Volatile Compounds and Biological Activity of the Essential Oil of Aloysia citrodora Paláu: Comparison of Hydrodistillation and Microwave-Assisted Hydrodistillation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Essential Oil Hydrodistillation and Volatile Compound Composition
2.2. Bioactivity Properties
2.2.1. Antioxidant Activity
2.2.2. Cytotoxicity and Anti-Inflammatory Activity
2.2.3. Antibacterial Activity
3. Materials and Methods
3.1. Sample Preparation
3.2. Clevenger Hydrodistillation
3.3. Microwave-Assisted Hydrodistillation (MAHD)
3.4. Evaluation of the Volatile Composition of the Essential Oil
3.5. Bioactivity Evaluation
3.5.1. Antioxidant Activity
3.5.2. Cytotoxicity Activity
3.5.3. Anti-Inflammatory Activity
3.5.4. Antibacterial Activity
3.6. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential Oils as Natural Sources of Fragrance Compounds for Cosmetics and Cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maggi, F.; Benelli, G. Essential Oils from Aromatic and Medicinal Plants as Effective Weapons Against Mosquito Vectors of Public Health Importance. In Mosquito-Borne Diseases: Implications for Public Health; Springer: Berlin/Heidelberg, Germany, 2018; pp. 69–129. [Google Scholar]
- WFO. World Flora Online. Available online: http://www.worldfloraonline.org/taxon/wfo-0000950712 (accessed on 17 March 2023).
- Majewska, E.; Kozłowska, M.; Tarnowska, K.; Gruczyńska-Sękowska, E.; Kowalska, D. Chemical Composition and Biological Activity of Lemon Verbena (Lippia citriodora) Essential Oil—A Review. J. Essent. Oil Bear. Plants 2022, 25, 796–810. [Google Scholar] [CrossRef]
- Bahramsoltani, R.; Rostamiasrabadi, P.; Shahpiri, Z.; Marques, A.M.; Rahimi, R.; Farzaei, M.H. Aloysia Citrodora Paláu (Lemon verbena): A Review of Phytochemistry and Pharmacology. J. Ethnopharmacol. 2018, 222, 34–51. [Google Scholar] [CrossRef] [PubMed]
- Ebadi, M.T.; Azizi, M.; Sefidkon, F.; Ahmadi, N. Influence of Different Drying Methods on Drying Period, Essential Oil Content and Composition of Lippia Citriodora Kunth. J. Appl. Res. Med. Aromat. Plants 2015, 2, 182–187. [Google Scholar] [CrossRef]
- Manouchehri, R.; Saharkhiz, M.J.; Karami, A.; Niakousari, M. Extraction of Essential Oils from Damask Rose Using Green and Conventional Techniques: Microwave and Ohmic Assisted Hydrodistillation versus Hydrodistillation. Sustain. Chem. Pharm. 2018, 8, 76–81. [Google Scholar] [CrossRef]
- Giacometti, J.; Bursać Kovačević, D.; Putnik, P.; Gabrić, D.; Bilušić, T.; Krešić, G.; Stulić, V.; Barba, F.J.; Chemat, F.; Barbosa-Cánovas, G.; et al. Extraction of Bioactive Compounds and Essential Oils from Mediterranean Herbs by Conventional and Green Innovative Techniques: A Review. Food Res. Int. 2018, 113, 245–262. [Google Scholar] [CrossRef]
- Viganó, J.; de Paula Assis, B.F.; Náthia-Neves, G.; dos Santos, P.; Meireles, M.A.A.; Veggi, P.C.; Martínez, J. Extraction of Bioactive Compounds from Defatted Passion Fruit Bagasse (Passiflora edulis sp.) Applying Pressurized Liquids Assisted by Ultrasound. Ultrason. Sonochemistry 2020, 64, 104999. [Google Scholar] [CrossRef]
- Boaro, C.S.F.; Vieira, M.A.R.; Campos, F.G.; Ferreira, G.; De-la-Cruz-Chacón, I.; Marques, M.O.M. Factors Influencing the Production and Chemical Composition of Essential Oils in Aromatic Plants from Brazil. In Essential Oil Research: Trends in Biosynthesis, Analytics, Industrial Applications and Biotechnological Production; Malik, S., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 19–47. ISBN 978-3-030-16546-8. [Google Scholar]
- Sulzbach, M.; da Silva, M.A.S.; Gonzatto, M.P.; Marques, M.M.O.; Böettcher, G.N.; Silvestre, W.P.; Silva, J.C.R.L.; Pauletti, G.F.; Schwarz, S.F. Effect of Distillation Methods on the Leaf Essential Oil of Some Citrus Cultivars. J. Essent. Oil Res. 2021, 33, 452–463. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing: Carol Stream, IL, USA, 2017; ISBN 978-1-932633-21-4. [Google Scholar]
- Santos-Gomes, P.C.; Fernandes-Ferreira, M.; Vicente, A.M.S. Composition of the Essential Oils from Flowers and Leaves of Vervain [ Aloysia Triphylla (L’Herit.) Britton] Grown in Portugal. J. Essent. Oil Res. 2005, 17, 73–78. [Google Scholar] [CrossRef]
- Bicas, J.L.; Neri-Numa, I.A.; Ruiz, A.L.T.G.; De Carvalho, J.E.; Pastore, G.M. Evaluation of the Antioxidant and Antiproliferative Potential of Bioflavors. Food Chem. Toxicol. 2011, 49, 1610–1615. [Google Scholar] [CrossRef] [PubMed]
- Hudaib, M.; Tawaha, K.; Bustanji, Y. Chemical Profile of the Volatile Oil of Lemon Verbena (Aloysia Citriodora Paláu) Growing in Jordan. J. Essent. Oil Bear. Plants 2013, 16, 568–574. [Google Scholar] [CrossRef]
- Özek, T.; Kirimer, N.; Baser, K.H.C.; Tümen, G. Composition of the Essential Oil of Aloysia Triphylla (L’Herit.) Britton Grown in Turkey. J. Essent. Oil Res. 1996, 8, 581–583. [Google Scholar] [CrossRef]
- Oukerrou, M.A.; Tilaoui, M.; Mouse, H.A.; Leouifoudi, I.; Jaafari, A.; Zyad, A. Chemical Composition and Cytotoxic and Antibacterial Activities of the Essential Oil of Aloysia Citriodora Palau Grown in Morocco. Adv. Pharmacol. Sci. 2017, 2017, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Gil, A.; Van Baren, C.M.; Di Leo Lira, P.M.; Bandoni, A.L. Identification of the Genotype from the Content and Composition of the Essential Oil of Lemon Verbena (Aloysia Citriodora Palau). J. Agric. Food Chem. 2007, 55, 8664–8669. [Google Scholar] [CrossRef]
- Elechosa, M.A.; Di Leo Lira, P.; Juárez, M.A.; Viturro, C.I.; Heit, C.I.; Molina, A.C.; Martínez, A.J.; López, S.; Molina, A.M.; van Baren, C.M.; et al. Essential Oil Chemotypes of Aloysia citrodora (Verbenaceae) in Northwestern Argentina. Biochem. Syst. Ecol. 2017, 74, 19–29. [Google Scholar] [CrossRef]
- Di Leo Lira, P.; van Baren, C.M.; López, S.; Molina, A.; Heit, C.; Viturro, C.; de Lampasona, M.P.; Catalán, C.A.; Bandoni, A. Northwestern Argentina: A Center of Genetic Diversity of Lemon Verbena (Aloysia citriodora Paláu, Verbenaceae). Chem. Biodivers. 2013, 10, 251–261. [Google Scholar] [CrossRef]
- Bouzenna, H.; Hfaiedh, N.; Giroux-Metges, M.-A.; Elfeki, A.; Talarmin, H. Biological Properties of Citral and Its Potential Protective Effects against Cytotoxicity Caused by Aspirin in the IEC-6 Cells. Biomed. Pharmacother. 2017, 87, 653–660. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.; Ciesla, L.; Waksmundzka-Hajnos, M. Approach to Determination a Structure—Antioxidant Activity Relationship of Selected Common Terpenoids Evaluated by ABTS •+ Radical Cation Assay. Nat. Prod. Commun. 2018, 13, 295–298. [Google Scholar] [CrossRef] [Green Version]
- Baschieri, A.; Ajvazi, M.D.; Tonfack, J.L.F.; Valgimigli, L.; Amorati, R. Explaining the Antioxidant Activity of Some Common Non-Phenolic Components of Essential Oils. Food Chem. 2017, 232, 656–663. [Google Scholar] [CrossRef]
- Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.K.; Ezzat, M.O.; Majid, A.S.A.; Majid, A.M.S.A. The Anticancer, Antioxidant and Antimicrobial Properties of the Sesquiterpene β-Caryophyllene from the Essential Oil of Aquilaria Crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quiroga, P.R.; Asensio, C.M.; Nepote, V. Antioxidant Effects of the Monoterpenes Carvacrol, Thymol and Sabinene Hydrate on Chemical and Sensory Stability of Roasted Sunflower Seeds. J. Sci. Food Agric. 2015, 95, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.M.B.; Mousavi Khaneghah, A.; Koubaa, M.; Barba, F.J.; Abedi, E.; Niakousari, M.; Tavakoli, J. Extraction of Essential Oil from Aloysia Citriodora Palau Leaves Using Continuous and Pulsed Ultrasound: Kinetics, Antioxidant Activity and Antimicrobial Properties. Process Biochem. 2018, 65, 197–204. [Google Scholar] [CrossRef]
- Hosseini, M.; Jamshidi, A.; Raeisi, M.; Azizzadeh, M. The Antibacterial and Antioxidant Effects of Clove (Syzygium Aromaticum) and Lemon Verbena (Aloysia Citriodora) Essential Oils. J. Hum. Environ. Health Promot. 2019, 5, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Xavier, V.; Spréa, R.; Finimundy, T.C.; Heleno, S.A.; Amaral, J.S.; Barros, L.; Ferreira, I.C.F.R. Terpenes. In Natural Secondary Metabolites: From Nature, Through Science, to Industry; Carocho, M., Heleno, S.A., Barros, L., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 107–156. ISBN 978-3-031-18587-8. [Google Scholar]
- De Martino, L.; D’Arena, G.; Minervini, M.M.; Deaglio, S.; Fusco, B.M.; Cascavilla, N.; De Feo, V. Verbena Officinalis Essential Oil and Its Component Citral as Apoptotic-Inducing Agent in Chronic Lymphocytic Leukemia. Int. J. Immunopathol. Pharm. 2009, 22, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Dudai, N.; Weinstein, Y.; Krup, M.; Rabinski, T.; Ofir, R. Citral Is a New Inducer of Caspase-3 in Tumor Cell Lines. Planta Med. 2005, 71, 484–488. [Google Scholar] [CrossRef]
- de Araújo-Filho, H.G.; dos Santos, J.F.; Carvalho, M.T.B.; Picot, L.; Fruitier-Arnaudin, I.; Groult, H.; Quintans-Júnior, L.J.; Quintans, J.S.S. Anticancer Activity of Limonene: A Systematic Review of Target Signaling Pathways. Phytother. Res. 2021, 35, 4957–4970. [Google Scholar] [CrossRef]
- Bai, X.; Tang, J. Myrcene Exhibits Antitumor Activity Against Lung Cancer Cells by Inducing Oxidative Stress and Apoptosis Mechanisms. Nat. Prod. Commun. 2020, 15, 1934578X2096118. [Google Scholar] [CrossRef]
- Cho, M.; So, I.; Chun, J.N.; Jeon, J.-H. The Antitumor Effects of Geraniol: Modulation of Cancer Hallmark Pathways (Review). Int. J. Oncol. 2016, 48, 1772–1782. [Google Scholar] [CrossRef] [Green Version]
- Sampaio, L.A.; Pina, L.T.S.; Serafini, M.R.; Tavares, D.D.S.; Guimarães, A.G. Antitumor Effects of Carvacrol and Thymol: A Systematic Review. Front. Pharm. 2021, 12, 702487. [Google Scholar] [CrossRef]
- Iwasaki, K.; Zheng, Y.-W.; Murata, S.; Ito, H.; Nakayama, K.; Kurokawa, T.; Sano, N.; Nowatari, T.; Villareal, M.O.; Nagano, Y.N.; et al. Anticancer Effect of Linalool via Cancer-Specific Hydroxyl Radical Generation in Human Colon Cancer. World J. Gastroenterol. 2016, 22, 9765–9774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponce-Monter, H.; Fernández-Martínez, E.; Ortiz, M.I.; Ramírez-Montiel, M.L.; Cruz-Elizalde, D.; Pérez-Hernández, N.; Cariño-Cortés, R. Spasmolytic and Anti-Inflammatory Effects of Aloysia Triphylla and Citral, In Vitro and In Vivo Studies. J. Smooth Muscle Res. 2010, 46, 309–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, P.C.; Yang, T.S.; Chou, J.C.; Chen, J.; Lee, S.C.; Kuo, Y.H.; Ho, C.L.; Chao, L.K.P. Anti-Inflammatory Activity of Neral and Geranial Isolated from Fruits of Litsea Cubeba Lour. J. Funct. Foods 2015, 19, 248–258. [Google Scholar] [CrossRef]
- de Costa, I.F.J.B.; Simão, T.L.B.V.; Calixto, S.D.; Pereira, R.V.; Konno, T.U.P.; Pinto, S.C.; Tinoco, L.W.; Lasunskaia, E.; Leal, I.C.R.; Muzitano, M.F. Anti-Mycobacterial and Immunomodulatory Activity of n-Hexane Fraction and Spathulenol from Ocotea notata Leaves. Rodriguésia 2021, 72, e01162019. [Google Scholar] [CrossRef]
- do Nascimento, K.F.; Moreira, F.M.F.; Alencar Santos, J.; Kassuya, C.A.L.; Croda, J.H.R.; Cardoso, C.A.L.; do Vieira, M.C.; Góis Ruiz, A.L.T.; Ann Foglio, M.; de Carvalho, J.E.; et al. Antioxidant, Anti-Inflammatory, Antiproliferative and Antimycobacterial Activities of the Essential Oil of Psidium Guineense Sw. and Spathulenol. J. Ethnopharmacol. 2018, 210, 351–358. [Google Scholar] [CrossRef]
- Aslam, S.; Younis, W.; Malik, M.N.H.; Jahan, S.; Alamgeer; Uttra, A.M.; Munir, M.U.; Roman, M. Pharmacological Evaluation of Anti-Arthritic Potential of Terpinen-4-Ol Using in Vitro and in Vivo Assays. Inflammopharmacology 2022, 30, 945–959. [Google Scholar] [CrossRef]
- Hart, P.H.; Brand, C.; Carson, C.F.; Riley, T.V.; Prager, R.H.; Finlay-Jones, J.J. Terpinen-4-Ol, the Main Component of the Essential Oil of Melaleuca Alternifolia (Tea Tree Oil), Suppresses Inflammatory Mediator Production by Activated Human Monocytes. Inflamm. Res. 2000, 49, 619–626. [Google Scholar] [CrossRef]
- de Ramalho, T.R.O.; de Oliveira, M.T.P.; de Lima, A.L.A.; Bezerra-Santos, C.R.; Piuvezam, M.R. Gamma-Terpinene Modulates Acute Inflammatory Response in Mice. Planta Med. 2015, 81, 1248–1254. [Google Scholar] [CrossRef] [Green Version]
- Huo, M.; Cui, X.; Xue, J.; Chi, G.; Gao, R.; Deng, X.; Guan, S.; Wei, J.; Soromou, L.W.; Feng, H.; et al. Anti-Inflammatory Effects of Linalool in RAW 264.7 Macrophages and Lipopolysaccharide-Induced Lung Injury Model. J. Surg. Res. 2013, 180, e47–e54. [Google Scholar] [CrossRef]
- Peana, A.T.; D’Aquila, P.S.; Panin, F.; Serra, G.; Pippia, P.; Moretti, M.D.L. Anti-Inflammatory Activity of Linalool and Linalyl Acetate Constituents of Essential Oils. Phytomedicine 2002, 9, 721–726. [Google Scholar] [CrossRef]
- Oliva, M.; Carezzano, M.; Gallucci, N.; Freytes, S.; Zygadlo, J.; Demo, M.-S. Growth Inhibition and Morphological Alterations of Staphylococcus Aureus Caused by the Essential Oil of Aloysia Triphylla. Boletín Latinoam. Y Del Caribe De Plantas Med. Y Aromáticas 2015, 14, 83–91. [Google Scholar]
- Rezig, L.; Sadaa, M.; Trabelsi, N.; Tammar, S.; Limam, H.; Rebey, I.B.; Smaoui, A.; Sghaier, G.; Re, G.D.; Ksouri, R.; et al. Chemical Composition, Antioxidant and Antimicrobial Activities of Aloysia triphylla L. essential oils and methanolic extract. Ital. J. Food Sci. 2019, 31. [Google Scholar] [CrossRef]
- Spréa, R.M.; Fernandes, Â.; Finimundy, T.C.; Pereira, C.; Alves, M.J.; Calhelha, R.C.; Canan, C.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Lovage (Levisticum Officinale W.D.J. Koch) Roots: A Source of Bioactive Compounds towards a Circular Economy. Resources 2020, 9, 81. [Google Scholar] [CrossRef]
- Wolfe, K.L.; Liu, R.H. Cellular Antioxidant Activity (CAA) Assay for Assessing Antioxidants, Foods, and Dietary Supplements. J. Agric. Food Chem. 2007, 55, 8896–8907. [Google Scholar] [CrossRef] [PubMed]
- Abreu, R.M.V.; Ferreira, I.C.F.R.; Calhelha, R.C.; Lima, R.T.; Vasconcelos, M.H.; Adega, F.; Chaves, R.; Queiroz, M.-J.R.P. Anti-Hepatocellular Carcinoma Activity Using Human HepG2 Cells and Hepatotoxicity of 6-Substituted Methyl 3-Aminothieno[3,2-b]Pyridine-2-Carboxylate Derivatives: In Vitro Evaluation, Cell Cycle Analysis and QSAR Studies. Eur. J. Med. Chem. 2011, 46, 5800–5806. [Google Scholar] [CrossRef] [Green Version]
- Mandim, F.; Barros, L.; Calhelha, R.C.; Abreu, R.M.V.; Pinela, J.; Alves, M.J.; Heleno, S.; Santos, P.F.; Ferreira, I.C.F.R. Calluna Vulgaris (L.) Hull: Chemical Characterization, Evaluation of Its Bioactive Properties and Effect on the Vaginal Microbiota. Food Funct. 2019, 10, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Alves, M.J.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Antioxidant and Antimicrobial Properties of Dried Portuguese Apple Variety (Malus Domestica Borkh. Cv Bravo de Esmolfe). Food Chem. 2018, 240, 701–706. [Google Scholar] [CrossRef] [Green Version]
- Zou, H.; Hastie, T. Regularization and Variable Selection via the Elastic Net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2005, 67, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
Peak | Compound | LRI a | LRI b | CHD | MAHD | |
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | p | ||||
1 | (E)-2-Hexenal | 846 | 846 | 0.0286 ± 0.0005 | 0.047 ± 0.004 | 0.019 |
2 | α-Thujene | 922 | 924 | 0.029 ± 0.004 | 0.03 ± 0.001 | 0.751 |
3 | α-Pinene | 928 | 932 | 0.21 ± 0.01 | 0.22 ± 0.01 | 0.615 |
4 | Sabinene | 968 | 969 | 0.44 ± 0.04 | 0.476 ± 0.007 | 0.309 |
5 | β-Pinene | 971 | 974 | 0.032 ± 0.003 | 0.035 ± 0.001 | 0.237 |
6 | 1-Octen-3-ol | 975 | 974 | 1.1 ± 0.1 | 0.74 ± 0.03 | 0.044 |
7 | 6-methyl-5-Hepten-2-one | 982 | 981 | 0.83 ± 0.04 | 0.593 ± 0.0002 | 0.017 |
8 | β-Myrcene | 987 | 988 | 0.07 ± 0.01 | 0.077 ± 0.002 | 0.374 |
9 | 3-Octanol | 991 | 988 | 0.27 ± 0.03 | 0.206 ± 0.003 | 0.072 |
10 | (2E, 4E)-Heptadienal | 1005 | 1005 | 0.02 ± 0.002 | 0.023 ± 0.007 | 0.623 |
11 | α-Terpinene | 1011 | 1014 | 0.056 ± 0.005 | 0.034 ± 0.001 | 0.025 |
12 | p-Cymene | 1016 | 1020 | 0.115 ± 0.006 | 0.111 ± 0.006 | 0.575 |
13 | Limonene | 1025 | 1024 | 5.38 ± 0.06 | 5 ± 0.1 | 0.069 |
14 | 1,8-Cineole | 1026 | 1026 | 4.2 ± 0.4 | 4.5 ± 0.2 | 0.391 |
15 | (E)-β-Ocimene | 1044 | 1044 | 0.0198 ± 0.0003 | 0.028 ± 0.006 | 0.185 |
16 | γ-Terpinene | 1054 | 1054 | 0.098 ± 0.004 | 0.057 ± 0.003 | 0.008 |
17 | cis-Sabinene hydrate | 1062 | 1065 | 0.412 ± 0.009 | 0.674 ± 0.008 | 0.001 |
18 | cis-Linalool oxide | 1067 | 1067 | 0.08 ± 0.005 | 0.053 ± 0.002 | 0.015 |
19 | trans-Linalool oxide | 1082 | 1084 | 0.088 ± 0.001 | 0.06 ± 0.02 | 0.196 |
20 | Linalool | 1095 | 1095 | 0.606 ± 0.008 | 0.64 ± 0.02 | 0.122 |
21 | trans-ρ-Mentha-2,8-dien-1-ol | 1115 | 1119 | 0.239 ± 0.005 | 0.245 ± 0.004 | 0.295 |
22 | α-Campholenal | 1121 | 1122 | 0.088 ± 0.002 | 0.091 ± 0.004 | 0.464 |
23 | cis-p-Mentha-2,8-dien-1-ol | 1130 | 1133 | 0.34 ± 0.04 | 0.38 ± 0.06 | 0.470 |
24 | trans-Limonene oxide | 1134 | 1137 | 0.41 ± 0.02 | 0.35 ± 0.03 | 0.097 |
25 | exo-Isocitral | 1140 | 1140 | 0.258 ± 0.003 | 0.26 ± 0.01 | 0.903 |
26 | Citronellal | 1148 | 1148 | 0.056 ± 0 | 0.055 ± 0.007 | 0.778 |
27 | Nerol oxide | 1150 | 1154 | 0.0481 ± 0.0004 | 0.032 ± 0.007 | 0.078 |
28 | Sabina ketone | 1152 | 1154 | 0.09 ± 0.006 | 0.089 ± 0.007 | 0.925 |
29 | (Z)-Isocitral | 1160 | 1160 | 0.84 ± 0.02 | 0.85 ± 0.04 | 0.655 |
30 | δ-Terpineol | 1162 | 1162 | 0.212 ± 0.004 | 0.226 ± 0.001 | 0.046 |
31 | Rosefuran epoxide | 1169 | 1173 | 0.61 ± 0.01 | 0.62 ± 0.01 | 0.832 |
32 | Terpinen-4-ol | 1171 | 1174 | 0.46 ± 0.01 | 0.252 ± 0.008 | 0.002 |
33 | (E)-Socitral | 1177 | 1177 | 1.11 ± 0.03 | 1.06 ± 0.04 | 0.323 |
34 | α-Terpineol | 1186 | 1186 | 1.744 ± 0.003 | 1.821 ± 0.005 | 0.003 |
35 | Methyl chavicol | 1195 | 1195 | 0.37 ± 0.01 | 0.351 ± 0.01 | 0.167 |
36 | trans-Carveol | 1215 | 1215 | 0.3 ± 0.02 | 0.3 ± 0.04 | 0.987 |
37 | Nerol | 1225 | 1127 | 0.96 ± 0.04 | 0.94 ± 0.04 | 0.624 |
38 | Neral | 1240 | 1235 | 15.3 ± 0.1 | 16.2 ± 0.1 | 0.011 |
39 | Geraniol | 1252 | 1249 | 0.98 ± 0.02 | 0.93 ± 0.02 | 0.110 |
40 | Geranial | 1271 | 1264 | 18.726 ± 0.007 | 21.1 ± 0.3 | 0.009 |
41 | (E)-Anethole | 1283 | 1282 | 1.06 ± 0.03 | 1.07 ± 0.03 | 0.773 |
42 | Thymol | 1288 | 1289 | 0.057 ± 0.005 | 0.067 ± 0.002 | 0.133 |
43 | Carvacrol | 1298 | 1298 | 0.052 ± 0.002 | 0.061 ± 0.005 | 0.170 |
44 | Piperitenone | 1337 | 1340 | 0.021 ± 0.002 | 0.016 ± 0.002 | 0.164 |
45 | Eugenol | 1352 | 1369 | 0.157 ± 0.001 | 0.14 ± 0.01 | 0.229 |
46 | Cyclosativene | 1364 | 1369 | 0.033 ± 0.006 | 0.033 ± 0.003 | 0.952 |
47 | α-Ylangene | 1374 | 1373 | 0.409 ± 0.006 | 0.46 ± 0.02 | 0.053 |
48 | Geranyl acetate | 1378 | 1379 | 1.527 ± 0.005 | 1.62 ± 0.02 | 0.030 |
49 | β-Bourbonene | 1383 | 1387 | 0.595 ± 0.006 | 0.52 ± 0.07 | 0.293 |
50 | Methyl eugenol | 1399 | 1403 | 0.14 ± 0.02 | 0.15 ± 0.04 | 0.835 |
51 | α-Cedrene | 1410 | 1410 | 0.379 ± 0.009 | 0.42 ± 0.008 | 0.038 |
52 | β-Caryophyllene | 1417 | 1417 | 0.609 ± 0.011 | 0.72 ± 0.01 | 0.011 |
53 | β-Copaene | 1427 | 1430 | 0.078 ± 0.003 | 0.08 ± 0.007 | 0.705 |
54 | allo-Aromadendrene | 1459 | 1458 | 0.507 ± 0.007 | 0.55 ± 0.001 | 0.012 |
55 | γ-Muurolene | 1474 | 1478 | 0.13 ± 0.01 | 0.135 ± 0.001 | 0.635 |
56 | ar-Curcumene | 1480 | 1479 | 4.68 ± 0.02 | 5.3 ± 0.04 | 0.003 |
57 | epi-Cubebol | 1492 | 1493 | 0.291 ± 0.005 | 0.287 ± 0.009 | 0.624 |
58 | Bicyclogermacrene | 1495 | 1500 | 0.167 ± 0.01 | 0.3 ± 0.01 | 0.007 |
59 | β-Bisabolene | 1505 | 1505 | 0.0781 ± 0.0002 | 0.097 ± 0.001 | 0.001 |
60 | β-Curcumene | 1508 | 1514 | 0.0672 ± 0.0009 | 0.128 ± 0.001 | 0.000 |
61 | Cubebol | 1513 | 1514 | 0.801 ± 0.001 | 0.94 ± 0.02 | 0.010 |
62 | α-Cadinene | 1535 | 1537 | 0.065 ± 0.005 | 0.1 ± 0.02 | 0.179 |
63 | (E)-Nerolidol | 1560 | 1561 | 1.76 ± 0.03 | 1.61 ± 0.03 | 0.037 |
64 | Spathulenol | 1580 | 1577 | 8.71 ± 0.01 | 7.23 ± 0.03 | 0.000 |
65 | Caryophyllene oxide | 1584 | 1582 | 5.6 ± 0.1 | 5.36 ± 0.05 | 0.134 |
66 | 1-epi-Cubenol | 1627 | 1627 | 0.112 ± 0.004 | 0.049 ± 0.006 | 0.007 |
67 | epi-α-Cadinol | 1639 | 1638 | 1.65 ± 0.03 | 1.2 ± 0.2 | 0.070 |
68 | Germacra-4(15),5,10(14)-trien-1-β-ol | 1684 | 1694 * | 0.286 ± 0.082 | 0.19 ± 0.06 | 0.317 |
69 | Acorenone | 1689 | 1692 | 0.2 ± 0.04 | 0.18 ± 0.05 | 0.642 |
Monoterpenes | 6.9 ± 0.1 | 6.8 ± 0.1 | 0.525 | |||
Oxygenated monoterpenes | 49.7 ± 0.1 | 53.0 ± 0.4 | 0.008 | |||
Sesquiterpenes | 22.18 ± 0.02 | 21.5 ± 0.1 | 0.010 | |||
Oxygenated sesquiterpenes | 5.0 ± 0.2 | 4.4 ± 0.1 | 0.071 | |||
Others | 4.0 ± 0.2 | 3.25 ± 0.02 | 0.042 |
Sample | DPPH (EC50, mg/mL) | RP (EC50, mg/mL) | CAA (% Inhibition) a |
---|---|---|---|
CHD | 9.583 ± 0.005 | 1.768 ± 0.005 | 90% |
MADH | 8.631 ± 0.005 * | 1.434 ± 0.005 * | 89% |
Compound | DPPH Elastic-Net Coefficients | RP Elastic-Net Coefficients | RAW264.7 Elastic-Net Coefficients |
---|---|---|---|
(E)-2-Hexenal | −0.015223 | −0.001762 | 0.314795 |
1-Octen-3-ol | 0.008353 | 0 | −0.281853 |
6-methyl-5-Hepten-2-one | 0.01721 | 0.00564 | −0.323882 |
3-Octanol | 0.000103 | 0 | −0.231008 |
α-Terpinene | 0.015024 | 0.003772 | −0.311129 |
Limonene | 0 | 0 | −0.23009 |
γ-Terpinene | 0.02079 | 0.009779 | −0.334364 |
cis-Sabinene hydrate | −0.022256 | −0.010034 | 0.342061 |
cis-Linalool oxide | 0.017437 | 0.005304 | −0.326583 |
Linalool | 0 | 0 | 0.108244 |
trans-Limonene oxide | 0 | 0 | −0.145299 |
Nerol oxide | 0 | 0 | −0.20581 |
δ-Terpineol | −0.008497 | 0 | 0.246 |
Terpinen-4-ol | 0.022046 | 0.00977 | −0.339853 |
α-Terpineol | −0.021369 | −0.008844 | 0.338362 |
Neral | −0.018512 | −0.005719 | 0.331411 |
Geraniol | 0 | 0 | −0.115558 |
Geranial | −0.019105 | −0.006118 | 0.331229 |
Thymol | 0 | 0 | 0.063287 |
Piperitenone | 0 | 0 | −0.042122 |
α-Ylangene | −0.008804 | −0.000167 | 0.250177 |
Geranyl acetate | −0.015402 | −0.005916 | 0.290529 |
α-Cedrene | −0.01271 | −0.00256 | 0.263237 |
β-Caryophyllene | −0.020263 | −0.00937 | 0.318878 |
allo-Aromadendrene | −0.018943 | −0.006705 | 0.316855 |
ar-Curcumene | −0.021384 | −0.008915 | 0.34047 |
Bicyclogermacrene | −0.019798 | −0.007066 | 0.330141 |
β-Bisabolene | −0.021733 | −0.009353 | 0.34362 |
β-Curcumene | −0.022332 | −0.010217 | 0.345083 |
Cubebol | −0.018454 | −0.005364 | 0.329753 |
(E)-Nerolidol | 0.013095 | 0.002891 | −0.267416 |
Spathulenol | 0.022694 | 0.011 | −0.345966 |
Caryophyllene oxide | 0 | 0 | −0.069749 |
1-epi-Cubenol | 0.021318 | 0.010421 | −0.336428 |
epi-α-Cadinol | 0.00373 | 0 | −0.207589 |
MAHD (GI50 μg/mL) | CHD (GI50 μg/mL) | Ellipticine GI50 μg/mL) | Dexamethasone (GI50 μg/mL) | |
---|---|---|---|---|
Cytotoxicity potential | ||||
AGS | 42 ± 4 | 55 ± 1 * | 1.23 ± 0.03 | - |
CaCo2 | 49 ± 5 | 62 ± 2 * | 1.21 ± 0.02 | - |
MCF-7 | 54 ± 4 | 88 ± 7 * | 1.02 ± 0.02 | - |
NCI-H460 | 95 ± 1 | 84 ± 8 | 1.01 ± 0.01 | - |
PLP2 | 72 ± 1 | 18 ± 1 * | 1.4 ± 0.1 | - |
VERO | 68 ± 6 | 60 ± 1 | 1.41 ± 0.06 | - |
Anti-inflammatory potential (GI50 μg/mL) | ||||
RAW 264.7 | 40 ± 1 | 29 ± 3 * | - | 6.3 ± 0.4 |
Foodborne Bacteria | Sample (%, v/v) | Positive Control (mg/mL) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
CHD | MAHD | Streptomycin | Methicillin | Ampicillin | ||||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
Gram-negative Bacteria | ||||||||||
Enterobacter cloacae | 0.16 | 1.25 | 0.019 | 0.63 | 0.007 | 0.007 | n.t. | n.t. | 0.15 | 0.15 |
Escherichia coli | 0.16 | 2.5 | 0.16 | 2.5 | 0.01 | 0.01 | n.t. | n.t. | 0.15 | 0.15 |
Pseudomonas aeruginosa | >2.5 | >2.5 | >2.5 | >2.5 | 0.06 | 0.06 | n.t. | n.t. | 0.63 | 0.63 |
Salmonella enterica | 0.63 | >2.5 | 0.63 | >2.5 | 0.07 | 0.007 | n.t. | n.t. | 0.15 | 0.15 |
Yersinia enterocolitica | 0.08 | >2.5 | 0.16 | >2.5 | 0.007 | 0.007 | n.t. | n.t. | 0.15 | 0.15 |
Gram-positive Bacteria | ||||||||||
Bacillus cereus | 0.08 | 2.5 | 0.16 | >2.5 | 0.007 | 0.007 | n.t. | n.t. | n.t. | n.t. |
Listeria monocytogenes | 0.31 | >2.5 | 0.31 | >2.5 | 0.007 | 0.007 | n.t. | n.t. | 0.15 | 0.15 |
Staphylococcus aureus | 0.31 | >2.5 | 0.31 | >2.5 | 0.007 | 0.007 | 0.007 | 0.007 | 0.15 | 0.15 |
Clinically Isolated Bacteria | Sample | Positive Control | ||||||||
CHD | MAHD | Streptomycin | Methicillin | Ampicillin | ||||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
Gram-negative Bacteria | ||||||||||
Escherichia coli | 2.5 | 2.5 | 1.25 | 2.5 | <0.15 | <0.15 | <0.0078 | <0.0078 | n.t. | n.t. |
Klebsiella pneumoniae | >2.5 | >2.5 | >2.5 | >2.5 | 10 | >10 | <0.0078 | <0.0078 | n.t. | n.t. |
Proteus mirabilis | >2.5 | >2.5 | >2.5 | >2.5 | <0.15 | <0.15 | <0.0078 | <0.0078 | n.t. | n.t. |
Pseudomonas aeruginosa | >2.5 | >2.5 | >2.5 | >2.5 | >10 | >10 | 0.5 | 1 | >10 | >10 |
Gram-positive Bacteria | ||||||||||
Enterococcus faecalis | 1.25 | >2.5 | 1.25 | >2.5 | <0.15 | <0.15 | n.t. | n.t. | <0.0078 | <0.0078 |
Listeria monocytogenes | 1.25 | >2.5 | 1.25 | >2.5 | <0.15 | <0.15 | <0.0078 | <0.0078 | n.t. | n.t. |
MRSA | 0.15 | >2.5 | 0.3 | >2.5 | <0.15 | <0.15 | n.t. | n.t. | 0.25 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sprea, R.M.; Fernandes, L.H.M.; Pires, T.C.S.P.; Calhelha, R.C.; Rodrigues, P.J.; Amaral, J.S. Volatile Compounds and Biological Activity of the Essential Oil of Aloysia citrodora Paláu: Comparison of Hydrodistillation and Microwave-Assisted Hydrodistillation. Molecules 2023, 28, 4528. https://doi.org/10.3390/molecules28114528
Sprea RM, Fernandes LHM, Pires TCSP, Calhelha RC, Rodrigues PJ, Amaral JS. Volatile Compounds and Biological Activity of the Essential Oil of Aloysia citrodora Paláu: Comparison of Hydrodistillation and Microwave-Assisted Hydrodistillation. Molecules. 2023; 28(11):4528. https://doi.org/10.3390/molecules28114528
Chicago/Turabian StyleSprea, Rafael M., Luís H. M. Fernandes, Tânia C. S. P. Pires, Ricardo C. Calhelha, Pedro João Rodrigues, and Joana S. Amaral. 2023. "Volatile Compounds and Biological Activity of the Essential Oil of Aloysia citrodora Paláu: Comparison of Hydrodistillation and Microwave-Assisted Hydrodistillation" Molecules 28, no. 11: 4528. https://doi.org/10.3390/molecules28114528
APA StyleSprea, R. M., Fernandes, L. H. M., Pires, T. C. S. P., Calhelha, R. C., Rodrigues, P. J., & Amaral, J. S. (2023). Volatile Compounds and Biological Activity of the Essential Oil of Aloysia citrodora Paláu: Comparison of Hydrodistillation and Microwave-Assisted Hydrodistillation. Molecules, 28(11), 4528. https://doi.org/10.3390/molecules28114528