [CrossRef]
- Liu, P.; Gao, F.; Zhou, L.; Chen, Y.; Chen, Z. Tetrathienyl-functionalized red- and NIR-absorbing BODIPY dyes appending various peripheral substituents. Org. Biomol. Chem. 2017, 15, 1393–1399. [Google Scholar] [CrossRef]
Entry | Ar | R-B(OH)2 | Reaction Time | Yield 2 (%) | Compound |
---|---|---|---|---|---|
1 | 20 min | 80 | 4a | ||
2 | 20 min | 83 | 4b | ||
3 | 20 min | 65 | 4c | ||
4 | 25 min | 76 | 4d | ||
5 | 2 h | 55 | 4e | ||
6 | 4 h | 52 | 4f | ||
7 | 4 h | 57 | 4g | ||
8 | 5 h | 41 | 4h | ||
9 | 2 h | 65 | 4i | ||
10 | 14 h | 65 | 4j | ||
11 | 4 h | 63 | 4k | ||
12 | 16 h | 57 | 4l |
Dye | λab 1 (nm) | εmax∙10−4 2 (M−1∙cm−1) | λfl 3 (nm) | ϕ 4 | τ 5 (ns) | λla 6 (nm) | %Eff 7 | Edose 8 (GJ/mol) |
---|---|---|---|---|---|---|---|---|
4f | 577.0 | 5.0 | 623.0 | 0.26 | 2.28 | 630.0 | 8.5 | 9.0 |
4g | 579.0 | 5.1 | 618.0 | 0.32 | 2.92 | 628.0 | 9.8 | 9.4 |
4h | 566.5 | 7.0 | 597.5 | 0.47 | 3.50 | 611.0 | 13.5 | 14.1 |
4i | 615.0 | 3.9 | 653.0 | 0.78 | 4.12 | 670.0 | 6.4 | 5.9 |
4j | 585.0 | 6.1 | 622.0 | 0.52 | 3.72 | 636.0 | 8.3 | 13.5 |
4k | 584.5 | 4.0 | 617.0 | 0.83 | 5.37 | 625.0 | 17.8 | 2.3 |
4l | 569.0 | 6.8 | 604.0 | 0.53 | 4.22 | 612.0 | 11.2 | 5.2 |
Dye | Solvent | λab 1 (nm) | εmax∙10−4 2 (M−1∙cm−1) | λfl 3 (nm) | ϕ 4 | τ 5 (ns) | λla 6 (nm) | %Eff 7 | Edose 8 (GJ/mol) |
---|---|---|---|---|---|---|---|---|---|
c-hex | 638.5 | 6.0 | 688.0 | 0.16 | 3.47 | ||||
4a | EtOAc | 630.0 | 5.0 | 700.5 | 0.08 | 1.07 | 717.0 | 11.8 | 1.3 |
ACN | 624.5 | 4.1 | 711.5 | 0.03 | 0.42 | ||||
c-hex | 636.0 | 4.0 | 682.0 | 0.20 | 3.83 | ||||
4b | EtOAc | 628.0 | 3.4 | 695.0 | 0.09 | 1.23 | 712.0 | 11.4 | 6.0 |
ACN | 621.5 | 3.0 | 707.0 | 0.03 | 0.50 | ||||
c-hex | 639.0 | 5.3 | 685.5 | 0.21 | 3.85 | ||||
4c | EtOAc | 632.5 | 4.6 | 696.0 | 0.11 | 1.32 | 710.0 | 9.3 | 7.6 |
ACN | 627.0 | 4.1 | 705.5 | 0.04 | 0.55 | ||||
c-hex | 629.0 | 6.5 | 678.5 | 0.39 | 4.10 | ||||
4d | EtOAc | 625.0 | 5.1 | 690.0 | 0.15 | 1.41 | 705.0 | 20.5 | 10.0 |
ACN | 619.0 | 4.2 | 703.5 | 0.05 | 0.62 | ||||
c-hex | 650.0 | 4.8 | 708.0 | 0.17 | 1.65 | ||||
4e | EtOAc | 639.0 | 4.1 | 721.0 | 0.04 | 0.41 | 744.0 | 8.7 | 7.6 |
ACN | 634.5 | 3.3 | 736.0 | 0.02 | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliden-Sánchez, A.; Alvarado-Martínez, E.; Ramírez-Ornelas, D.E.; Vázquez, M.A.; Avellanal-Zaballa, E.; Bañuelos, J.; Peña-Cabrera, E. Extended BODIPYs as Red–NIR Laser Radiation Sources with Emission from 610 nm to 750 nm. Molecules 2023, 28, 4750. https://doi.org/10.3390/molecules28124750
Oliden-Sánchez A, Alvarado-Martínez E, Ramírez-Ornelas DE, Vázquez MA, Avellanal-Zaballa E, Bañuelos J, Peña-Cabrera E. Extended BODIPYs as Red–NIR Laser Radiation Sources with Emission from 610 nm to 750 nm. Molecules. 2023; 28(12):4750. https://doi.org/10.3390/molecules28124750
Chicago/Turabian StyleOliden-Sánchez, Ainhoa, Enrique Alvarado-Martínez, Diana E. Ramírez-Ornelas, Miguel A. Vázquez, Edurne Avellanal-Zaballa, Jorge Bañuelos, and Eduardo Peña-Cabrera. 2023. "Extended BODIPYs as Red–NIR Laser Radiation Sources with Emission from 610 nm to 750 nm" Molecules 28, no. 12: 4750. https://doi.org/10.3390/molecules28124750
APA StyleOliden-Sánchez, A., Alvarado-Martínez, E., Ramírez-Ornelas, D. E., Vázquez, M. A., Avellanal-Zaballa, E., Bañuelos, J., & Peña-Cabrera, E. (2023). Extended BODIPYs as Red–NIR Laser Radiation Sources with Emission from 610 nm to 750 nm. Molecules, 28(12), 4750. https://doi.org/10.3390/molecules28124750