CO Electroreduction Mechanism on Single-Atom Zn (101) Surfaces: Pathway to C2 Products
Abstract
:1. Introduction
2. Results and Discussion
2.1. Material Selectivity and Stability
2.2. C–C Coupling Mechanism
- Mechanism I: Through calculations, it was found that the formation of OCCO through *CO coupling only overcomes a ΔG of 0.43 eV (Pd/Zn) and 0.17 eV (Cu/Zn), which corresponds to a lower free energy compared to the coupling of *CHO/*COH intermediates for C–C bond formation. As a result, it exhibits a thermodynamic advantage.
- Mechanism II: Analysis of the ΔG for various protonation and coupling processes of intermediates on the catalyst surface reveals that while *COH and *CHO are favorable for coupling with CO to form C–C bonds, the reduction of *CO to *CHO or *COH at lower voltages is challenging. Consequently, the generation of C–C bonds through Mechanism II does not offer an advantage.
- Mechanism III: Since the formation of *CHO requires a high ΔG, the mechanism involving CH2 dimerization to form C2 products is not advantageous. Even at high potentials, the presence of an *CHO intermediate is possible, but the ΔG for further hydrogenation of the oxygen atom is significant, at 0.48 eV (Pd/Zn) and 0.70 eV (Cu/Zn), rendering the involvement of CH2 in C–C coupling unrealistic. The protonation of the oxygen atom in *COH to generate C also encounters obstacles; therefore, Mechanism III is not considered on the catalyst surface.
2.3. The Competition of *OCCO Reduction on Cu/Zn (101) and Pd/Zn (101)
2.4. The Pathway of Generating C2 Products
2.4.1. Ethane
2.4.2. Ethylene
2.4.3. Glyoxal and Acetaldehyde
3. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Birdja, Y.Y.; Pérez-Gallent, E.; Figueiredo, M.C.; Göttle, A.J.; Calle-Vallejo, F.; Koper, M.T. Advances and Challenges in Understanding the Electrocatalytic Conversion of Carbon Dioxide to Fuels. Nat. Energy 2019, 4, 732–745. [Google Scholar] [CrossRef]
- Hori, Y. Electrochemical CO2 Reduction on Metal Electrodes. In Modern Aspects of Electrochemistry; Vayenas, C.G., White, R.E., Gamboa-Aldeco, M.E., Eds.; Springer: New York, NY, USA, 2008; pp. 89–189. [Google Scholar]
- Liu, J.; Xue, W.; Zhang, W.; Mei, D. Theoretical Study on the Catalytic CO2 Hydrogenation over the Mof-808-Encapsulated Single-Atom Metal Catalysts. J. Phys. Chem. C 2023, 127, 4051–4062. [Google Scholar] [CrossRef]
- Pedersen, P.D.; Vegge, T.; Bligaard, T.; Hansen, H.A. Trends in CO2 Reduction on Transition Metal Dichalcogenide Edges. ACS Catal. 2023, 13, 2341–2350. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Y.; Li, Y. Can Metal–Nitrogen–Carbon Single-Atom Catalysts Boost the Electroreduction of Carbon Monoxide? JACS Au 2023, 3, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Liu, C.; Su, X.; Yang, Q.; Wu, X.; Zou, H.; Long, B.; Fan, X.; Liao, Y.; Duan, L.; et al. Defect-Engineered Cu-Based Nanomaterials for Efficient CO2 Reduction over Ultrawide Potential Window. ACS Nano 2023, 17, 402–410. [Google Scholar] [CrossRef]
- Chen, Z.W.; Gariepy, Z.; Chen, L.; Yao, X.; Anand, A.; Liu, S.-J.; Tetsassi Feugmo, C.G.; Tamblyn, I.; Singh, C.V. Machine-Learning-Driven High-Entropy Alloy Catalyst Discovery to Circumvent the Scaling Relation for CO2 Reduction Reaction. ACS Catal. 2022, 12, 14864–14871. [Google Scholar] [CrossRef]
- Gao, D.; Arán-Ais, R.M.; Jeon, H.S.; Roldan Cuenya, B. Rational Catalyst and Electrolyte Design for CO2 Electroreduction Towards Multicarbon Products. Nat. Catal. 2019, 2, 198–210. [Google Scholar] [CrossRef]
- Garg, S.; Li, M.; Weber, A.Z.; Ge, L.; Li, L.; Rudolph, V.; Wang, G.; Rufford, T.E. Advances and Challenges in Electrochemical CO2 Reduction Processes: An Engineering and Design Perspective Looking Beyond New Catalyst Materials. J. Mater. Chem. A 2020, 8, 1511–1544. [Google Scholar] [CrossRef]
- Zheng, M.; Zhou, X.; Wang, Y.; Chen, G.; Li, M. Theoretical Study on the Reduction Mechanism of CO2 to HCOOH on Pd3Au: An Explicit Solvent Model Is Essential. J. Mater. Chem. A 2023, 11, 6591–6602. [Google Scholar] [CrossRef]
- Kowalec, I.; Kabalan, L.; Catlow CR, A.; Logsdail, A.J. A Computational Study of Direct CO2 Hydrogenation to Methanol on Pd Surfaces. Phys. Chem. Chem. Phys. 2022, 24, 9360–9373. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, S.; Zhu, J.; Ye, C.; Mao, Y.; Wang, B.; Zhou, G.; Mai, L.; Wang, Z.; Liu, X.; et al. Charge-Separated Pdδ−–Cuδ+ Atom Pairs Promote CO2 Reduction to C2. Nano Lett. 2023, 23, 2312–2320. [Google Scholar] [CrossRef] [PubMed]
- Genovese, C.; Ampelli, C.; Perathoner, S.; Centi, G. Mechanism of C–C Bond Formation in the Electrocatalytic Reduction of CO2 to Acetic Acid. A Challenging Reaction to Use Renewable Energy with Chemistry. Green Chem. 2017, 19, 2406–2415. [Google Scholar] [CrossRef]
- Timoshenko, J.; Bergmann, A.; Rettenmaier, C.; Herzog, A.; Arán-Ais, R.M.; Jeon, H.S.; Haase, F.T.; Hejral, U.; Grosse, P.; Kühl, S.; et al. Steering the Structure and Selectivity of CO2 Electroreduction Catalysts by Potential Pulses. Nat. Catal. 2022, 5, 259–267. [Google Scholar] [CrossRef]
- Handoko, A.D.; Wei, F.; Jenndy Yeo, B.S.; Seh, Z.W. Understanding Heterogeneous Electrocatalytic Carbon Dioxide Reduction through Operando Techniques. Nat. Catal. 2018, 1, 922–934. [Google Scholar] [CrossRef]
- Yoshio, H.; Katsuhei, K.; Akira, M.; Shin, S. Production of Methane and Ethylene in Electrochemical Reduction of Carbon Dioxide at Copper Electrode in Aqueous Hydrogencarbonate Solution. Chem. Lett. 1986, 15, 897–898. [Google Scholar]
- Kruppe, C.M.; Krooswyk, J.D.; Trenary, M. Selective Hydrogenation of Acetylene to Ethylene in the Presence of a Carbonaceous Surface Layer on a Pd/Cu(111) Single-Atom Alloy. ACS Catal. 2017, 7, 8042–8049. [Google Scholar] [CrossRef]
- Larrazábal, G.O.; Martín, A.J.; Krumeich, F.; Hauert, R.; Pérez-Ramírez, J. Solvothermally-Prepared Cu2O Electrocatalysts for CO2 Reduction with Tunable Selectivity by the Introduction of P-Block Elements. ChemSusChem 2017, 10, 1255–1265. [Google Scholar] [CrossRef]
- Lv, K.; Suo, W.; Shao, M.; Zhu, Y.; Wang, X.; Feng, J.; Fang, M.; Zhu, Y. Nitrogen Doped MoS2 and Nitrogen Doped Carbon Dots Composite Catalyst for Electroreduction CO2 to CO with High Faradaic Efficiency. Nano Energy 2019, 63, 103834. [Google Scholar] [CrossRef]
- Wei, Y.; Xu, X.; Wang, S.; Li, W.; Jiang, Y. Second Harmonic Generation in Janus Mosse a Monolayer and Stacked Bulk with Vertical Asymmetry. Phys. Chem. Chem. Phys. 2019, 21, 21022–21029. [Google Scholar] [CrossRef]
- Qu, M.; Xu, S.; Du, A.; Zhao, C.; Sun, Q. CO2 Capture, Separation and Reduction on Boron-Doped MoS2, MoS2 and Heterostructures with Different Doping Densities: A Theoretical Study. ChemPhysChem 2021, 22, 2392–2400. [Google Scholar] [CrossRef]
- Abbas, H.G.; Hahn, J.R.; Kang, H.S. Non-Janus Wsse/Mosse Heterobilayer and Its Photocatalytic Band Offset. J. Phys. Chem. C 2020, 124, 3812–3819. [Google Scholar] [CrossRef]
- Rosen, J.; Hutchings, G.S.; Lu, Q.; Forest, R.V.; Moore, A.; Jiao, F. Electrodeposited Zn Dendrites with Enhanced CO Selectivity for Electrocatalytic CO2 Reduction. ACS Catal. 2015, 5, 4586–4591. [Google Scholar] [CrossRef]
- Luo, W.; Zhang, J.; Li, M.; Züttel, A. Boosting CO Production in Electrocatalytic CO2 Reduction on Highly Porous Zn Catalysts. ACS Catal. 2019, 9, 3783–3791. [Google Scholar] [CrossRef] [Green Version]
- Won, D.H.; Shin, H.; Koh, J.; Chung, J.; Lee, H.S.; Kim, H.; Woo, S.I. Highly Efficient, Selective, and Stable CO2 Electroreduction on a Hexagonal Zn Catalyst. Angew. Chem. Int. Ed. 2016, 55, 9297–9300. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Li, Y.; Fu, H.; Wang, H.; Chen, S.; Liu, Z.; Peng, F. Electrochemical Reduction of CO2 into Tunable Syngas Production by Regulating the Crystal Facets of Earth-Abundant Zn Catalyst. ACS Appl. Mater. Interfaces 2018, 10, 20530–20539. [Google Scholar] [CrossRef] [PubMed]
- Low, Q.H.; Loo NW, X.; Calle-Vallejo, F.; Yeo, B.S. Enhanced Electroreduction of Carbon Dioxide to Methanol Using Zinc Dendrites Pulse-Deposited on Silver Foam. Angew. Chem. Int. Ed. 2019, 58, 2256–2260. [Google Scholar] [CrossRef]
- Wan, L.; Zhang, X.; Cheng, J.; Chen, R.; Wu, L.; Shi, J.; Luo, J. Bimetallic Cu–Zn Catalysts for Electrochemical CO2 Reduction: Phase-Separated Versus Core–Shell Distribution. ACS Catal. 2022, 12, 2741–2748. [Google Scholar] [CrossRef]
- Lin, L.; Liu, T.; Xiao, J.; Li, H.; Wei, P.; Gao, D.; Nan, B.; Si, R.; Wang, G.; Bao, X. Enhancing CO2 Electroreduction to Methane with a Cobalt Phthalocyanine and Zinc–Nitrogen–Carbon Tandem Catalyst. Angew. Chem. Int. Ed. 2020, 59, 22408–22413. [Google Scholar] [CrossRef]
- Hannagan, R.T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E.C.H. Single-Atom Alloy Catalysis. Chem. Rev. 2020, 120, 12044–12088. [Google Scholar] [CrossRef]
- Sun, T.; Mitchell, S.; Li, J.; Lyu, P.; Wu, X.; Pérez-Ramírez, J.; Lu, J. Design of Local Atomic Environments in Single-Atom Electrocatalysts for Renewable Energy Conversions. Adv. Mater. 2021, 33, 2003075. [Google Scholar] [CrossRef]
- Guan, A.; Chen, Z.; Quan, Y.; Peng, C.; Wang, Z.; Sham, T.-K.; Yang, C.; Ji, Y.; Qian, L.; Xu, X.; et al. Boosting CO2 Electroreduction to Ch4 Via Tuning Neighboring Single-Copper Sites. ACS Energy Lett. 2020, 5, 1044–1053. [Google Scholar] [CrossRef]
- Zheng, W.; Yang, J.; Chen, H.; Hou, Y.; Wang, Q.; Gu, M.; He, F.; Xia, Y.; Xia, Z.; Li, Z.; et al. Atomically Defined Undercoordinated Active Sites for Highly Efficient CO2 Electroreduction. Adv. Funct. Mater. 2020, 30, 1907658. [Google Scholar] [CrossRef]
- Calle-Vallejo, F.; Koper, M.T. Theoretical Considerations on the Electroreduction of CO to C2 Species on Cu(100) Electrodes. Angew. Chem. Int. Ed. Engl. 2013, 52, 7282–7285. [Google Scholar] [CrossRef]
- Xiao, H.; Goddard, W.A., III; Cheng, T.; Liu, Y. Cu Metal Embedded in Oxidized Matrix Catalyst to Promote CO2 Activation and CO Dimerization for Electrochemical Reduction of CO2. Proc. Natl. Acad. Sci. USA 2017, 114, 6685–6688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodpaster, J.D.; Bell, A.T.; Head-Gordon, M. Identification of Possible Pathways for C-C Bond Formation During Electrochemical Reduction of CO2: New Theoretical Insights from an Improved Electrochemical Model. J. Phys. Chem. Lett. 2016, 7, 1471–1477. [Google Scholar] [CrossRef]
- Garza, A.J.; Bell, A.T.; Head-Gordon, M. Mechanism of CO2 Reduction at Copper Surfaces: Pathways to C2 Products. ACS Catal. 2018, 8, 1490–1499. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.-J.; Clark, E.L.; Pham, H.H.; Bell, A.T.; Head-Gordon, M. Quantum Mechanical Screening of Single-Atom Bimetallic Alloys for the Selective Reduction of CO2 to C1 Hydrocarbons. ACS Catal. 2016, 6, 7769–7777. [Google Scholar] [CrossRef] [Green Version]
- Karamad, M.; Tripkovic, V.; Rossmeisl, J. Intermetallic Alloys as Co Electroreduction Catalysts—Role of Isolated Active Sites. ACS Catal. 2014, 4, 2268–2273. [Google Scholar] [CrossRef]
- Schouten, K.J.P.; Kwon, Y.; van der Ham, C.J.M.; Qin, Z.; Koper, M.T.M. A New Mechanism for the Selectivity to C1 and C2 Species in the Electrochemical Reduction of Carbon Dioxide on Copper Electrodes. Chem. Sci. 2011, 2, 1902–1909. [Google Scholar] [CrossRef]
- Hori, Y.; Murata, A.; Takahashi, R.; Suzuki, S. Electroreduction of Carbon Monoxide to Methane and Ethylene at a Copper Electrode in Aqueous Solutions at Ambient Temperature and Pressure. J. Am. Chem. Soc. 1987, 109, 5022–5023. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, M.; Wang, X.; Zhou, X. Electrocatalytic Reduction of CO2 to C1 Compounds by Zn-Based Monatomic Alloys: A DFT Calculation. Catalysts 2022, 12, 1617. [Google Scholar] [CrossRef]
- Dobrota, A.S.; Skorodumova, N.V.; Mentus, S.V.; Pašti, I.A. Surface Pourbaix Plots of M@N4-Graphene Single-Atom Electrocatalysts from Density Functional Theory Thermodynamic Modeling. Electrochim. Acta 2022, 412, 140155. [Google Scholar] [CrossRef]
- Nie, X.; Esopi, M.R.; Janik, M.J.; Asthagiri, A. Selectivity of CO2 Reduction on Copper Electrodes: The Role of the Kinetics of Elementary Steps. Angew. Chem. Int. Ed. 2013, 52, 2459–2462. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; de Araújo, J.F.; Ju, W.; Bagger, A.; Schmies, H.; Kühl, S.; Rossmeisl, J.; Strasser, P. Mechanistic Reaction Pathways of Enhanced Ethylene Yields During Electroreduction of CO2–CO Co-Feeds on Cu and Cu-Tandem Electrocatalysts. Nat. Nanotechnol. 2019, 14, 1063–1070. [Google Scholar] [CrossRef]
- Peng, C.; Luo, G.; Xu, Z.; Yan, S.; Zhang, J.; Chen, M.; Qian, L.; Wei, W.; Han, Q.; Zheng, G. Lithiation-Enabled High-Density Nitrogen Vacancies Electrocatalyze CO2 to C2 Products. Adv. Mater. 2021, 33, 2103150. [Google Scholar] [CrossRef]
- Koper, M.T.M. Theory of Multiple Proton–Electron Transfer Reactions and Its Implications for Electrocatalysis. Chem. Sci. 2013, 4, 2710–2723. [Google Scholar] [CrossRef] [Green Version]
- Tsai, A.P.; Kameoka, S.; Nozawa, K.; Shimoda, M.; Ishii, Y. Intermetallic: A Pseudoelement for Catalysis. Acc. Chem. Res. 2017, 50, 2879–2885. [Google Scholar] [CrossRef]
- Pérez-Gallent, E.; Figueiredo, M.C.; Calle-Vallejo, F.; Koper, M.T.M. Spectroscopic Observation of a Hydrogenated CO Dimer Intermediate During CO Reduction on Cu(100) Electrodes. Angew. Chem. Int. Ed. 2017, 56, 3621–3624. [Google Scholar] [CrossRef]
- Gattrell, M.; Gupta, N.; Co, A. A Review of the Aqueous Electrochemical Reduction of CO2 to Hydrocarbons at Copper. J. Electroanal. Chem. 2006, 594, 1–19. [Google Scholar] [CrossRef]
- Cheng, T.; Xiao, H.; Goddard, W.A., III. Reaction Mechanisms for the Electrochemical Reduction of CO2) to CO and Formate on the Cu(100) Surface at 298 K from Quantum Mechanics Free Energy Calculations with Explicit Water. J. Am. Chem. Soc. 2016, 138, 13802–13805. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Nie, X.; Janik, M.J.; Asthagiri, A.J.A.C. Facet Dependence of CO2 Reduction Paths on Cu Electrodes. Acs Catal. 2016, 6, 6219–6229. [Google Scholar] [CrossRef]
- Hori, Y.; Takahashi, R.; Yoshinami, Y.; Murata, A. Electrochemical Reduction of CO at a Copper Electrode. J. Phys. Chem. B 1997, 101, 7075–7081. [Google Scholar] [CrossRef]
- Butz, K.W.; Du, H.; Krajnovich, D.J.; Parmenter, C.S. A Crossed Beam Study of the Competition between Rotational and Vibrational Energy Transfer in H2+Glyoxal (S1) Collisions. J. Chem. Phys. 1987, 87, 3699–3700. [Google Scholar] [CrossRef]
- Resasco, J.; Chen, L.D.; Clark, E.; Tsai, C.; Hahn, C.; Jaramillo, T.F.; Chan, K.; Bell, A.T. Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide. J. Am. Chem. Soc. 2017, 139, 11277–11287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Hafner, J. Ab-Initio Simulations of Materials Using Vasp: Density-Functional Theory and Beyond. J. Comput. Chem. 2008, 29, 2044–2078. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Peterson, A.A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J.K. How Copper Catalyzes the Electroreduction of Carbon Dioxide into Hydrocarbon Fuels. Energy Environ. Sci. 2010, 3, 1311–1315. [Google Scholar] [CrossRef]
- Steinmann, S.N.; Michel, C. How to Gain Atomistic Insights on Reactions at the Water/Solid Interface? ACS Catal. 2022, 12, 6294–6301. [Google Scholar] [CrossRef]
- Mathew, K.; Kolluru VS, C.; Mula, S.; Steinmann, S.N.; Hennig, R.G. Implicit Self-Consistent Electrolyte Model in Plane-Wave Density-Functional Theory. J. Chem. Phys. 2019, 151, 234101. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zheng, M.; Zhou, X.; Pan, Q.; Li, M. CO Electroreduction Mechanism on Single-Atom Zn (101) Surfaces: Pathway to C2 Products. Molecules 2023, 28, 4606. https://doi.org/10.3390/molecules28124606
Wang Y, Zheng M, Zhou X, Pan Q, Li M. CO Electroreduction Mechanism on Single-Atom Zn (101) Surfaces: Pathway to C2 Products. Molecules. 2023; 28(12):4606. https://doi.org/10.3390/molecules28124606
Chicago/Turabian StyleWang, Yixin, Ming Zheng, Xin Zhou, Qingjiang Pan, and Mingxia Li. 2023. "CO Electroreduction Mechanism on Single-Atom Zn (101) Surfaces: Pathway to C2 Products" Molecules 28, no. 12: 4606. https://doi.org/10.3390/molecules28124606
APA StyleWang, Y., Zheng, M., Zhou, X., Pan, Q., & Li, M. (2023). CO Electroreduction Mechanism on Single-Atom Zn (101) Surfaces: Pathway to C2 Products. Molecules, 28(12), 4606. https://doi.org/10.3390/molecules28124606