Thymus satureioides Coss.: Mineral Composition, Nutritional Value, Phytochemical Profiling, and Dermatological Properties
Abstract
:1. Introduction
2. Results
2.1. Mineral Composition
2.2. Amino Acid Contents
2.3. LC-MS Profiling
2.4. Phytocontents and In Vitro Antioxidant Assays
2.5. Antibacterial Activities
2.6. Skin Permeability and Sensitization Effects of Identified Compounds
3. Discussion
4. Material and Methods
4.1. Plant Material and Extract Preparation
4.2. Mineral Analysis
4.3. LC-MS Analysis
4.4. Analysis of Amino Acids
4.5. Phytocontents
4.6. Antioxidant Activity In Vitro
4.6.1. DPPH Radical Scavenging Assay
4.6.2. ABTS Radical Scavenging Assay
4.7. Antibacterial Activity
4.7.1. Minimal Inhibitory Concentration (MIC) Determination
4.7.2. Bacterial Biofilm Inhibition Assay
4.7.3. Swimming and Swarming Inhibition Assays
4.7.4. Outer Membrane Protein Quantification
4.7.5. Exopolysaccharide Estimation
4.8. In Silico Suitability for Skin Application
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- El-Fassi Fihri, A. La Pharmacopée Marocaine Traditionnelle, Jamal Bellakhdar. Horiz. Maghrébins Le Droit À La Mémoire 1998, 35, 319–321. [Google Scholar]
- Kabbaoui, M.; Chda, A.; Mejrhit, N.; Azdad, O.; Farah, A.; Aarab, L.; Bencheikh, R.; Tazi, A. Antidiabetic Effect of Thymus Satureioides Aqueous Extract in Streptozotocin-Induced Diabetic Rats. Int. J. Pharm. Pharm. Sci. 2016, 8, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Bellakhdar, J.; Claisse, R.; Fleurentin, J.; Younos, C. Repertory of Standard Herbal Drugs in the Moroccan Pharmacopoea. J. Ethnopharmacol. 1991, 35, 123–143. [Google Scholar] [CrossRef] [PubMed]
- Benabid, A. Flore et Écosystèmes Du Maroc: Evaluation et Préservation de La Biodiversité; Ibis Press: Paris, France, 2000. [Google Scholar]
- Drioiche, A.; Zahra Radi, F.; Ailli, A.; Bouzoubaa, A.; Boutakiout, A.; Mekdad, S.; AL Kamaly, O.; Saleh, A.; Maouloua, M.; Bousta, D.; et al. Correlation between the Chemical Composition and the Antimicrobial Properties of Seven Samples of Essential Oils of Endemic Thymes in Morocco against Multi-Resistant Bacteria and Pathogenic Fungi. Saudi Pharm. J. 2022, 30, 1200–1214. [Google Scholar] [CrossRef]
- El Hachlafi, N.; Chebat, A.; Fikri-Benbrahim, K. Ethnopharmacology, Phytochemistry, and Pharmacological Properties of Thymus Satureioides Coss. Evid.-Based Complement. Altern. Med. 2021, 2021, 6673838. [Google Scholar] [CrossRef]
- Jaafari, A.; Mouse, H.A.; Rakib, E.M.; M’barek, L.A.; Tilaoui, M.; Benbakhta, C.; Boulli, A.; Abbad, A.; Zyad, A. Chemical Composition and Antitumor Activity of Different Wild Varieties of Moroccan Thyme. Rev. Bras. De Farmacogn. 2007, 17, 477–491. [Google Scholar] [CrossRef] [Green Version]
- Khouya, T.; Ramchoun, M.; Hmidani, A.; Amrani, S.; Harnafi, H.; Benlyas, M.; Filali Zegzouti, Y.; Alem, C. Anti-Inflammatory, Anticoagulant and Antioxidant Effects of Aqueous Extracts from Moroccan Thyme Varieties. Asian Pac. J. Trop. Biomed. 2015, 5, 636–644. [Google Scholar] [CrossRef] [Green Version]
- El Hattabi, L.; Talbaoui, A.; Amzazi, S.; Bakri, Y.; Harhar, H.; Costa, J.; Tabyaoui, M. Chemical Composition and Antibacterial Activity of Three Essential Oils from South of Morocco (Thymus Satureoides, Thymus Vulgaris and Chamaelum Nobilis). J. Mater. Environ. Sci. 2016, 7, 3110–3117. [Google Scholar]
- Amrouche, T.; Djenane, D.; Dziri, F.; Danoun, K.; Djerbal, M.; Rabinal, P.R. Growth Inhibition of Staphylococcus Aureus, Bacillus Cereus, and Escherichia Coli Assessed in Vitro and in Food System Using Thyme and Mentha Essential Oils. Syst. Agraires Et Environ. 2018, 2, 01–10. [Google Scholar]
- Asdadi, A.; Alilou, H.; Akssira, M.; Mina, L.; Hassani, I.; Chebli, B. Chemical Composition and Anticandidal Effect of Three Thymus Species Essential Oils from Southwest of Morocco against the Emerging Nosocomial Fluconazole-Resistant Strains. J. Biol. Agric. Healthc. 2014, 4, 16–26. [Google Scholar]
- Santana, O.; Andrés, M.F.; Sanz, J.; Errahmani, N.; Abdeslam, L.; González-Coloma, A. Valorization of Essential Oils from Moroccan Aromatic Plants. Nat. Prod. Commun. 2014, 9, 1934578X1400900812. [Google Scholar] [CrossRef] [Green Version]
- Avato, P.; Laquale, S.; Argentieri, M.P.; Lamiri, A.; Radicci, V.; D’Addabbo, T. Nematicidal Activity of Essential Oils from Aromatic Plants of Morocco. J. Pest Sci. 2017, 90, 711–722. [Google Scholar] [CrossRef]
- Ramchoun, M.; Harnafi, H.; Alem, C.; Büchele, B.; Simmet, T.; Rouis, M.; Atmani, F.; Amrani, S. Hypolipidemic and Antioxidant Effect of Polyphenol-Rich Extracts from Moroccan Thyme Varieties. e-SPEN J. 2012, 7, e119–e124. [Google Scholar] [CrossRef]
- Binic, I.; Lazarevic, V.; Ljubenovic, M.; Mojsa, J.; Sokolovic, D. Skin Ageing: Natural Weapons and Strategies. Evid.-Based Complement. Altern. Med. 2013, 2013, 827248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards-Jones, V. Wound Pathogens. In Essential Microbiology for Wound Care; Oxford University Press: Oxford, UK, 2016; p. 67. [Google Scholar]
- Swaraj, M.; Bighneswar, B.; Suraja, K.N. Antimicrobial Resistance in Pseudomonas Aeruginosa: A Concise Review. In Antimicrobial Resistance; Mare, M., Lim, S.H.E., Lai, K.-S., Cristina, R.-T., Eds.; IntechOpen: Rijeka, Croatia, 2020; p. Ch. 3. ISBN 978-1-83962-433-9. [Google Scholar]
- Spernovasilis, N.; Psichogiou, M.; Poulakou, G. Skin Manifestations of Pseudomonas Aeruginosa Infections. Curr. Opin. Infect. Dis. 2021, 34, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Dauqan, E.M.; Abdullah, A. Medicinal and Functional Values of Thyme (Thymus vulgaris L.) Herb. J. Appl. Biol. Biotechnol. 2017, 5, 017–022. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.N.; Zimmer, K.R.; Macedo, A.J.; Trentin, D.S. Plant Natural Products Targeting Bacterial Virulence Factors. Chem. Rev. 2016, 116, 9162–9236. [Google Scholar] [CrossRef]
- Kearns, D.B. A Field Guide to Bacterial Swarming Motility. Nat. Rev. Microbiol. 2010, 8, 634–644. [Google Scholar] [CrossRef] [Green Version]
- Rajkumari, J.; Borkotoky, S.; Murali, A.; Busi, S. Anti-Quorum Sensing Activity of Syzygium jambos (L.) Alston against Pseudomonas aeruginosa PAO1 and Identification of Its Bioactive Components. S. Afr. J. Bot. 2018, 118, 151–157. [Google Scholar] [CrossRef]
- Josenhans, C.; Suerbaum, S. The Role of Motility as a Virulence Factor in Bacteria. Int. J. Med. Microbiol. 2002, 291, 605–614. [Google Scholar] [CrossRef]
- Potts, R.O.; Guy, R.H. Predicting Skin Permeability. Pharm. Res. 1992, 9, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Fusco, D.; Colloca, G.; Monaco, M.R.L.; Cesari, M. Effects of Antioxidant Supplementation on the Aging Process. Clin. Interv. Aging 2007, 2, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Kouar, J.; Lamsaddek, A.; Benchekroun, R.; El Amrani, A.; Cherif, A.; Ould Bellahcen, T.; Kamil, N. Comparison between Electrocoagulation and Solvent Extraction Method in the Process of the Dechlorophyllation of Alcoholic Extracts from Moroccan Medicinal Plants Petroselinum Crispum, Thymus Satureioides and Microalgae Spirulina Platensis. SN Appl. Sci. 2018, 1, 132. [Google Scholar] [CrossRef] [Green Version]
- Ramchoun, M.; Sellam, K.; Harnafi, H.; Alem, C.; Benlyas, M.; Khallouki, F.; Amrani, S. Investigation of Antioxidant and Antihemolytic Properties of Thymus Satureioides Collected from Tafilalet Region, South-East of Morocco. Asian Pac. J. Trop. Biomed. 2015, 5, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Liu, Y.; Jiang, Q.; Li, K.; Zhao, Y.; Cao, C.; Yao, J. Salvianolic Acid A Protects RPE Cells against Oxidative Stress through Activation of Nrf2/HO-1 Signaling. Free Radic. Biol. Med. 2014, 69, 219–228. [Google Scholar] [CrossRef]
- Jamali, C.A.; El Bouzidi, L.; Bekkouche, K.; Lahcen, H.; Markouk, M.; Wohlmuth, H.; Leach, D.; Abbad, A. Chemical Composition and Antioxidant and Anticandidal Activities of Essential Oils from Different Wild Moroccan Thymus Species. Chem. Biodivers. 2012, 9, 1188–1197. [Google Scholar] [CrossRef]
- Ouhaddou, H.; Boubaker, H.; Msanda, F.; El Mousadik, A. An Ethnobotanical Study of Medicinal Plants of the Agadir Ida Ou Tanane Province (Southwest Morocco). J. Appl. Biosci. 2014, 84, 7707–7722. [Google Scholar] [CrossRef] [Green Version]
- Fatiha, B.A.; Souad, S.; Ouafae, B.; Jamila, D.; Allal, D.; Lahcen, Z. Ethnobotanical Study of Medicinal Plants Used in the Region of Middle Oum Rbia (Morocco). Plant Arch. 2019, 19, 2005–2017. [Google Scholar]
- Wu, D.C.; Chan, W.W.; Metelitsa, A.I.; Fiorillo, L.; Lin, A.N. Pseudomonas Skin Infection. Am. J. Clin. Dermatol. 2011, 12, 157–169. [Google Scholar] [CrossRef]
- Baro, M.; Marín, M.A.; Ruiz-Contreras, J.; Fernandez de Miguel, S.; Sánchez-Díaz, I. Pseudomonas Aeruginosa Sepsis and Ecthyma Gangrenosum as Initial Manifestations of Primary Immunodeficiency. Eur. J. Pediatr. 2004, 163, 173–174. [Google Scholar] [CrossRef]
- Lakhrissi, B.; Rhaiem, N.; Ouhssine, M. Evaluation of the Bacteriostatic and Bactericidal Activity of Essential Oil of Thymus Satureioides. Dis. Manag. 2016, 2, 3. [Google Scholar]
- Chen, L.; Wen, Y. The Role of Bacterial Biofilm in Persistent Infections and Control Strategies. Int. J. Oral Sci. 2011, 3, 66–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noumi, E.; Ahmad, I.; Bouali, N.; Patel, H.; Ghannay, S.; ALrashidi, A.A.; Abdulhakeem, M.A.; Patel, M.; Ceylan, O.; Badraoui, R.; et al. Thymus Musilii Velen. Methanolic Extract: In Vitro and In Silico Screening of Its Antimicrobial, Antioxidant, Anti-Quorum Sensing, Antibiofilm, and Anticancer Activities. Life 2023, 13, 62. [Google Scholar] [CrossRef] [PubMed]
- Husain, F.M.; Ahmad, I.; Al-thubiani, A.S.; Abulreesh, H.H.; AlHazza, I.M.; Aqil, F. Leaf Extracts of Mangifera indica L. Inhibit Quorum Sensing—Regulated Production of Virulence Factors and Biofilm in Test Bacteria. Front. Microbiol. 2017, 8, 727. [Google Scholar] [CrossRef] [Green Version]
- Pournajaf, A.; Razavi, S.; Irajian, G.; Ardebili, A.; Erfani, Y.; Solgi, S.; Yaghoubi, S.; Rasaeian, A.; Yahyapour, Y.; Kafshgari, R. Integron Types, Antimicrobial Resistance Genes, Virulence Gene Profile, Alginate Production and Biofilm Formation in Iranian Cystic Fibrosis Pseudomonas Aeruginosa Isolates. Infez. Med. 2018, 26, 226–236. [Google Scholar]
- Ouyang, J.; Sun, F.; Feng, W.; Sun, Y.; Qiu, X.; Xiong, L.; Liu, Y.; Chen, Y. Quercetin Is an Effective Inhibitor of Quorum Sensing, Biofilm Formation and Virulence Factors in Pseudomonas Aeruginosa. J. Appl. Microbiol. 2016, 120, 966–974. [Google Scholar] [CrossRef] [Green Version]
- Rowan-Nash Aislinn, D.; Korry Benjamin, J.; Mylonakis, E.; Belenky, P. Cross-Domain and Viral Interactions in the Microbiome. Microbiol. Mol. Biol. Rev. 2019, 83, e00044-18. [Google Scholar] [CrossRef] [Green Version]
- Boyen, F.; Eeckhaut, V.; Van Immerseel, F.; Pasmans, F.; Ducatelle, R.; Haesebrouck, F. Quorum Sensing in Veterinary Pathogens: Mechanisms, Clinical Importance and Future Perspectives. Vet. Microbiol. 2009, 135, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Antonopoulou, I.; Varriale, S.; Topakas, E.; Rova, U.; Christakopoulos, P.; Faraco, V. Enzymatic Synthesis of Bioactive Compounds with High Potential for Cosmeceutical Application. Appl. Microbiol. Biotechnol. 2016, 100, 6519–6543. [Google Scholar] [CrossRef] [Green Version]
- Saewan, N.; Vichit, W.; Prinyarux, T. Anti-Aging Efficacy of Thai Red Rice Callus Cosmetic Product. J. Appl. Sci. 2018, 17, 63–72. [Google Scholar]
- Pangestuti, R.; Kim, S.-K. Chapter 6—Seaweed Proteins, Peptides, and Amino Acids. In Seaweed Sustainability; Tiwari, B.K., Troy, D.J., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 125–140. ISBN 978-0-12-418697-2. [Google Scholar]
- Prockop, D.J.; Berg, R.A.; Kivirikko, K.I.; Uitto, J. Intracellular Steps in the Biosynthesis of Collagen. In Biochemistry of Collagen; Ramachandran, G.N., Reddi, A.H., Eds.; Springer: Boston, MA, USA, 1976; pp. 163–273. ISBN 978-1-4757-4602-0. [Google Scholar]
- Avila Rodríguez, M.I.; Rodríguez Barroso, L.G.; Sánchez, M.L. Collagen: A Review on Its Sources and Potential Cosmetic Applications. J. Cosmet. Dermatol. 2018, 17, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Kolle, S.N.; Flach, M.; Kleber, M.; Basketter, D.A.; Wareing, B.; Mehling, A.; Hareng, L.; Watzek, N.; Bade, S.; Funk-Weyer, D.; et al. Plant Extracts, Polymers and New Approach Methods: Practical Experience with Skin Sensitization Assessment. Regul. Toxicol. Pharmacol. 2023, 138, 105330. [Google Scholar] [CrossRef] [PubMed]
- Benezra, C.; Ducombs, G. Molecular Aspects of Allergic Contact Dermatitis to Plants. Recent Progress in Phytodermatochemistry. Derm. Beruf Umwelt. 1987, 35, 4–11. [Google Scholar] [PubMed]
- Vukmanović, S.; Sadrieh, N. Skin Sensitizers in Cosmetics and beyond: Potential Multiple Mechanisms of Action and Importance of T-Cell Assays for in Vitro Screening. Crit. Rev. Toxicol. 2017, 47, 422–439. [Google Scholar] [CrossRef] [PubMed]
- Adamu, H.M.A.; Ushie, O.; Gwangwala, A.H.; Yadav, R.P.; Singh, A.V.; Bhardwaj, A.K.; Lone, P.A.; Dar, M.M.; Parray, J.A.; Shah, K.W.; et al. Estimation of Total Flavonoids and Tannins in the Stem Bark and Leaves of Anogeisus Leiocarpus Plant Plant. Int. J. Tradit. Nat. Med. 2013, 2, 141–148. [Google Scholar]
- Tawfeek, N.; Fikry, E.; Mahdi, I.; Ochieng, M.A.; Bakrim, W.B.; Taarji, N.; Mahmoud, M.F.; Sobeh, M. Cupressus Arizonica Greene: Phytochemical Profile and Cosmeceutical and Dermatological Properties of Its Leaf Extracts. Molecules 2023, 28, 1036. [Google Scholar] [CrossRef] [PubMed]
- Lamuela-Raventós, R.M. Folin–Ciocalteu Method for the Measurement of Total Phenolic Content and Antioxidant Capacity. In Measurement of Antioxidant Activity & Capacity; Wiley Online Library: Hoboken, NJ, USA, 2018; pp. 107–115. ISBN 978-1-119-13538-8. [Google Scholar]
- Matić, P.; Sabljić, M.; Jakobek, L. Validation of Spectrophotometric Methods for the Determination of Total Polyphenol and Total Flavonoid Content. J. AOAC Int. 2017, 100, 1795–1803. [Google Scholar] [CrossRef]
- Lee, K.J.; Oh, Y.C.; Cho, W.K.; Ma, J.Y. Antioxidant and Anti-Inflammatory Activity Determination of One Hundred Kinds of Pure Chemical Compounds Using Offline and Online Screening HPLC Assay. Evid.-Based Complement. Altern. Med. 2015, 2015, e165457. [Google Scholar] [CrossRef] [Green Version]
- Miller, N.J.; Rice-Evans, C.A. Spectrophotometric Determination of Antioxidant Activity. Redox Rep. 1996, 2, 161–171. [Google Scholar] [CrossRef]
- Bakrim, W.B.; Nurcahyanti, A.D.R.; Dmirieh, M.; Mahdi, I.; Elgamal, A.M.; El Raey, M.A.; Wink, M.; Sobeh, M. Phytochemical Profiling of the Leaf Extract of Ximenia Americana Var. Caffra and Its Antioxidant, Antibacterial, and Antiaging Activities In Vitro and in Caenorhabditis Elegans: A Cosmeceutical and Dermatological Approach. Oxidative Med. Cell Longev. 2022, 2022, 3486257. [Google Scholar] [CrossRef]
- Abbas, H.A.; Elsherbini, A.M.; Shaldam, M.A. Repurposing Metformin as a Quorum Sensing Inhibitor in Pseudomonas Aeruginosa. Afr. Health Sci. 2017, 17, 808–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mostafa, I.; Abbas, H.A.; Ashour, M.L.; Yasri, A.; El-Shazly, A.M.; Wink, M.; Sobeh, M. Polyphenols from Salix Tetrasperma Impair Virulence and Inhibit Quorum Sensing of Pseudomonas Aeruginosa. Molecules 2020, 25, 1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musthafa, K.S.; Ravi, A.V.; Annapoorani, A.; Packiavathy, I.S.V.; Pandian, S.K. Evaluation of Anti-Quorum-Sensing Activity of Edible Plants and Fruits through Inhibition of the N-Acyl-Homoserine Lactone System in Chromobacterium Violaceum and Pseudomonas Aeruginosa. Chemotherapy 2010, 56, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Mahdi, I.; Fahsi, N.; Hafidi, M.; Benjelloun, S.; Allaoui, A.; Biskri, L. Rhizospheric Phosphate Solubilizing Bacillus Atrophaeus GQJK17 S8 Increases Quinoa Seedling, Withstands Heavy Metals, and Mitigates Salt Stress. Sustainability 2021, 13, 3307. [Google Scholar] [CrossRef]
- Yeung, A.T.; Torfs, E.C.; Jamshidi, F.; Bains, M.; Wiegand, I.; Hancock, R.E.; Overhage, J. Swarming of Pseudomonas Aeruginosa Is Controlled by a Broad Spectrum of Transcriptional Regulators, Including MetR. J. Bacteriol. 2009, 191, 5592–5602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Adonizio, A.; Kong, K.-F.; Mathee, K. Inhibition of Quorum Sensing-Controlled Virulence Factor Production in Pseudomonas Aeruginosa by South Florida Plant Extracts. Antimicrob. Agents Chemother. 2008, 52, 198–203. [Google Scholar] [CrossRef] [Green Version]
- Dubois, M. Calorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 351–356. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
Parameter | Unit | Result | Method Used |
---|---|---|---|
Total nitrogen | % DW | 0.98 | Kjeldahl |
Total phosphorus | 0.09 | ICP-OES | |
Total potassium | 0.95 | ||
Calcium | 1.13 | ||
Magnesium | 0.18 | ||
Sodium | mg/Kg DW | 85.74 | |
Iron | 591.25 | ||
Manganese | 48.6 | ||
Zinc | 14.66 | ||
Copper | 6.49 |
Analyte | Concentration (mg/kg) |
---|---|
Aspartic acid | 0.064 |
Serine | 0.039 |
Asparagine | 5.58 |
4-Hydroxyproline | 13.19 |
Glutamic acid | 0.21 |
Threonine | 0.17 |
Lysine | 0.08 |
Alanine | 0.68 |
Valine | 0.11 |
Histidine | 0.32 |
Tyrosine | 4.72 |
Leucine | 14.75 |
Isoleucine | 15.95 |
Phenylalanine | 5.66 |
No. | Rt (min) | [M − H]− | MS/MS | Proposed Secondary Metabolites | Log Kp (cm/s) * | Human Sensitizer (Score) ¥ |
---|---|---|---|---|---|---|
1 | 1.46 | 191 | 127 | Quinic acid | −9.15 | 0.635 |
2 | 1.63 | 133 | 115 | Malic acid | −8.01 | 0.200 |
3 | 3.68 | 331 | 169 | Galloyl glucose | −10.66 | 0.570 |
4 | 4.88 | 315 | 153 | Dihydroxybenzoic acid glucoside | −9.12 | 0.430 |
5 | 6.20 | 153 | 109 | Dihydroxybenzoic acid | −6.39 | 0.425 |
6 | 7.22 | 353 | 191 | Chlorogenic acid | −8.76 | 0.565 |
7 | 7.82 | 299 | 137 | Hydroxybenzoic acid glucoside | −8.73 | 0.290 |
8 | 8.60 | 339 | 177 | Aesculetin glucoside | −8.81 | 0.300 |
9 | 9.27 | 341 | 179 | Caffeoyl glucose | −9.94 | 0.495 |
10 | 11.07 | 353 | 191 | Neochlorogenic acid | −8.76 | 0.565 |
11 | 13.05 | 305 | 225 | Gallocatechin | −8.17 | 0.545 |
12 | 14.44 | 325 | 163 | Coumaroyl glucose | −8.34 | 0.460 |
13 | 15.40 | 337 | 191 | Coumaroylquinic acid | −8.41 | 0.560 |
14 | 15.52 | 307 | 227 | Resveratrol sulphate | −6.38 | 0.765 |
15 | 15.88 | 327 | 165 | Phloretic acid caffeate | −3.35 | 0.360 |
16 | 16.60 | 593 | 353 | Apigenin di-C-glucoside | −11.53 | 0.270 |
17 | 19.79 | 431 | 269 | Apigenin glucoside | −8.07 | 0.315 |
18 | 20.33 | 593 | 353 | Apigenin di-C-glucoside | −11.53 | 0.270 |
19 | 20.57 | 477 | 301 | Quercetin glucuronide | −8.78 | 0.520 |
20 | 20.81 | 609 | 301 | Quercetin rutinoside | −10.26 | 0.400 |
21 | 21.29 | 593 | 353 | Apigenin di-C-glucoside | −11.53 | 0.270 |
22 | 21.89 | 623 | 285 | Luteolin glucosyl glucuronide | −8.00 | 0.600 |
23 | 22.91 | 595 | 287 | Eriodictyol rutinoside | −10.90 | 0.375 |
24 | 23.99 | 593 | 285 | Luteolin rutinoside | −10.06 | 0.305 |
25 | 24.65 | 447 | 285 | Luteolin glucoside | −8.00 | 0.265 |
26 | 25.20 | 461 | 285 | Luteolin glucuronide | −8.25 | 0.600 |
27 | 25.32 | 609 | 315 | Isorhamnetin pentosyl glucoside | −8.73 | 0.320 |
28 | 26.16 | 521 | 359 | Caffeoyl rosmarinic acid | −6.82 | 0.480 |
29 | 27.67 | 577 | 269 | Apigenin rutinoside | −11.98 | 0.295 |
30 | 28.60 | 755 | 285 | Luteolin caffeoyl rutinoside | −10.06 | 0.305 |
31 | 28.75 | 433 | 301 | Quercetin pentoside | −10.54 | 0.435 |
32 | 28.81 | 445 | 269 | Apigenin glucuronide | −7.99 | 0.520 |
33 | 28.99 | 355 | 179 | Feruloyl caffeic acid | −6.58 | 0.320 |
34 | 29.16 | 431 | 269 | Apigenin glucoside | −8.07 | 0.315 |
35 | 29.58 | 609 | 301 | Quercetin coumaroyl glucoside | −8.14 | 0.375 |
36 | 30.61 | 515 | 353 | Dicaffeoylquinic acid | −8.37 | 0.605 |
37 | 30.79 | 475 | 299 | Diosmetin glucuronide | −7.76 | 0.385 |
38 | 31.21 | 359 | 197 | Rosmarinic acid | −6.82 | 0.480 |
39 | 32.29 | 549 | 387 | Caffeoyl ethyl rosmarinate | −6.82 | 0.480 |
40 | 32.47 | 551 | 197 | Schizotenuin F | −6.81 | 0.380 |
41 | 34.33 | 493 | 197 | Salvianolic acid A | −6.53 | 0.485 |
42 | 34.52 | 537 | 197 | Salvianolic acid I | −6.96 | 0.625 |
43 | 38.60 | 493 | 197 | Salvianolic acid A isomer | ||
44 | 39.26 | 537 | 197 | Salvianolic acid I isomer | ||
45 | 41.83 | 329 | 271 | Dimethyl quercetin | −5.99 | 0.490 |
46 | 45.52 | 269 | 151 | Apigenin | −5.80 | 0.625 |
Parameter | T. satureioides Aqueous Extract | Quercetin |
---|---|---|
TPC (mg GAE/g extract) | 118.17 ± 2.25 | - |
TFC (mg quercetin/1 g extract) | 32.32 ± 1.07 | - |
DPPH (IC50 μg/mL) | 22.28 ± 2.34 * | 2.20 ± 0.15 |
ABTS (IC50 (μg/mL) | 157.08 ± 5.37 * | 17.26 ± 1.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahdi, I.; Fahsi, N.; Annaz, H.; Drissi, B.; Barakate, M.; Mahmoud, M.F.; Sobeh, M. Thymus satureioides Coss.: Mineral Composition, Nutritional Value, Phytochemical Profiling, and Dermatological Properties. Molecules 2023, 28, 4636. https://doi.org/10.3390/molecules28124636
Mahdi I, Fahsi N, Annaz H, Drissi B, Barakate M, Mahmoud MF, Sobeh M. Thymus satureioides Coss.: Mineral Composition, Nutritional Value, Phytochemical Profiling, and Dermatological Properties. Molecules. 2023; 28(12):4636. https://doi.org/10.3390/molecules28124636
Chicago/Turabian StyleMahdi, Ismail, Nidal Fahsi, Hassan Annaz, Badreddine Drissi, Mustapha Barakate, Mona F. Mahmoud, and Mansour Sobeh. 2023. "Thymus satureioides Coss.: Mineral Composition, Nutritional Value, Phytochemical Profiling, and Dermatological Properties" Molecules 28, no. 12: 4636. https://doi.org/10.3390/molecules28124636
APA StyleMahdi, I., Fahsi, N., Annaz, H., Drissi, B., Barakate, M., Mahmoud, M. F., & Sobeh, M. (2023). Thymus satureioides Coss.: Mineral Composition, Nutritional Value, Phytochemical Profiling, and Dermatological Properties. Molecules, 28(12), 4636. https://doi.org/10.3390/molecules28124636