Geometric Signatures as Important Factors to Control the Photo-Stabilities of the Phosphorescent Pd(II)/Pt(II) Complexes: A Case Study
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. The Influence of the “Metal-Coordinate Effect” on the Stability of Tetradentate Complexes
3.2. The Effect of Steric Hindrance on the Stability of Tetradentate Metal Complexes
3.3. The Effect of the “Aggregation Effect” on the Stability of Tetradentate Metal Complexes
3.4. Investigation of the Influence of Transformation between Singlet and Triplet Excited States on Stability
4. Conclusions
- (I).
- Compared with the tetradentate Ni(II) and Pd(II) complexes, the Pt(II) complex possesses more strong coordinate bonds, which suggests that the strengths of coordinate bonds are closely related to the atomic number of the metal center in the same group.
- (II).
- The large intramolecular steric hindrance and strong π-π interaction between the complexes originated from aggregation can efficiently constrain the geometric change, raising the energy barriers of the ligand dissociation reaction.
- (III).
- In comparison to the monomeric Pd(II) complex, the aggregation of the Pd(II) complex can result in the essential change of the photo-deactivate mechanism and reduce the lifetime of triplet excitability, which is beneficial for avoiding triplet-triplet annihilation.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Fleetham, T.B.; Huang, L.; Klimes, K.; Brooks, J.; Li, J. Tetradentate Pt(II) Complexes with 6-Membered Chelate Rings: A New Route for Stable and Efficient Blue Organic Light Emitting Diodes. Chem. Mater. 2016, 28, 3276–3282. [Google Scholar] [CrossRef]
- Fleetham, T.; Li, G.; Li, J. Phosphorescent Pt(II) and Pd(II) Complexes for Efficient, High-Color-Quality, and Stable OLEDs. Adv. Mater. 2017, 29, 1601861. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Miao, J.; Xiong, J.; Li, K.; Yang, C. Rigid Bridge-Confined Double-Decker Platinum(II) Complexes Towards High-Performance Red and Near-Infrared Electroluminescence. Angew. Chem. Int. Ed. 2022, 61, e202113718. [Google Scholar]
- Wu, C.; Miao, J.; Wang, L.; Zhang, Y.; Li, K.; Zhu, W.; Yang, C. Red and near-infrared emissive palladium(II) complexes with tetradentate coordination framework and their application in OLEDs. Chem. Eng. J. 2022, 446, 136834. [Google Scholar] [CrossRef]
- Li, B.; Li, G.; Zhang, H.; Wu, H.; Chen, K.; Wang, Z.; Tang, B.Z. Critical Role of High-Lying Triplet States for Efficient Excitons Utilization in High-Performance Non-Doped Deep-Blue Fluorescent and Hybrid White Organic Light-Emitting Diodes. Adv. Opt. Mater. 2022, 10, 2101724. [Google Scholar] [CrossRef]
- Zhu, H.; Li, Q.; Shi, B.; Ge, F.; Liu, Y.; Mao, Z.; Zhu, H.; Wang, S.; Yu, G.; Huang, F.; et al. Dual-Emissive Platinum(II) Metallacage with a Sensitive Oxygen Response for Imaging of Hypoxia and Imaging-Guided Chemotherapy. Angew. Chem. Int. Ed. 2020, 59, 20208. [Google Scholar] [CrossRef]
- Yoshihara, T.; Hirakawa, Y.; Hosaka, M.; Nangaku, M.; Tobita, S. Oxygen imaging of living cells and tissues using luminescent molecular probes. J. Photoch. Photobiol. C Photochem. Rev. 2017, 30, 71–95. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, S.; Sun, P.; Ye, S.; Fan, Q.; Song, J.; Zeng, P.; Qu, J.; Wong, W.-Y. NIR-II J-Aggregated Pt(II)-Porphyrin-Based Phosphorescent Probe for Tumor-Hypoxia Imaging. Adv. Health. Mater. 2022, 11, 2200467. [Google Scholar] [CrossRef]
- Faihan, A.S.; Hatshan, M.R.; Kadhim, M.M.; Alqahtani, A.S.; Nasr, F.A.; Saleh, A.M.; Al-Jibori, S.A.; Al-Janabi, A.S. Promising bio-active complexes of platinum(II) and palladium(II) derived from heterocyclic thiourea: Synthesis, characterization, DFT, molecular docking, and anti-cancer studies. J. Mol. Struc. 2022, 1252, 132198. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, N.; Cheng, S.-C.; Xu, K.; Deng, Z.; Chen, S.; Xu, Z.; Xie, K.; Tse, M.-K.; Shi, P.; et al. Phorbiplatin, a Highly Potent Pt(IV) Antitumor Prodrug That Can Be Controllably Activated by Red Light. Chem 2019, 5, 3151–3165. [Google Scholar] [CrossRef]
- Baldo, M.A.; Adachi, C.; Forrest, S.R. Transient analysis of organic electrophosphorescence. II.Transient analysis of triplet-triplet annihilation. Phys. Rev. B 2000, 62, 10967. [Google Scholar]
- Reineke, S.; Walzer, K.; Leo, K. Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters. Phy. Rev. B 2007, 75, 125328. [Google Scholar] [CrossRef]
- Murawski, C.; Leo, K.; Gather, M.C. Efficiency Roll-Off in Organic Light-Emitting Diodes. Adv. Mater. 2013, 25, 6801–6827. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Jeong, C.; Batagoda, T.; Coburn, C.; Thompson, M.E.; Forrest, S.R. Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes. Nat. Commun. 2017, 8, 15566. [Google Scholar] [CrossRef] [Green Version]
- Klimes, K.; Zhu, Z.-Q.; Li, J. Efficient Blue Phosphorescent OLEDs with Improved Stability and Color Purity through Judicious Triplet Exciton Management. Adv. Funct. Mater. 2019, 29, 1903068. [Google Scholar] [CrossRef]
- Li, G.; Fleetham, T.; Turner, E.; Hang, X.-C.; Li, J. Highly Efficient and Stable Narrow-Band Phosphorescent Emitters for OLED Applications. Adv. Opt. Mater. 2015, 3, 390–397. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.; Lee, K.H.; Lee, J.Y.; Kim, T. A bipolar host based high triplet energy electroplex for an over 10,000 h lifetime in pure blue phosphorescent organic light-emitting diodes. Mater. Horiz. 2020, 7, 559–565. [Google Scholar] [CrossRef]
- Park, Y.-S.; Lee, S.; Kim, K.-H.; Kim, S.-Y.; Lee, J.-H.; Kim, J.-J. Exciplex-Forming Co-host for Organic Light-Emitting Diodes with Ultimate Efficiency. Adv. Funct. Mater. 2013, 23, 4914–4920. [Google Scholar] [CrossRef]
- Sun, J.; Ahn, H.; Kang, S.; Ko, S.-B.; Song, D.; Um, H.A.; Kim, S.; Lee, Y.; Jeon, P.; Hwang, S.-H.; et al. Exceptionally stable blue phosphorescent organic light-emitting diodes. Nat. Photon. 2022, 16, 212–218. [Google Scholar] [CrossRef]
- Cao, L.; Klimes, K.; Ji, Y.; Fleetham, T.; Li, J. Efficient and stable organic light-emitting devices employing phosphorescent molecular aggregates. Nat. Photon. 2021, 15, 230–237. [Google Scholar] [CrossRef]
- Li, G.; Fleetham, T.; Li, J. Efficient and Stable White Organic Light-Emitting Diodes Employing a Single Emitter. Adv. Mater. 2014, 26, 2931–2936. [Google Scholar] [CrossRef] [PubMed]
- Fleetham, T.; Huang, L.; Li, J. Tetradentate Platinum Complexes for Efficient and Stable Excimer-Based White OLEDs. Adv. Funct. Mater. 2014, 24, 6066–6073. [Google Scholar] [CrossRef]
- Fleetham, T.; Ecton, J.; Wang, Z.; Bakken, N.; Li, J. Single-Doped White Organic Light-Emitting Device with an External Quantum Efficiency Over 20%. Adv. Mater. 2013, 25, 2573–2576. [Google Scholar] [CrossRef] [PubMed]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phy. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Kidanu, H.T. Planarity enhancement through effective π conjugation and interligand hydrogen bonding of hetrolipitic bipyrazolate Pt(II) complexes potentially applicable as a near infrared emitters: A DFT/TD-DFT study. Mater. Today Commun. 2021, 28, 102574. [Google Scholar] [CrossRef]
- Kang, S.; Kim, T.; Lee, J.Y. New design strategy for chemically-stable blue phosphorescent materials: Improving the energy gap between the T1 and 3MC states. Phys. Chem. Chem. Phys. 2021, 23, 3543–3551. [Google Scholar] [CrossRef]
- Wu, Y.; Tan, X.; Lv, A.; Yu, F.; Ma, H.; Shen, K.; Sun, Z.; Chen, F.; Chen, Z.-K.; Hang, X.-C. Triplet Excited-State Engineering of Phosphorescent Pt(II) Complexes. J. Phys. Chem. Lett. 2019, 10, 5105–5110. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310. [Google Scholar] [CrossRef]
- Poirier, R.; Kari, R.; Csizmadia, I.G. Handbook of Gaussian Basis Sets; Elsevier: Amsterdam, The Netherlands, 1985. [Google Scholar]
- Frisch, M.J.; Pople, J.A.; Binkley, J.S. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 1984, 80, 3265–3269. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; revision A. 03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Angeli, C.; Bak, K.; Bakken, V.; Christiansen, O.; Cimiraglia, R.; Coriani, S.; Dahle, P.; Dalskov, E.; Enevoldsen, T.; Fernandez, B. Dalton, a Molecular Electronic Structure Program, Release Dalton 2011. 2011. Available online: http://daltonprogram.org (accessed on 17 April 2022).
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Grap. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Martínez, L.; Andrade, R.; Birgin, E.G.; Martínez, J.M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Jacquemin, D.; Escudero, D. The short device lifetimes of blue PhOLEDs: Insights into the photostability of blue Ir(III) complexes. Chem. Sci. 2017, 8, 7844–7850. [Google Scholar] [CrossRef] [Green Version]
- Raghavachari, K. Perspective on “Density functional thermochemistry. III. The role of exact exchange” Becke AD (1993) J. Chem. Phys. 98: 5648–5652. Theore. Chem. Acc. 2000, 103, 361–363. [Google Scholar] [CrossRef]
- Friederich, P.; Coehoorn, R.; Wenzel, W. Molecular Origin of the Anisotropic Dye Orientation in Emissive Layers of Organic Light Emitting Diodes. Chem. Mater. 2017, 29, 9528–9535. [Google Scholar] [CrossRef] [Green Version]
- Moon, C.-K.; Kim, K.-H.; Kim, J.-J. Unraveling the Orientation of Phosphors Doped in Organic Semiconducting Layers. Nat. Commun. 2017, 8, 685. [Google Scholar] [CrossRef] [Green Version]
- Graf, A.; Liehm, P.; Murawski, C.; Hofmann, S.; Leo, K.; Gather, M.C. Correlating the Transition Dipole Moment Orientation of Phosphorescent Emitter Molecules in OLEDs with Basic Material Properties. J. Mater. Chem. C 2014, 2, 10298–10304. [Google Scholar] [CrossRef] [Green Version]
- Schmid, M.; Harms, K.; Degitz, C.; Morgenstern, T.; Hofmann, A.; Friederich, P.; Johannes, H.-H.; Wenzel, W.; Kowalsky, W.; Brütting, W. Optical and Electrical Measurements Reveal the Orientation Mechanism of Homoleptic Iridium-Carbene Complexes. ACS Appl. Mater. Interfaces 2020, 12, 51709–51718. [Google Scholar] [CrossRef] [PubMed]
Ni-1 | |||||
S0 | T1 | S1 | + | - | |
Ni52-N40 | 0.12 | 0.06 | 0.06 | 0.14 | 0.12 |
Ni52-C26 | 0.61 | 0.51 | 0.48 | 0.43 | 0.62 |
Ni52-C7 | 0.59 | 0.48 | 0.45 | 0.42 | 0.60 |
Ni52-N19 | 0.27 | 0.15 | 0.16 | 0.23 | 0.29 |
Pd-1 | |||||
S0 | T1 | S1 | + | - | |
Pd21-N41 | 0.12 | 0.15 | 0.14 | 0.14 | 0.13 |
Pd21-C27 | 0.59 | 0.66 | 0.62 | 0.65 | 0.61 |
Pd21-C7 | 0.58 | 0.60 | 0.60 | 0.59 | 0.58 |
Pd21-N19 | 0.23 | 0.27 | 0.31 | 0.25 | 0.26 |
Pt-1 | |||||
S0 | T1 | S1 | + | - | |
Pt52-N40 | 0.13 | 0.14 | 0.14 | 0.14 | 0.13 |
Pt52-C26 | 0.64 | 0.65 | 0.67 | 0.68 | 0.65 |
Pt52-C7 | 0.63 | 0.68 | 0.64 | 0.65 | 0.63 |
Pt52-N19 | 0.23 | 0.26 | 0.26 | 0.23 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Tang, L.; Chen, Z.; Xu, Z.; An, Y.; Li, M.; Hu, J.; Tang, D. Geometric Signatures as Important Factors to Control the Photo-Stabilities of the Phosphorescent Pd(II)/Pt(II) Complexes: A Case Study. Molecules 2023, 28, 4587. https://doi.org/10.3390/molecules28124587
Luo Y, Tang L, Chen Z, Xu Z, An Y, Li M, Hu J, Tang D. Geometric Signatures as Important Factors to Control the Photo-Stabilities of the Phosphorescent Pd(II)/Pt(II) Complexes: A Case Study. Molecules. 2023; 28(12):4587. https://doi.org/10.3390/molecules28124587
Chicago/Turabian StyleLuo, Yafei, Lingkai Tang, Zhongzhu Chen, Zhigang Xu, Yanan An, Mingyao Li, Jianping Hu, and Dianyong Tang. 2023. "Geometric Signatures as Important Factors to Control the Photo-Stabilities of the Phosphorescent Pd(II)/Pt(II) Complexes: A Case Study" Molecules 28, no. 12: 4587. https://doi.org/10.3390/molecules28124587
APA StyleLuo, Y., Tang, L., Chen, Z., Xu, Z., An, Y., Li, M., Hu, J., & Tang, D. (2023). Geometric Signatures as Important Factors to Control the Photo-Stabilities of the Phosphorescent Pd(II)/Pt(II) Complexes: A Case Study. Molecules, 28(12), 4587. https://doi.org/10.3390/molecules28124587