Contact and Gastric Effect of Peppermint Oil on Selected Pests and Aphid Predator Harmonia axyridis Pallas
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of EO
2.2. Aphis fabae Scop.
2.3. Leptinotarsa decemlineata (Say.)
2.4. Harmonia axyridis Pallas
3. Discussion
4. Materials and Methods
4.1. Insect Treatment
4.1.1. Aphis fabae Scop.
4.1.2. Leptinotarsa decemlineata Say.
4.1.3. Harmonia axyridis Pallas
4.1.4. Experimental Design
- C- control—redistilled water;
- EO 0.1—0.1% concentration of peppermint EO;
- EO 0.2—0.2% concentration of peppermint EO;
- EO 0.5—0.5% concentration of peppermint EO;
- EO 1—1% concentration of peppermint EO;
- EO 2—2% concentration of peppermint EO.
4.2. Extraction of EO and Concentrations Preparation
4.3. Chemical Composition of EO
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Khater, H.F. Introductory Chapter: Back to the Future—Solutions for Parasitic Problems as Old as the Pyramids. In Natural Remedies in the Fight against Parasites; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Gad, H.A.; Ramadan, G.R.M.; El-Bakry, A.M.; El-Sabrout, A.M.; Abdelgaleil, S.A.M. Monoterpenes: Promising natural products for public health insect control—A review. Int. J. Trop. Insect Sc. 2022, 42, 1059–1075. [Google Scholar] [CrossRef]
- Baz, M.M.; Selim, A.M.; Radwan, I.T.; Khater, H.F. Plant oils in the fight against the West Nile Vector, Culex pipiens. Int. J. Trop. Insect Sci. 2022, 42, 2373–2380. [Google Scholar] [CrossRef]
- Baz, M.M.; Eltaly, R.I.; Debboun, M.; Selim, A.M.; Radwan, I.T.; Ahmed, N.; Khater, H.F. The contact/fumigant adulticidal effect of Egyptian oils against the house fly, Musca domestica (Diptera: Muscidae). Int. J. Vet. Sci. 2023, 12, 192–198. [Google Scholar] [CrossRef]
- Khater, H.F.; Soliman, D.E.; Slim, A.; Debboun, M.; Baz, M.M. Larvicidal Efficacy of Fifteen Plant Essential Oils against Culex pipiens L. Mosquitoes in Egypt. Egypt. J. Vet. Sci. 2023, 54, 183–192. [Google Scholar] [CrossRef]
- Baz, M.M.; Hegazy, M.M.; Khater, H.F.; El-Sayed, Y.A. Comparative Evaluation of Five Oil-Resin Plant Extracts against The Mosquito Larvae, Culex pipiens Say (Diptera: Culicidae). Pak. Vet. J. 2021, 41, 191–196. [Google Scholar] [CrossRef]
- Radwan, I.T.; Baz, M.M.; Khater, H.; Selim, A.M. Nanostructured Lipid Carriers (NLC) for Biologically Active Green Tea and Fennel Natural Oils Delivery: Larvicidal and Adulticidal Activities against Culex pipiens. Molecules 2022, 27, 1939. [Google Scholar] [CrossRef] [PubMed]
- Marsin, A.M.; Muhamad, I.I.; Anis, S.N.S.; Lazim, N.A.M.; Ching, L.W.; Dolhaji, N.H. Essential oils as insect repellent agents in food packaging: A review. Eur. Food Res. Technol. 2020, 246, 1519–1532. [Google Scholar] [CrossRef]
- Rajendran, S.; Sriranjini, V. Plant products as fumigants for stored-product insect control. J. Stored Prod. Res. 2008, 44, 126–135. [Google Scholar] [CrossRef]
- Khater, H.F.F.; Hocine, Z.; Baz, M.M.M.; Selim, A.; Ahemed, N.; Kandeel, S.A.A.; Debboun, M. Ovicidal Aroma Shields for Prevention of Blow Fly Strikes Caused by Lucilia sericata (Meigen), Diptera: Calliphoridae. Vector Borne Zoonotic Dis. 2022, 22, 459–464. [Google Scholar] [CrossRef]
- Abdel Meguid, A.D.; Ramadan, M.Y.; Khater, H.F.; Radwan, I.T. Louicidal efficacy of essential oils against the dog louse, Trichodectes canis (Mallophaga: Trichodectidae). Egypt. Acad. J. Biol. Sci. 2022, 14, 1–16. [Google Scholar] [CrossRef]
- Kesraoui, S.; Andres, M.F.; Berrocal-Lobo, M.; Soudani, S.; Gonzalez-Coloma, A. Direct and Indirect Effects of Essential Oils for Sustainable Crop Protection. Plants 2022, 11, 2144. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, T.; Ahmed, N.; Shahjeer, K.; Ahmed, S.; Al-Mutairi, K.A.; Khater, H.F.; Ali, R.F. Botanical Insecticides and Their Potential as Anti-Insect/Pests: Are They Successful against Insects and Pests? In Global Decline of Insects; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Di Guardo, A.; Capri, E.; Calliera, M.; Finizio, A. MIMERA: An online tool for the sustainable pesticide use at field scale. Sci. Total Environ. 2022, 846, 157285. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.C.; Masih, D.B.; Gupta, P.R. Mint oil as grain fumigant against Callosobruchus chinensis L. Grain Technol. 1981, 19, 12–15. [Google Scholar]
- Mishra, R.C.; Kumar, J. Evaluation of Mentha piperita L. oil as a fumigant against red flour beetle, Tribolium castaneum (Herbst). Indian Perfum. 1983, 27, 73–76. [Google Scholar]
- Shaaya, E.; Ravid, U.; Paster, N.; Juven, B.; Zisman, U.; Pissarev, V. Fumigant toxicity of essential oils against four major stored-product insects. J. Chem. Ecol. 1991, 17, 499–501. [Google Scholar] [CrossRef]
- Bounoua-Fraoucene, S.; Kellouche, A.; Debras, J.F. Toxicity of four essential oils against two insect pests of stored grains, Rhyzopertha dominica (Coleoptera: Bostrychidae) and Sitophilus oryzae (Coleoptera: Curculionidae). Afr. Entomol. 2019, 27, 344–359. [Google Scholar] [CrossRef]
- Jesser, E.; Yeguerman, C.; Stefanazzi, N.; Gomez, R.; Murray, A.P.; Ferrero, A.A.; Werdin-Gonzalez, J.O. Ecofriendly Approach for the Control of a Common Insect Pest in the Food Industry, Combining Polymeric Nanoparticles and Post-application Temperatures. J. Agric. Food Chem. 2020, 68, 5951–5958. [Google Scholar] [CrossRef]
- Pang, X.; Feng, Y.X.; Qi, X.J.; Wang, Y.; Almaz, B.; Xi, C.; Du, S.S. Toxicity and repellent activity of essential oil from Mentha piperita Linn. leaves and its major monoterpenoids against three stored product insects. Environ. Sci. Pollut. Res. 2020, 27, 7618–7627. [Google Scholar] [CrossRef]
- Jayaram, C.S.; Chauhan, N.; Dolma, S.K.; Reddy, S.G.E. Chemical Composition and Insecticidal Activities of Essential Oils against the Pulse Beetle. Molecules 2022, 27, 568. [Google Scholar] [CrossRef]
- Wagan, T.A.; Wang, W.J.; Hua, H.X.; Rong-Hua, L.; Cai, W.L. The effects of three essential oils on adult repellency, larval fumigant toxicity, and egg hatch of Tribolium castaneum (Coleoptera: Tenebrionidae). Fla. Entomol. 2021, 104, 160–166. [Google Scholar] [CrossRef]
- Bosly, H. Larvicidal and adulticidal activity of essential oils from plants of the Lamiaceae family against the West Nile virus vector, Culex pipiens (Diptera: Culicidae). Saudi J. Biol. Sci. 2022, 29, 103350. [Google Scholar] [CrossRef] [PubMed]
- Kharoubi, R.; Rehimi, N.; Khaldi, R.; Haouari-Abderrahim, J.; Soltani, N. Phytochemical Screening and Insecticidal Activities of Essential oil of Mentha × piperita L. (Lamiales: Lamiaceae) and their Enzymatic Properties against Mosquito Culex pipiens L. (Diptera: Culicidae). J. Essent. Oil Bear. Plants 2021, 24, 134–146. [Google Scholar] [CrossRef]
- Lim, L.; Ab Majid, A.H. Plant Derived Pesticides (Citrus hystrix DC, Mentha × piperita L., Ocimu basilicum L.) in Controlling Household Ants (Tapinoma indicum (F.), Pheidole megacephala (F.), Monomorium pharaonis (L.)) (Hymenoptera: Formicidae). Pertanika J. Trop. Agric. Sci. 2019, 42, 1321–1342. [Google Scholar]
- Chauhan, N.; Malik, A.; Sharma, S. Repellency potential of essential oils against housefly, Musca domestica L. Environ. Sci. Pollut. Res. Int. 2018, 25, 4707–4714. [Google Scholar] [CrossRef]
- Baana, K.; Angwech, H.; Malinga, G.M. Ethnobotanical survey of plants used as repellents against housefly, Musca domestica L. (Diptera: Muscidae) in Budondo Subcounty, Jinja District, Uganda. J. Ethnobiol. Ethnomed. 2018, 14, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benelli, G.; Pavela, R.; Giordani, C.; Casettari, L.; Curzi, G.; Cappellacci, L.; Petrelli, R.; Maggi, F. Acute and sub-lethal toxicity of eight essential oils of commercial interest against the filariasis mosquito Culex quinquefasciatus and the housefly Musca domestica. Ind. Crops Prod. 2018, 112, 668–680. [Google Scholar] [CrossRef]
- Krcmar, S.; Gvozdic, V. Field studies of the efficacy of some commercially available essential oils against horse flies (Diptera: Tabanidae). Entomol. Gen. 2016, 36, 97–105. [Google Scholar] [CrossRef]
- Khater, H.F.; Ramadan, M.Y.; El-Madawy, R.S. Lousicidal, ovicidal and repellent efficacy of some essential oils against lice and flies infesting water buffaloes in Egypt. Vet. Parasitol. 2009, 164, 257–266. [Google Scholar] [CrossRef]
- Mejdoub, K.; Benomari, F.Z.; Djabou, N.; Dib, M.E.; Benyelles, N.G.; Costa, J.; Muselli, A. Antifungal and Insecticidal Activities of Essential Oils of Four Mentha Species. Jundishapur J. Nat. Pharm. Prod. 2019, 14, e64165. [Google Scholar] [CrossRef]
- Sayed, S.; Soliman, M.M.; Al-Otaibi, S.; Hassan, M.M.; Elarrnaouty, S.A.; Abozeid, S.M.; El-Shehawi, A.M. Toxicity, Deterrent and Repellent Activities of Four Essential Oils on Aphis punicae (Hemiptera: Aphididae). Plants 2022, 11, 463. [Google Scholar] [CrossRef]
- Heydari, M.; Amirjani, A.; Bagheri, M.; Sharifian, I.; Sabahi, Q. Eco-friendly pesticide based on peppermint oil nanoemulsion: Preparation, physicochemical properties, and its aphicidal activity against cotton aphid. Environ. Sci. Pollut. Res. 2020, 27, 6667–6679. [Google Scholar] [CrossRef] [PubMed]
- Erdemir, T.; Erler, F. Repellent, oviposition-deterrent and egg-hatching inhibitory effects of some plant essential oils against citrus mealybug, Planococcus citri Risso (Hemiptera: Pseudococcidae). J. Plant Dis. Prot. 2017, 124, 473–479. [Google Scholar] [CrossRef]
- Erdemir, T.; Erler, F. Fumigant toxicity of five plant essential oils against citrus mealybug, Planococcus citri risso (Hemiptera: Pseudococcidae). Fresenius Environ. Bull. 2018, 27, 3231–3235. [Google Scholar]
- Karamaouna, F.; Kimbaris, A.; Michaelakis, A.; Papachristos, D.; Polissiou, M.; Papatsakona, P.; Tsora, E. Insecticidal activity of plant essential oils against the vine mealybug, Planococcus ficus. J. Insect Sci. 2013, 13, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hidayat, Y.; Heather, N.; Hassan, E. A Preliminary Study on the Fumigant Toxicity of Essential Oils to Eggs and Larvae of Queensland Fruit Fly Bactrocera tryoni. In Proceedings of the 7th International Postharvest Symposium, Kuala Lumpur, Malaysia, 25–29 June 2012; pp. 645–651. [Google Scholar]
- Cevik, T.; Erler, F. Fumigant activity of some plant essential oils and their main components against mushroom cecid flies (Diptera: Cecidomyiidae). Fresenius Environ. Bull. 2014, 23, 2002–2010. [Google Scholar]
- Akhtar, Y.; Pages, E.; Stevens, A.; Bradbury, R.; da Camara, C.A.G.; Isman, M.B. Effect of chemical complexity of essential oils on feeding deterrence in larvae of the cabbage looper. Physiol. Entomol. 2012, 37, 81–91. [Google Scholar] [CrossRef]
- Ikbal, C.; Pavela, R. Essential oils as active ingredients of botanical insecticides against aphids. J. Pest Sci. 2019, 92, 971–986. [Google Scholar] [CrossRef]
- Gowton, C.M.; Cabra-Arias, C.; Carrillo, J. Intercropping with Peppermint Increases Ground Dwelling Insect and Pollinator Abundance and Decreases Drosophila suzukii in Fruit. Front. Sustain. Food Syst. 2021, 5, 364. [Google Scholar] [CrossRef]
- Cammel, M.E. The black bean aphid, Aphis fabae. Biologists 1981, 28, 247–258. [Google Scholar]
- Gospodarek, J. Effect of Sinapis alba L. as an Insectary Plant on the Occurrence of Aphis fabae Scop., Coccinellidae and Syrphidae in Broad Bean. Agronomy 2021, 11, 2202. [Google Scholar] [CrossRef]
- Sharif, M.M.; Hejazi, M.; Mohammadi, A.; Rashidi, M. Resistance status of the Colorado potato beetle, Leptinotarsa decemlineata, to endosulfan in East Azarbaijan and Ardabil provinces of Iran. J. Insect Sci. 2007, 7, 31. [Google Scholar] [CrossRef] [Green Version]
- Jahan, F.; Abbasipour, H.; Hasanshahi, G. Fumigant toxicity and nymph production deterrence effect of five essential oils on adults of the black bean aphid, Aphis fabae Scop. (Hemiptera: Aphididae). Adv. Food Sci. 2019, 41, 48–53. [Google Scholar]
- Sajfrtova, M.; Sovova, H.; Karban, J.; Rochova, K.; Pavela, R.; Barnet, M. Effect of separation method on chemical composition and insecticidal activity of Lamiaceae isolates. Ind. Crops Prod. 2013, 47, 69–77. [Google Scholar] [CrossRef]
- Radwan, I.T.; Baz, M.M.; Khater, H.; Alkhaibari, A.M.; Selim, A.M. Mg-LDH Nanoclays Intercalated Fennel and Green Tea Active Ingredient: Field and Laboratory Evaluation of Insecticidal Activities against Culex pipiens and Their Non-Target Organisms. Molecules 2022, 27, 2424. [Google Scholar] [CrossRef]
- Youssef, D.A.; Abdelmegeed, S.M. Polymer-based encapsulation of peppermint oil (Mentha piperita) nanoemulsion and its effects on life and some physiological activities of honeybees Apis mellifera (Hymenoptera: Apidae). Egypt. Pharm. J. 2021, 20, 313–322. [Google Scholar] [CrossRef]
- Parreira, D.S.; Alcantara-de la Cruz, R.; Zanuncio, J.C.; Lemes, P.G.; Rolim, G.D.; Barbosa, L.R.; Leite, G.L.D.; Serrao, J.E. Essential oils cause detrimental effects on biological parameters of Trichogramma galloi immatures. J. Pest Sci. 2018, 91, 887–895. [Google Scholar] [CrossRef]
- Pavela, R. Essential oils from Foeniculum vulgare Miller as a safe environmental insecticide against the aphid Myzus persicae Sulzer. Environ. Sci. Pollut. Res. 2018, 25, 10904–10910. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Zorzetto, C.; Sanchez-Mateo, C.C.; Santini, G.; Canale, A.; Maggi, F. Insecticidal activity of the essential oil from Schizogyne sericea (Asteraceae) on four insect pests and two non-target species. Entomol. Gen. 2019, 39, 9–18. [Google Scholar] [CrossRef]
- Zhou, L.; Li, C.; Zhang, Z.; Li, X.; Dong, Y.; Cao, H. Biological activity and safety evaluation of monoterpenes against the peach aphid (Myzus persicae Sulzer) (Hemiptera: Aphididae). Int. J. Trop. Insect Sci. 2021, 41, 2747–2754. [Google Scholar] [CrossRef]
- Mamoon–ur–Rashid, M.; Abdullah, K.; Tariq, M. Effects of Botanical Oil on Preference and Prey Consumption of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) and Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae) against the Cotton Mealybug (Phenacoccus solenopsis; Hemiptera: Pseudococcidae). Philipp. Agric. Sci. 2016, 99, 99–104. [Google Scholar]
- Council of Europe. The European Pharmacopoeia, 10th ed.; Council of Europe: Strasbourg, France, 2019. [Google Scholar]
- Derwich, E.; Benziane, Z.; Taouil, R.; Senhaji, O.; Touzani, M. Aromatic plants of Morocco: GC/MS analysis of the essential oils of leaves of Mentha piperita. Adv. Environ. Biol. 2010, 4, 80–85. [Google Scholar]
- Beigi, M.; Torki-Harchegani, M.; Pirbalouti, A.G. Quantity and chemical composition of essential oil of peppermint (Mentha piperita L.) leaves under different drying methods. Int. J. Food Prop. 2018, 21, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Chrysargyris, A.; Mikallou, M.; Petropoulos, S.; Tzortzakis, N. Profiling of Essential Oils Components and Polyphenols for Their Antioxidant Activity of Medicinal and Aromatic Plants Grown in Different Environmental Conditions. Agronomy 2020, 10, 727. [Google Scholar] [CrossRef]
- Al-Antary, T.M.; Belghasem, I.H.; Alaraj, S.A. Effect of mint oil against the green peach aphid Myzus persicae Sulzer (Homoptera: Aphididae) using four solvents. Adv. Environ. Biol. 2017, 11, 61–67. [Google Scholar]
- Albouchi, F.; Ghazouani, N.; Souissi, R.; Abderrabba, M.; Boukhris-Bouhachem, S. Aphidicidal activities of Melaleuca styphelioides Sm. essential oils on three citrus aphids: Aphis gossypii Glover; Aphis spiraecola Patch and Myzus persicae (Sulzer). S. Afr. J. Bot. 2018, 117, 149–154. [Google Scholar] [CrossRef]
- Rusin, M.; Gospodarek, J.; Binias, B. The effect of water extracts from winter savory on black bean aphid mortality. J. Ecol. Eng. 2016, 17, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Kwiecień, N.; Gospodarek, J.; Boligłowa, E. The Effects of Water Extracts from Tansy on Pea Leaf Weevil and Black Bean Aphid. J. Ecol. Eng. 2020, 21, 220–227. [Google Scholar] [CrossRef]
- Binias, B.; Gospodarek, J.; Rusin, M. Effect of water extract from mint on selected crop pests feeding and survival. J. Ecol. Eng. 2017, 18, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Rusin, M.; Gospodarek, J. The Effects of Water Extracts from Lemon Balm on Pea Leaf Weevil and Black Bean Aphid Behaviour. J. Ecol. Eng. 2018, 19, 139–145. [Google Scholar] [CrossRef]
- Nation, J.L. Insect Physiology and Biochemistry, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008; 560p. [Google Scholar] [CrossRef]
- Jermy, T. The rejective effect of some inorganic salts on Colorado potato beetle (Leptinotarsa decemlineata Say) adults and larvae. Ann. Inst. Prot. Plant. 1961, 8, 121–130. [Google Scholar]
- Gospodarek, J.; Endalamew, A.; Worsdale, M.; Pasmionka, I.B. Effects of Artemisia dracunculus L. Water Extracts on Selected Pests and Aphid Predator Coccinella septempunctata L. Agronomy 2022, 12, 788. [Google Scholar] [CrossRef]
- Scott, I.M.; Jensen, H.; Scott, J.G.; Isman, M.B.; Arnason, J.T.; Philogene, B.J.R. Botanical insecticides for controlling agricultural pests: Piperamides and the Colorado potato beetle Leptinotarsa decemlineata say (Coleoptera: Chrysomelidae). Arch. Insect Biochem. Physiol. 2003, 54, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Usanmaz-Bozhuyuk, A.; Kordali, S. Investigation of the toxicity of essential oils obtained from six Satureja species on Colorado potato beetle, Leptinotarsa decemlineata (Say, 1824), (Coleoptera: Chrysomelidae). Fresenius Environ. Bull. 2018, 27, 4389–4401. [Google Scholar]
- Alkan, M.; Gokce, A.; Kara, K. Contact Toxicity of Six Plant Extracts to Different Larval Stages of Colorado Potato Beetle (Leptinotarsa decemlineata SAY (Col: Chrysomelidae)). J. Agric. Sci. 2017, 23, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Gokce, A.; Whalon, M.E.; Cam, H.; Yanar, Y.; Demirtas, I.; Goren, N. Plant extract contact toxicities to various developmental stages of Colorado potato beetles (Coleoptera: Chrysomelidae). Ann. Appl. Biol. 2006, 149, 197–202. [Google Scholar] [CrossRef]
- Rafiee-Dastjerdi, H.; Khorrami, F.; Ganbalani, G.N.; Fathi, A.A.; Esmaielpour, B. Efficacy of some medicinal plant extracts and essential oils against Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Arch. Phytopathol. Plant Prot. 2014, 47, 1175–1178. [Google Scholar] [CrossRef]
- Alloui-Griza, R.; Cherif, A.; Attia, S.; Francis, F.; Lognay, G.C.; Grissa-Lebdi, K. Lethal Toxicity of Thymus capitatus Essential Oil Against Planococcus citri (Hemiptera: Pseudococcidae) and its Coccinellid Predator Cryptolaemus montrouzieri (Coleoptera: Coccinellidae). J. Entomol. Sci. 2022, 57, 425–435. [Google Scholar] [CrossRef]
- Lazarevic, J.; Kostic, I.; Jovanovic, D.S.; Calic, D.; Milanovic, S.; Kostic, M. Pure Camphor and a Thujone-Camphor Mixture as Eco-Friendly Antifeedants against Larvae and Adults of the Colorado Potato Beetle. Plants 2022, 11, 3587. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; Volume 456, pp. 544–545. [Google Scholar]
- Finney, D. Probit Analysis, 3rd ed.; Cambridge University Press: Cambridge, UK, 1971. [Google Scholar]
No. | Compound | RI lab 1 | RI Lit 2 | EO 3 (%) | EP 4 (%) |
---|---|---|---|---|---|
1 | α-Pinene | 936 | 927 | 0.4 | |
2 | Sabinene | 970 | 962 | 0.2 | |
3 | β-Pinene | 974 | 966 | 0.6 | |
4 | Octan-3-ol | 979 | 0.1 | ||
5 | Myrcene | 987 | 979 | 0.1 | |
6 | 1,8-Cineol | 1024 | 1016 | 3.2 | 3.5–8.0 |
7 | Limonene | 1025 | 1018 | 0.4 | 1.0–3.5 |
8 | (Z)-β-Ocimene | 1029 | 1025 | 0.1 | |
9 | (E)-β-Ocimene | 1034 | t 5 | ||
10 | γ-Terpinene | 1055 | 1048 | t | |
11 | Linalool | 1086 | 1085 | 0.3 | |
12 | Isopentyl 2-methylbutanoate | 1091 | 1090 | t | |
13 | Isopentyl 2-methylbutanoate | 1092 | 1093 | 0.1 | |
14 | trans-Pinocarveol | 1025 | 1125 | t | |
15 | Menthone | 1136 | 1138 | 37.5 | 14.0–32.0 |
16 | Isomenthone | 1146 | 1144 | 6.6 | 1.5–10.0 |
17 | δ-Terpineol | 1155 | 1148 | t | |
18 | Neomenthol | 1156 | 1151 | 2.7 | |
19 | Menthol | 1172 | 1163 | 29.9 | 30.0–55.0 |
20 | Isomenthol | 1175 | 1170 | 0.5 | |
21 | Neoisomenthol | 1176 | 1174 | 0.2 | |
22 | Pulegone | 1215 | 1214 | 0.1 | max. 3.0 |
23 | Piperitone | 1226 | 1226 | 0.6 | |
24 | Linalyl acetate | 1239 | 1240 | 0.1 | |
25 | Isopulegol acetate (isomer I) | 1263 | 1257 | t | |
26 | Neomenthyl acetate | 1263 | 1261 | 0.1 | |
27 | Thymol | 1267 | 1271 | 0.1 | |
28 | Menthyl acetate | 1280 | 1280 | 9.4 | 2.8–10.0 |
29 | Isomenthyl acetate | 1298 | 1293 | 0.2 | |
30 | Eugenol | 1331 | 1335 | t | |
31 | α-Copaene | 1379 | 1377 | t | |
32 | α-Elemene | 1380 | 1381 | t | |
33 | β-Bourbonene | 1380 | 1385 | 0.3 | |
34 | β-Elemene | 1389 | 1388 | 0.7 | |
35 | (E)-β-Caryophyllene | 1421 | 1419 | 1.9 | |
36 | (E)-β-Farnesene | 1446 | 1447 | 0.1 | |
37 | α-Humulene | 1450 | 1452 | 0.1 | |
38 | γ-Muurolene | 1474 | 1471 | t | |
39 | Germacrene D | 1479 | 1478 | 1.9 | |
40 | 4-epi-Cubebol | 1490 | 1488 | t | |
41 | Bicyclogermacrene | 1494 | 1492 | 0.1 | |
42 | γ-Cadinene | 1507 | 1507 | t | |
43 | cis-Calacorene | 1517 | 1511 | t | |
44 | δ-Cadinene | 1520 | 1515 | 0.1 | |
45 | α-Cadinene | 1534 | 1531 | t | |
46 | Spathulenol | 1572 | 1565 | 0.1 | |
47 | Caryophyllene oxide | 1578 | 1572 | 0.2 | |
48 | Viridoflorol | 1592 | 1583 | 0.2 | |
49 | 1,10-diepi-Cubenol | 1615 | 1604 | t | |
50 | α-Cadinol | 1643 | 1639 | 0.1 | |
Total identified | 99.3 |
Life Stage | Hours | LC50 (%) | 95% Confidence Limits | Slope * | (X2) ** | LC90 (%) | LC95 (%) | |
---|---|---|---|---|---|---|---|---|
Nymphs | Lower | Upper | ||||||
6 | 0.5442 | 0.3832 | 0.7196 | 2.0188 | 68.1927 | 1.0884 | 1.2734 | |
18 | 0.3942 | 0.2548 | 0.5394 | 2.2052 | 64.8764 | 0.8924 | 1.0618 | |
30 | 0.3400 | 0.2250 | 0.4567 | 2.2672 | 46.1155 | 0.8246 | 0.9894 | |
54 | 0.2705 | 0.1381 | 0.4066 | 3.9759 | 141.9055 | 0.6407 | 0.5468 | |
78 | 0.1994 | 0.1641 | 0.2384 | 5.6428 | 17.0729 1 | 0.4603 | 0.3940 | |
90 | 0.1847 | 0.1481 | 0.2226 | 5.5391 | 17.0622 1 | 0.3830 | 0.4505 | |
Wingless females | 6 | 0.3768 | 0.3067 | 0.4496 | 6.1061 | 58.4319 | 0.5567 | 0.6179 |
18 | 0.3523 | 0.2721 | 0.4366 | 6.0243 | 76.6022 | 0.5346 | 0.5966 | |
30 | 0.3375 | 0.2556 | 0.4248 | 5.4347 | 76.3419 | 0.5396 | 0.6084 | |
54 | 0.2807 | 0.2061 | 0.3620 | 5.1156 | 67.6146 | 0.4955 | 0.5685 | |
78 | 0.2063 | 0.1285 | 0.2845 | 4.1734 | 61.8666 | 0.4695 | 0.5590 | |
90 | 0.1639 | 0.0841 | 0.2368 | 4.0298 | 52.3328 | 0.4365 | 0.5292 |
Treatment | Exposure Time (h) | |||
---|---|---|---|---|
24 | 48 | 72 | 96 | |
L2 body weight gain compared to T0 (mg) | ||||
Control | 15.20 (±3.09) a * | 12.30 (±8.63) a | 17.40 (±4.31) a | 8.60 (±2.62) a |
EO 0.2 | 11.80 (±6.51) a | 22.90 (±8.03) a | 20.13 (±7.44) a | 20.67 (±4.57) b |
EO 0.5 | −11.60 (±2.48) b | −12.25 (±2.43) b | −12.75 (±0.75) b | −3.00 (±0.00) a |
EO 1 | −7.30 (±1.71) b | −9.00 (±0.00) ab | - | - |
EO 2 | −1.60 (±2.90) b | - | - | - |
Mass of leaves eaten by one L2 larva (mg) | ||||
Control | 16.97 (±7.56) a | 88.25 (±17.26) a | 121.60 (±15.71) a | 193.72 (±24.85) a |
EO 0.2 | 0.00 b | 11.60 (±11.60) b | 42.94 (±27.23) b | 99.05 (±49.46) a |
EO 0.5 | 0.00 b | 0.00 b | 8.80 (±8.80) b | 18.00 (±0.00) a |
EO 1 | 0.00 b | 0.00 b | - | - |
EO 2 | 0.00 b | - | - | - |
Treatment | Exposure Time (h) | |||
---|---|---|---|---|
24 | 48 | 72 | 96 | |
L4 body weight gain compared to T0 (mg) | ||||
Control | −20.20 (±5.10) * | −28.20 (±4.71) | −29.00 (±7.06) | −34.60 (±6.59) |
EO 0.2 | −10.20 (±16.63) | −30.80 (±13.41) | −32.20 (±10.09) | −32.80 (±10.35) |
EO 0.5 | −19.00 (±13.72) | −30.60 (±7.72) | −33.40 (±8.72) | −37.60 (±7.95) |
EO 1 | −40.20 (±7.87) | −45.60 (±6.19) | −48.20 (±4.97) | −51.80 (±8.55) |
EO 2 | −27.80 (±9.16) | - | - | - |
Mass of leaves eaten by one L4 larva (mg) | ||||
Control | 0.00 | 27.62 (±27.62) | 71.84 (±38.22) | 231.85 (±65.99) |
EO 0.2 | 0.00 | 112.10 (±73.00) | 165.53 (±87.20) | 327.63 (±79.23) |
EO 0.5 | 0.00 | 224.25 (±105.43) | 334.76 (±106.54) | 463.27 (±103.64) |
EO 1 | 0.00 | 19.98 (±19.98) | 82.18 (±61.11) | 365.06 (±87.96) |
EO 2 | 10.61 (±10.61) | - | - | - |
Life Stage | Hours | LC50 (%) | 95% Confidence Limits | Slope * | (X2) ** | LC90 (%) | LC95 (%) | |
---|---|---|---|---|---|---|---|---|
L2 | Lower | Upper | ||||||
24 | 0.6278 | 0.4550 | 0.8602 | 2.8184 | 16.7753 | 1.0176 | 1.1502 | |
48 | 0.3449 | 0.1235 | 0.5161 | 3.2938 | 16.4591 | 0.6973 | 0.7919 | |
72 | 0.2020 | −0.5699 | 0.3407 | 3.8046 | 12.7374 | 0.4908 | 0.5890 | |
L4 | 96 | 0.7289 | −0.0543 | 1.7517 | 1.1485 | 17.6508 | 1.6854 | 2.0107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gospodarek, J.; Krajewska, A.; Paśmionka, I.B. Contact and Gastric Effect of Peppermint Oil on Selected Pests and Aphid Predator Harmonia axyridis Pallas. Molecules 2023, 28, 4647. https://doi.org/10.3390/molecules28124647
Gospodarek J, Krajewska A, Paśmionka IB. Contact and Gastric Effect of Peppermint Oil on Selected Pests and Aphid Predator Harmonia axyridis Pallas. Molecules. 2023; 28(12):4647. https://doi.org/10.3390/molecules28124647
Chicago/Turabian StyleGospodarek, Janina, Agnieszka Krajewska, and Iwona B. Paśmionka. 2023. "Contact and Gastric Effect of Peppermint Oil on Selected Pests and Aphid Predator Harmonia axyridis Pallas" Molecules 28, no. 12: 4647. https://doi.org/10.3390/molecules28124647
APA StyleGospodarek, J., Krajewska, A., & Paśmionka, I. B. (2023). Contact and Gastric Effect of Peppermint Oil on Selected Pests and Aphid Predator Harmonia axyridis Pallas. Molecules, 28(12), 4647. https://doi.org/10.3390/molecules28124647