A Ni(II) Coordination Polymer as a Multifunctional Luminescent Sensor for Detection of UO22+, Cr2O72−, CrO42− and Nitrofurantoin
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Description of [Ni(MIP)(BMIOPE)]n (1)
2.2. PXRD and Thermal Analyses
2.3. Photoluminescence Properties
2.4. Selective Detection of UO22+ Cations
2.5. Selective Detection of Cr2O72−/CrO42− Anions
2.6. Selective Detection of NFT
2.7. Detection Mechanism
3. Materials and Methods
3.1. Materials and Physical Measurement
3.2. Preparation of [Ni(MIP)(BMIOPE)]n (1)
3.3. X-ray Crystallography
3.4. Luminescent Sensing Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brugge, D.; Buchner, V. Health effects of uranium: New research findings. Rev. Environ. Health 2011, 26, 231–249. [Google Scholar] [PubMed]
- US EPA Integrated Risk Information System Electronic Database; US Environmental Protection Agency: Washington, DC, USA, 1996.
- Wang, Y.-S.; Pan, Z.-Y.; Lang, J.-M.; Xu, J.-M.; Zheng, Y.-G. Bioleaching of chromium from tannery sludge by indigenous Acidithiobacillus thiooxidans. J. Hazard. Mater. 2007, 147, 319–324. [Google Scholar] [PubMed]
- Zhang, Q.-Q.; Ying, G.-G.; Pan, C.-G.; Liu, Y.-S.; Zhao, J.-L. Comprehensive Evaluation of Antibiotics Emission and Fate in the River Basins of China: Source Analysis, Multimedia Modeling, and Linkage to Bacterial Resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [Google Scholar]
- Rudd, N.D.; Wang, H.; Fuentes-Fernandez, E.M.A.; Teat, S.J.; Chen, F.; Hall, G.; Chabal, Y.J.; Li, J. Highly Efficient Luminescent Metal–Organic Framework for the Simultaneous Detection and Removal of Heavy Metals from Water. ACS Appl. Mater. Interfaces. 2016, 8, 30294–30303. [Google Scholar] [PubMed] [Green Version]
- Zhao, D.; Yu, S.; Jiang, W.-J.; Cai, Z.-H.; Li, D.-L.; Liu, Y.-L.; Chen, Z.-Z. Recent Progress in Metal-Organic Framework Based Fluorescent Sensors for Hazardous Materials Detection. Molecules 2022, 27, 2226. [Google Scholar] [PubMed]
- Chen, H.; Zhang, T.; Liu, S.; Lv, H.; Fan, L.; Zhang, X. Fluorine-Functionalized NbO-Type {Cu2}-Organic Framework: Enhanced Catalytic Performance on the Cycloaddition Reaction of CO2 with Epoxides and Deacetalization-Knoevenagel Condensation. Inorg. Chem. 2022, 61, 11949–11958. [Google Scholar]
- Wang, F.; Zhao, D.; Li, W.; Zhang, H.; Li, B.; Hu, T.; Fan, L. Rod-shaped Units Based Cobalt(II) Organic Framework as An Efficient Electrochemical Sensor for Uric Acid Detection in Serum. Micorchem. J. 2023, 185, 108154. [Google Scholar]
- Wang, Q.; Gao, Q.; Al-Enizi, A.M.; Nafady, A.; Ma, S. Recent advances in MOF-based photocatalysis: Environmental remediation under visible light. Inorg. Chem. Front. 2020, 7, 300–339. [Google Scholar]
- Schoedel, A.; Li, M.; Li, D.; O’Keeffe, M.; Yaghi, O.M. Structures of Metal−Organic Frameworks with Rod Secondary Building Units. Chem. Rev. 2016, 116, 12466–12535. [Google Scholar]
- Zhao, D.; Li, W.; Wen, R.; Lei, N.; Li, W.; Liu, X.; Zhang, X.; Fan, L. Eu(III)-Functionalized MOF-Based Dual-Emission Ratiometric Sensor Integrated with Logic Gate Operation for Efficient Detection of Hippuric Acid in Urine and Serum. Inorg. Chem. 2023, 62, 2715–2725. [Google Scholar]
- Yin, H.-Q.; Yin, X.-B. Metal−Organic Frameworks with Multiple Luminescence Emissions: Designs and Applications. Acc. Chem. Res. 2020, 53, 485–495. [Google Scholar] [PubMed]
- Sun, X.; Wang, Y.; Lei, Y. Fluorescence based explosive detection: From mechanisms to sensory materials. Chem. Soc. Rev. 2015, 44, 8019–8061. [Google Scholar] [PubMed] [Green Version]
- Mako, T.L.; Racicot, J.M.; Levine, M. Supramolecular Luminescent Sensors. Chem. Rev. 2019, 119, 322–477. [Google Scholar] [PubMed]
- Ye, J.; Bogale, R.F.; Shi, Y.; Chen, Y.; Liu, X.; Zhang, S.; Yang, Y.; Zhao, J.; Ning, G. A Water-Stable Dual-Channel Luminescence Sensor for UO22+ Ions Based on an Anionic Terbium(III) Metal–Organic Framework. Chem. Eur. J. 2017, 23, 7657–7662. [Google Scholar]
- Hou, X.J.; Ju-Ping Gao, J.P.; Liu, J.; Xu, J.; Li, L.J.; Du, J.L. Highly Selective and Sensitive Detection of Pb2+ and UO22+ Ions Based on a Carboxyl-Functionalized Zn(II)-MOF Platform. Dye. Pigment. 2019, 160, 159–164. [Google Scholar]
- Chen, W.-M.; Meng, X.-L.; Zhuang, G.-L.; Wang, Z.; Kurmoo, M.; Zhao, Q.-Q.; Wang, X.-P.; Shan, B.; Tung, C.-H.; Sun, D. A superior fluorescent sensor for Al3+ and UO22+ based on a Co(II) metal–organic framework with exposed pyrimidyl Lewis base sites. J. Mater. Chem. A 2017, 5, 13079–13085. [Google Scholar]
- Xue, Y.-S.; Sun, D.-L.; Lv, J.-Q.; Li, S.-J.; Chen, X.-R.; Cheng, W.-W.; Wu, H.-X.; Wang, J. Two coordination polymers as multi-responsive luminescent sensors for the detection of UO22+, Cr(VI), and the NFT antibiotic. CrystEngComm 2022, 24, 6376–6384. [Google Scholar]
- Bo, Q.-B.; Wang, H.-Y.; Wang, D.-Q. Synthesis, characterization and photoluminescent properties of Zn-based mono- and hetero-MOFs containing the R-isophthalate (R = methyl or tert-butyl) ligands. New J. Chem. 2013, 27, 380–390. [Google Scholar]
- Wu, J.-P.; Cheng, Y.-C.; Lu, L.; Wang, J.; Qiao, S.-B. A fourfold interpenetrating three-dimensional cadmium(II) coordination polymer: Synthesis, crystal structure and physical properties. Acta Cryst. 2021, C77, 257–261. [Google Scholar]
- Chen, Y.; Liu, G.; Wang, X.; Zhao, Y.; Xu, N.; Zhang, Z.; Chang, Z.; Li, X. Noncoordinating-substituents-induced various Co and Ni coordination polymers with multiple pathways detection of Fe3+ and Cr(VI). Inorg. Chim. Acta. 2022, 534, 120816. [Google Scholar]
- Liu, G.; Li, Y.; Lu, Z.; Li, X.; Wang, X.; Wang, X.; Chen, X. Versatile carboxylate-directed structures of ten 1D→3D Ni(II) coordination polymers: Fluorescence behaviors and electrochemical activities. CrystEngComm 2019, 21, 5344–5355. [Google Scholar]
- Chen, N.-N.; Wang, J. A serial of 2D Co-Zn isomorphous metal–organic frameworks for photodegradation and luminescent detection properties. Appl. Organomet. Chem. 2020, 34, e5743. [Google Scholar]
- Xu, T.-Y.; Li, J.-M.; Han, Y.-H.; Wang, A.-R.; He, K.-H.; Shi, Z.-F. A new 3D four-fold interpenetrated dia-like luminescent Zn(II)-based metal–organic framework: The sensitive detection of Fe3+, Cr2O72−, and CrO42− in water, and nitrobenzene in ethanol. New J. Chem. 2020, 44, 4011–4022. [Google Scholar]
- Sun, Y.-X.; Guo, G.; Ding, W.-M.; Han, W.-Y.; Li, J.; Deng, Z.-P. A highly stable Eu-MOF multifunctional luminescent sensor for the effective detection of Fe3+, Cr2O72−/CrO42− and aspartic acid in aqueous systems. CrystEngComm 2022, 24, 1358–1367. [Google Scholar]
- Wang, C.-X.; Xia, Y.-P.; Yao, Z.-Q.; Xu, J.; Chang, Z.; Bu, X.-H. Two luminescent coordination polymers as highly selective and sensitive chemosensors for CrVI-anions in aqueous medium. Dalton Trans. 2019, 48, 387–394. [Google Scholar]
- Zhou, X.; Shi, Y.-X.; Cao, C.; Ni, C.-Y.; Ren, Z.-G.; Young, D.J.; Lang, J.-P. Nickel(II)-Based Two-Dimensional Coordination Polymer Displaying Superior Capabilities for Selective Sensing of Cr(VI) Ions in Water. Cryst. Growth Des. 2019, 19, 3518–3528. [Google Scholar]
- Bai, Y.; Zhang, M.-l.; Wang, B.-T.; Ren, Y.-X.; Zhao, Y.-C.; Yang, H.; Yang, X. Four MOFs with isomeric ligands as fluorescent probes for highly selective, sensitive and stable detection of antibiotics in water. CrystEngComm 2022, 24, 169–181. [Google Scholar]
- Liu, H.-F.; Tao, Y.; Qin, X.-H.; Chen, C.; Huang, F.-P.; Zhang, X.-Q.; Bian, H.-D. Three-fold interpenetrated metal–organic framework as a multifunctional fluorescent probe for detecting 2,4,6-trinitrophenol, levofloxacin, and L-cystine. CrystEngComm 2022, 24, 1622–1629. [Google Scholar]
- Li, Y.; An, J.D.; Wang, T.T.; Shi, Y.F.; Huo, J.Z.; Wu, X.X.; Liu, Y.Y.; Ding, B. An ultra-stable Cadmium(II) coordination framework constructed from the new bi-functional ligand and application as fluorescent probe for acetylacetone and antibiotics. Dyes Pigments 2021, 186, 109039. [Google Scholar]
- Qian, L.-L.; Wang, Z.-X.; Ding, J.-G.; Tian, H.-X.; Li, K.; Li, B.-L.; Li, H.-Y. A 2D copper(I) metal-organic framework: Synthesis, structure and luminescence sensing for cupric, ferric, chromate and TNP. Dyes Pigm. 2020, 175, 108159. [Google Scholar]
- Goswami, R.; Pal, T.K.; Neogi, S. Stimuli-triggered fluoro-switching in metal–organic frameworks: Applications and outlook. Dalton Trans. 2021, 50, 4067–4090. [Google Scholar] [PubMed]
- Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent Functional Metal-Organic Frameworks. Chem. Rev. 2012, 112, 1126–1162. [Google Scholar]
- Liu, W.; Qiao, J.; Gu, J.; Liu, Y. Hydrogen-Bond-Connected 2D Zn-LMOF with Fluorescent Sensing for Inorganic Pollutants and Nitro Aromatic Explosives in the Aqueous Phase. Inorg. Chem. 2023, 62, 1272–1278. [Google Scholar] [CrossRef]
- Xue, Y.-S.; Zhang, C.; Lv, J.Q.; Chen, N.-N.; Wang, J.; Chen, X.-R.; Fan, L. Luminescence sensing and photocatalytic activities of four Zn(II)/Co(II) coordination polymers based on a pyridinephenyl bifunctional ligand. CrystEngComm 2021, 23, 1497–1506. [Google Scholar]
- Zhu, Q.-Q.; Zhou, Q.-S.; Zhang, H.-W.; Zhang, W.-W.; Lu, D.-Q.; Guo, M.-T.; Yuan, Y.; Sun, F.; He, H. Design and construction of a Metal-Organic Framework as an Efficent Luminescent Sensor for Detecting Antibiotics. Inorg. Chem. 2020, 59, 1323–1331. [Google Scholar]
- Wang, X.; Liu, C.; Wang, M.; Zhou, X.; You, Y.; Xiao, H. A selective fluorescence turn-on sensing coordination polymer for antibiotic aztreonam. Chem. Commun. 2022, 58, 4667–4670. [Google Scholar]
- Zhao, Y.; Wan, M.-Y.; Bai, J.-P.; Zeng, H.; Lu, W.; Li, D. pH-Modulated luminescence switching in a EuMOF: Rapid detection of acidic amino acids. J. Mater. Chem. A 2019, 7, 11127–11133. [Google Scholar] [CrossRef]
- Yang, J.; Che, J.; Jiang, X.; Fan, Y.; Gao, D.; Bi, J.; Ning, Z. A Novel Turn-On Fluorescence Probe Based on Cu(II) Functionalized Metal–Organic Frameworks for Visual Detection of Uric Acid. Molecules 2022, 27, 4803. [Google Scholar] [PubMed]
- Zhang, J.; Deng, Y.; Wang, S.; Yang, J.; Hu, S. A calixarene-based coordination cage as an efficient luminescent sensor for Fe3+, MnO4−, NB and 2,4-DNP in aqueous medium. CrystEngComm 2023, 25, 1495–1500. [Google Scholar]
- Lin, Z.; Li, W.; Chen, Q.; Chen, L.; Zhang, C.; Zhang, J. A new photochromic-ligand-based luminescent coordination polymer as a MnO4– sensor with extremely high sensitivity and excellent selectivity. J. Mater. Chem. C 2022, 10, 1672–1680. [Google Scholar]
- Sheldrick, G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
Complex | 1 |
---|---|
Formula | C29H24N4NiO5 |
Formula weight | 567.23 |
Crystal system | monoclinic |
Space group | C2/c |
a (Å) | 20.4678(11) |
b (Å) | 7.8281(4) |
c (Å) | 34.2314(18) |
α (o) | 90 |
β (o) | 103.369(2) |
γ (o) | 90 |
Volume (Å3) | 5336.1(5) |
Z | 8 |
T (K) | 273(2) |
Dcalcd (mg·m−3) | 1.412 |
μ (mm−1) | 0.774 |
Rint | 0.0341 |
F(000) | 2352.0 |
θ range (°) | 2.769 ≤ θ ≤ 25.998 |
Reflns. collected | 49,207 |
Data/restraints/parameters | 5254/1/357 |
Goodness of fit on F2 | 1.038 |
Final R indices [I > 2σ (I)] | R1 = 0.0394, wR2 = 0.0891 |
R indices (all data) | R1 = 0.0474, wR2 = 0.0919 |
Largest diff. peak and hole (e Å−3) | 0.38 and −0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Y.-S.; Zhang, X.-Y.; Tian, Z.-C.; Cao, J.-R.; Wang, W.-J.; Tang, R.-X.; Guo, J.; Fei, Z.-H.; Wang, J. A Ni(II) Coordination Polymer as a Multifunctional Luminescent Sensor for Detection of UO22+, Cr2O72−, CrO42− and Nitrofurantoin. Molecules 2023, 28, 4673. https://doi.org/10.3390/molecules28124673
Xue Y-S, Zhang X-Y, Tian Z-C, Cao J-R, Wang W-J, Tang R-X, Guo J, Fei Z-H, Wang J. A Ni(II) Coordination Polymer as a Multifunctional Luminescent Sensor for Detection of UO22+, Cr2O72−, CrO42− and Nitrofurantoin. Molecules. 2023; 28(12):4673. https://doi.org/10.3390/molecules28124673
Chicago/Turabian StyleXue, Yun-Shan, Xin-Yue Zhang, Zheng-Chen Tian, Jing-Rui Cao, Wen-Jing Wang, Ru-Xiu Tang, Jie Guo, Zheng-Hao Fei, and Jun Wang. 2023. "A Ni(II) Coordination Polymer as a Multifunctional Luminescent Sensor for Detection of UO22+, Cr2O72−, CrO42− and Nitrofurantoin" Molecules 28, no. 12: 4673. https://doi.org/10.3390/molecules28124673
APA StyleXue, Y. -S., Zhang, X. -Y., Tian, Z. -C., Cao, J. -R., Wang, W. -J., Tang, R. -X., Guo, J., Fei, Z. -H., & Wang, J. (2023). A Ni(II) Coordination Polymer as a Multifunctional Luminescent Sensor for Detection of UO22+, Cr2O72−, CrO42− and Nitrofurantoin. Molecules, 28(12), 4673. https://doi.org/10.3390/molecules28124673