Preeminent Flame-Retardant and Smoke Suppression Properties of PCaAl-LDHs Nanostructures on Bamboo Scrimber
Abstract
:1. Introduction
2. Results and Discussion
2.1. Drug Loading Ratio of Flame-Retardant Bamboo Scrimber (FRBS)
2.2. Microstructures of FRBS
2.3. Physical and Mechanical Properties of FRBS
2.4. Flame Retardant Property of FRBS
2.5. Smoke Suppression Property of FRBS
3. Materials and Methods
3.1. Materials
3.2. Preparation of PCaAl-LDHs Flame-Retardant Bamboo Scrimber (FRBS)
3.3. Scanning Electron Microscopy
3.4. Energy Dispersive X-ray Spectrometry
3.5. Physical and Mechanical Properties Tests
3.6. Cone Calorimetry Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zou, L.; Jin, H.; Lu, W.Y.; Li, X. Nanoscale structural and mechanical characterization of the cell wall of bamboo fibers. Mater. Sci. Eng. C 2009, 29, 1375–1379. [Google Scholar] [CrossRef]
- Li, Y.; Yin, L.; Huang, C.; Meng, Y.; Fu, F.; Wang, S.; Wu, Q. Quasi-static and dynamic nanoindentation to determine the influence of thermal treatment on the mechanical properties of bamboo cell walls. Holzforschung 2015, 69, 909–914. [Google Scholar] [CrossRef]
- Jiao, Y.; Wan, C.; Li, J. Synthesis of carbon fiber aerogel from natural bamboo fiber and its application as a green high-efficiency and recyclable adsorbent. Mater. Design 2016, 107, 26–32. [Google Scholar] [CrossRef]
- Amada, S.; Ichikawa, Y.; Munekata, T.; Nagase, Y.; Shimizu, H. Fiber texture and mechanical graded structure of bamboo. Compos. B Eng. 1997, 28, 13–20. [Google Scholar] [CrossRef]
- Liang, E.; Chen, C.; Tu, D.; Zhou, Q.; Zhou, J.; Hu, C.; Li, X.; Ma, H. Highly efficient preparation of bamboo scrimber: Drying process optimization of bamboo bundles and its effect on the properties of bamboo scrimber. Eur. J. Wood Wood Prod. 2022, 80, 1473–1484. [Google Scholar] [CrossRef]
- Peng, C.; Zhoug, J.; Ma, X.; Huang, A.; Chen, G.; Luo, W.; Zeng, B.; Yuan, C.; Xu, Y.; Dai, L. Transparent, hard-wearing and bio-based organic/silica hybrid coating for bamboo with enhanced flame retardant and antifungal properties. Prog. Org. Coat. 2022, 167, 106830. [Google Scholar] [CrossRef]
- Yu, J.; Yang, D.; He, Q.; Du, B.; Zhang, S.; Hu, M. Strong, durable and fire-resistant glass fiber-reinforced bamboo scrimber. Ind. Crops Prod. 2022, 181, 114783. [Google Scholar] [CrossRef]
- Du, B.; He, Q.; Yang, D.; Ma, Z.; Zhang, S.; Yu, J. The influence of immersion order of low concentration ammonium polyphosphate on the interphase, mechanical and combustion properties of Moso bamboo scrimber. Ind. Crops Prod. 2022, 180, 114664. [Google Scholar] [CrossRef]
- Zhou, K.; Gui, Z.; Hu, Y. The influence of graphene based smoke suppression agents on reduced fire hazards of polystyrene composites. Compos. Part A Appl. Sci. Manuf. 2016, 80, 217–227. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Y.; Zhang, Z.; Wang, Q. Preparation of ammonium polyphosphate and dye co-intercalated LDH/polypropylene compo-sites with enhanced flame retardant and UV resistance properties. Chemosphere 2021, 277, 130370. [Google Scholar] [CrossRef]
- Abrishamkar, S.; Mohammani, A.; De La Vega, J.; Wang, D.; Kalali, E. Layer-by-layer assembly of calixarene modified GO and LDH nanostructures on flame retardancy, smoke suppression, and dye adsorption behavior of flexible polyurethane foams. Polym. Degrad. Stab. 2023, 207, 110242. [Google Scholar] [CrossRef]
- Wu, K.; Xu, S.; Tian, X.Y.; Zeng, H.; Hu, J.; Guo, Y.; Jian, J. Renewable lignin-based surfactant modified layered double hydroxide and its application in polypropylene as flame retardant and smoke suppression. Int. J. Biol. Macromol. 2021, 178, 580–590. [Google Scholar] [CrossRef] [PubMed]
- Piao, J.; Lu, M.; Ren, J.; Wang, Y.; Feng, T.; Wang, Y.; Jiao, C.; Chen, X.; Kuang, S. MOF-derived LDH modified flame-retardant polyurethane sponge for high-performance oil-water separation: Interface engineering design based on bioinspiration. J. Hazard Mater. 2023, 444, 130398. [Google Scholar] [CrossRef] [PubMed]
- Li, W.J.; Xie, G.J.; Ma, H.X.; Li, X.W. Effect of Furfurylation on Bamboo-Scrimber Composites. Materials 2023, 16, 2931. [Google Scholar] [CrossRef]
- Yuan, Z.; Wu, X.; Wang, X.; Zhang, X.; Yuan, T.C.; Liu, X.M.; Li, Y.J. Effects of One-Step Hot Oil Treatment on the Physical, Me-chanical, and Surface Properties of Bamboo Scrimber. Molecules 2020, 25, 4488. [Google Scholar] [CrossRef]
- Ren, D.; Li, J.; Xu, J.; Wu, Z.X.; Bao, Y.J.; Li, N.; Chen, Y.H. Efficient Antifungal and Flame-Retardant Properties of ZnO-TiO2-Layered Double-Nanostructures Coated on Bamboo Substrate. Coatings 2018, 8, 341. [Google Scholar] [CrossRef] [Green Version]
- Du, C.G.; Song, J.G.; Chen, Y.X. The Effect of Applying Methods of Fire Retardant on Physical and Mechanical Properties of Bamboo Scrimber. Adv. Mater. Res. 2014, 1048, 465–468. [Google Scholar] [CrossRef]
- Gao, Q.; Lin, Q.; Huang, Y.; Hu, J.; Yu, W.J. High-performance wood scrimber prepared by a roller-pressing impregnation method. Con-Struction Build. Mater. 2023, 368, 130404. [Google Scholar] [CrossRef]
- Zhou, Y.; Chu, F.; Ding, L.; Yang, W.H.; Zhang, S.H.; Xu, Z.M.; Qiu, S.L.; Hu, W.Z. MOF-derived 3D petal-like CoNi-LDH array cooperates with MXene to effectively inhibit fire and toxic smoke hazards of FPUF. Chemosphere 2022, 297, 134134. [Google Scholar] [CrossRef]
- Xiang, H.; Feng, Z.; Yang, J.; Hu, W.H.; Liang, F.; Yang, X.M.; Zhang, T.; Mi, B.B.; Liu, Z.J. Investigating the co-firing characteristics of bamboo wastes and coal through cone calorimetry and thermogravimetric analysis coupled with Fourier transform infrared spectroscopy. Waste Manag. Res. 2019, 38, 896–902. [Google Scholar] [CrossRef]
- Tahmid Islam, M.; Klinger, J.L.; Toufiq Reza, M. Evaluating combustion characteristics and combustion kinetics of corn stov-er-derived hydrochars by cone calorimeter. Chem. Eng. J. 2023, 452, 139419. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, F.; Xing, L.; Zhu, Y.L.; Xie, W.L.; Chen, X.; Cheng, J.J.; Cheng, Y.F. Effect of aluminum diethylphosphinate and its synergist on flame-retardant effects of epoxy resin. J. Therm. Anal. Calorimertry 2022, 147, 7287. [Google Scholar] [CrossRef]
- Ei Gazi, M.; Sonnier, R.; Giraud, S.; Batistella, M.; Basak, S.; Dumazert, L.; Hajj, R.; Hage, R.E. Fire Behavior of Thermally Thin Materials in Cone Calorimeter. Polymers 2021, 13, 1297. [Google Scholar] [CrossRef]
- Xu, Z.-S.; Yan, L.; Chen, L. Synergistic Flame Retardant Effects between Aluminum Hydroxide and Halogen-free Flame Retard-ants in High Density Polyethylene Composites. Procedia Eng. 2016, 135, 631–636. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Liang, J.; Lin, X.; Lin, H.J.; Yu, J.; Wang, S.F. The Flame-Retardant Mechanisms and Preparation of Polymer Composites and Their Potential Application in Construction Engineering. Polymers 2022, 14, 82. [Google Scholar] [CrossRef]
- Günther, M.; Levchik, S.V.; Schartel, B. Bubbles and collapses: Fire phenomena of flame-retarded flexible polyurethane foams. Polym. Adv. Technol. 2020, 31, 2185–2198. [Google Scholar] [CrossRef]
- Yao, X.; Du, C.; Hua, Y.; Zhang, J.J.; Peng, R.; Huang, Q.L.; Liu, H.Z. Flame-Retardant and Smoke Suppression Properties of Nano MgAl-LDH Coating on Bamboo Prepared by an In Situ Reaction. J. Nanomater. 2019, 12, 9067510. [Google Scholar] [CrossRef] [Green Version]
- Jiao, C.; Zhao, X.; Song, W.; Chen, X.L. Synergistic flame retardant and smoke suppression effects of ferrous powder with ammonium polyphosphate in thermoplastic polyurethane composites. J. Therm. Anal. Calorim. 2015, 120, 1173–1181. [Google Scholar] [CrossRef]
- Zhou, L.L.; Li, W.X.; Zhao, H.B.; Zhao, B. Comparative Study of M(ΙΙ)Al (M=Co, Ni) Layered Double Hydroxides for Silicone Foam: Characterization, Flame Retardancy, and Smoke Suppression. Int. J. Mol. Sci. 2022, 23, 11049. [Google Scholar] [CrossRef]
- Salasinska, K.; Celinski, M.; Mizera, K.; Kozikowski, P.; Leszczynski, M.K.; Gajek, A. Synergistic effect between histidine phosphate complex and hazelnut shell for flammability reduction of low-smoke emission epoxy resin. Polym. Degrad. Stab. 2020, 181, 109292. [Google Scholar] [CrossRef]
- Xiong, J.Q.; Kim, S.J.; Kurade, M.B.; Govindwar, S.; Abou-Shanab, R.A.; Kim, J.R.; Jeon, B.H. Smoke suppression properties of ferrite yellow on flame retardant thermoplastic polyu-rethane based on ammonium polyphosphate. J. Hazard. Mater. 2014, 266, 114–121. [Google Scholar] [CrossRef]
- Guo, W.; Liu, J.; Zhang, P.; Song, L.; Wang, X.; Hu, Y. Multi-functional hydroxyapatite/polyvinyl alcohol composite aerogels with self-cleaning, supe-rior fire resistance and low thermal conductivity. Compos. Sci. Technol. 2018, 158, 128–136. [Google Scholar] [CrossRef]
- Ran, S.; Fang, F.; Guo, Z.; Song, P.G.; Cai, Y.F.; Fang, Z.P.; Wang, H. Synthesis of decorated graphene with, P, N-containing compounds and its flame retardancy and smoke suppression effects on polylactic acid. Compos. B Eng. 2019, 170, 41–50. [Google Scholar] [CrossRef]
- Qian, Y.; Qiao, P.; Li, L.; Han, H.Y.; Zhang, H.M.; Chang, G.Z. Hydrothermal Synthesis of Lanthanum-Doped MgAl-Layered Double Hydroxide/Graphene Oxide Hybrid and Its Application as Flame Retardant for Thermoplastic Polyurethane. Adv. Polym. Technol. 2020, 10, 9078731. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J. Preliminary study on decanoic/palmitic eutectic mixture modified silica fume geopolymer-based coating for flame retardant plywood. Constr. Build. Mater. 2018, 189, 1–7. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J. Benign design and the evaluation of pyrolysis kinetics of polyester resin based intumescent system comprising of alkali-activated silica fume. Prog. Org. Coat. 2018, 122, 30–37. [Google Scholar] [CrossRef]
- Zhuo, K.; Gong, K.; Gao, F.; Yin, L. Facile strategy to synthesize MXene@LDH nanohybrids for boosting the flame retardancy and smoke suppression properties of epoxy. Compos. Part A Appl. Sci. Manuf. 2022, 157, 106912. [Google Scholar] [CrossRef]
- Hou, H.; Zhou, Y.; Cao, Y.; Wang, Z.R.; Wang, J.L.; Zhang, Y.; Pan, W. Hollow LDH cage covering with ultra-thin MXenes veil: Integrated micro-nano structure upon heat release suppression and toxic effluents elimination for polymer. Chem. Eng. J. 2023, 461, 142035. [Google Scholar] [CrossRef]
- Chu, F.; Xu, Z.; Zhou, Y.; Zhang, S.H.; Mu, X.W.; Wang, J.L.; Hu, W.Z.; Song, L. Hierarchical core–shell TiO2@LDH@Ni(OH)2 architecture with regularly-oriented nanocatalyst shells: Towards improving the mechanical performance, flame retardancy and toxic smoke suppression of unsaturated pol-yester resin. Chem. Eng. J. 2021, 405, 126650. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, Q.; Zhang, X.; Pan, H.F.; Lu, Y.S. Graphene oxide-filled multilayer coating to improve flame-retardant and smoke suppression properties of flexible polyurethane foam. J. Mater. Sci. 2016, 51, 10361–10374. [Google Scholar] [CrossRef]
- Ran, Y.; Hu, A.L.; Yang, F.; Du, C.G.; Zhu, J.W.; Shao, Y.R.; Wang, Y.T.; Bao, Q.C. Preparation of PO43−-Intercalated Calcium–Aluminum Hydrotalcites via Coprecipitation Method and Its Flame-Retardant Effect on Bamboo Scrimber. Molecules 2023, 28, 4093. [Google Scholar] [CrossRef] [PubMed]
Sample Number | Drug Loading Rate/% | Water Content/% | Swelling Rate of Absorbent Thickness/% |
---|---|---|---|
1 | 3.98 | 39.5 | 300 |
2 | 4.81 | 0.9 | 103.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Hu, A.; Du, C.; Zhu, J.; Wang, Y.; Shao, Y.; Bao, Q.; Ran, Y. Preeminent Flame-Retardant and Smoke Suppression Properties of PCaAl-LDHs Nanostructures on Bamboo Scrimber. Molecules 2023, 28, 4542. https://doi.org/10.3390/molecules28114542
Yang F, Hu A, Du C, Zhu J, Wang Y, Shao Y, Bao Q, Ran Y. Preeminent Flame-Retardant and Smoke Suppression Properties of PCaAl-LDHs Nanostructures on Bamboo Scrimber. Molecules. 2023; 28(11):4542. https://doi.org/10.3390/molecules28114542
Chicago/Turabian StyleYang, Fei, Ailian Hu, Chungui Du, Jiawei Zhu, Yuting Wang, Yuran Shao, Qichao Bao, and Yin Ran. 2023. "Preeminent Flame-Retardant and Smoke Suppression Properties of PCaAl-LDHs Nanostructures on Bamboo Scrimber" Molecules 28, no. 11: 4542. https://doi.org/10.3390/molecules28114542
APA StyleYang, F., Hu, A., Du, C., Zhu, J., Wang, Y., Shao, Y., Bao, Q., & Ran, Y. (2023). Preeminent Flame-Retardant and Smoke Suppression Properties of PCaAl-LDHs Nanostructures on Bamboo Scrimber. Molecules, 28(11), 4542. https://doi.org/10.3390/molecules28114542