SERS Detection of the Anti-Epileptic Drug Perampanel in Human Saliva
Abstract
:1. Introduction
2. Results and Discussion
3. Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Robertson, J.; Hatton, C.; Emerson, E.; Baines, S. Prevalence of epilepsy among people with intellectual disabilities: A systematic review. Seizure 2015, 29, 46–62. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.S.; Lee, M.H. Overview of therapeutic drug monitoring. Korean J. Intern. Med. 2009, 24, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Krasowski, M.D.; McMillin, G.A. Advances in anti-epileptic drug testing. Clin. Chim. Acta 2014, 436, 224–236. [Google Scholar] [CrossRef] [PubMed]
- Pistaffa, M. SERS Assessment of Carbamazepine in Methanol, Chloroform and Patient Samples Using Au Sensors with Optimized Surface Nanostructure. Master’s Thesis, Politecnico di Milano, Milano, Italy, 2017. [Google Scholar]
- Agarwal, N.R.; Ossi, P.M.; Trusso, S. Driving electromagnetic field enhancements in tailored gold surface nanostructures: Optical properties and macroscale simulations. Appl. Surf. Sci. 2019, 466, 19–27. [Google Scholar] [CrossRef]
- Han, X.X.; Rodriguez, R.S.; Haynes, C.L.; Ozaki, Y.; Zhao, B. Surface-enhanced Raman spectroscopy. Nat. Rev. Methods Prim. 2021, 1, 87. [Google Scholar] [CrossRef]
- Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A review on surface-enhanced Raman scattering. Biosensors 2019, 9, 57. [Google Scholar] [CrossRef]
- Alessandri, I.; Lombardi, J.R. Enhanced Raman Scattering with Dielectrics. Chem. Rev. 2016, 116, 14921–14981. [Google Scholar] [CrossRef]
- Zoleo, A.; Rossi, C.; Poggi, G.; Rossi, M.; Meneghetti, M.; Baglioni, P. Spotting aged dyes on paper with SERS. Phys. Chem. Chem. Phys. 2020, 22, 24070–24076. [Google Scholar] [CrossRef]
- Yin, B.; Zhang, Q.; Xia, X.; Li, C.; Hei Ho, W.K.H.; Yan, J.; Huang, Y.; Wu, H.; Wang, P.; Yi, C.; et al. A CRISPR-Cas12a integrated SERS nanoplatform with chimeric DNA/RNA hairpin guide for ultrasensitive nucleic acid detection. Theranostics 2022, 12, 5914–5930. [Google Scholar] [CrossRef]
- Yin, B.; Ho, W.K.H.; Zhang, Q.; Li, C.; Huang, Y.; Yan, J.; Yang, H.; Hao, J.; Wong, S.H.D.; Yang, M. Magnetic-Responsive Surface-Enhanced Raman Scattering Platform with Tunable Hot Spot for Ultrasensitive Virus Nucleic Acid Detection. ACS Appl. Mater. Interfaces 2022, 14, 4714–4724. [Google Scholar] [CrossRef]
- Qiao, X.; Chen, X.; Huang, C.; Li, A.; Li, X.; Lu, Z.; Wang, T. Detection of Exhaled Volatile Organic Compounds Improved by Hollow Nanocages of Layered Double Hydroxide on Ag Nanowires. Angew. Chem. Int. Ed. 2019, 58, 16523–16527. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Su, B.; Liu, C.; Song, Q.; Luo, D.; Mo, G.; Wang, T. Selective Surface Enhanced Raman Scattering for Quantitative Detection of Lung Cancer Biomarkers in Superparticle@MOF Structure. Adv. Mater. 2018, 30, 1702275. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, N.R.; Lucotti, A.; Tommasini, M.; Neri, F.; Trusso, S.; Ossi, P.M. SERS detection and DFT calculation of 2-naphthalene thiol adsorbed on Ag and Au probes. Sens. Actuators B Chem. 2016, 237, 545–555. [Google Scholar] [CrossRef]
- Jaworska, A.; Fornasaro, S.; Sergo, V.; Bonifacio, A. Potential of Surface Enhanced Raman Spectroscopy (SERS) in Therapeutic Drug Monitoring (TDM). A critical review. Biosensors 2016, 6, 47. [Google Scholar] [CrossRef] [PubMed]
- Panikar, S.S.; Ramírez-García, G.; Sidhik, S.; Lopez-Luke, T.; Rodriguez-Gonzalez, C.; Ciapara, I.H.; Castillo, P.S.; Camacho-Villegas, T.; De la Rosa, E. Ultrasensitive SERS Substrate for Label-Free Therapeutic-Drug Monitoring of Paclitaxel and Cyclophosphamide in Blood Serum. Anal. Chem. 2019, 91, 2100–2111. [Google Scholar] [CrossRef]
- Tommasini, M.; Zanchi, C.; Lucotti, A.; Bombelli, A.; Villa, N.S.; Casazza, M.; Ciusani, E.; de Grazia, U.; Santoro, M.; Fazio, E.; et al. Laser-Synthesized SERS Substrates as Sensors toward Therapeutic Drug Monitoring. Nanomaterials 2019, 9, 677. [Google Scholar] [CrossRef]
- McLaughlin, C.; MacMillan, D.; McCardle, C.; Smith, W.E. Quantitative analysis of mitoxantrone by surface-enhanced resonance Raman scattering. Anal. Chem. 2002, 74, 3160–3167. [Google Scholar] [CrossRef]
- Ren, J.; Mao, S.; Lin, J.; Xu, Y.; Zhu, Q.; Xu, N. Research Progress of Raman Spectroscopy and Raman Imaging in Pharmaceutical Analysis. Curr. Pharm. Des. 2022, 28, 1445–1456. [Google Scholar] [CrossRef]
- Ossi, P.M.; Neri, F.; Santo, N.; Trusso, S. Noble metal nanoparticles produced by nanosecond laser ablation. Appl. Phys. A 2011, 104, 829–837. [Google Scholar] [CrossRef]
- Danhof, M.; Breimer, D.D. Therapeutic Drug Monitoring in Saliva. Clin. Pharmacokinet. 1978, 3, 39–57. [Google Scholar] [CrossRef]
- Patsalos, P.N.; Berry, D.J. Therapeutic drug monitoring of antiepileptic drugs by use of saliva. Ther. Drug Monit. 2013, 35, 4–29. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, E.; Lamster, I.B. The Diagnostic Applications of Saliva—A Review. Crit. Rev. Oral Biol. Med. 2002, 13, 197–212. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Moon, J.; Shin, Y.W.; Lee, S.T.; Jung, K.H.; Park, K.I.; Jung, K.Y.; Kim, M.; Lee, S.; Yu, K.S.; et al. Usefulness of saliva for perampanel therapeutic drug monitoring. Epilepsia 2020, 61, 1120–1128. [Google Scholar] [CrossRef] [PubMed]
- Gidal, B.E.; Ferry, J.; Majid, O.; Hussein, Z. Concentration–effect relationships with perampanel in patients with pharmacoresistant partial-onset seizures. Epilepsia 2013, 54, 1490–1497. [Google Scholar] [CrossRef] [PubMed]
- Meirinho, S.; Rodrigues, M.; Fortuna, A.; Falcão, A.; Alves, G. Liquid chromatographic methods for determination of the new antiepileptic drugs stiripentol, retigabine, rufinamide and perampanel: A comprehensive and critical review. J. Pharm. Anal. 2021, 11, 405–421. [Google Scholar] [CrossRef]
- Macrelli, A.; Villa, N.S.; Lucotti, A.; Dellasega, D.; Ossi, P.M.; Tommasini, M. Sensing the Anti-Epileptic Drug Perampanel with Paper-Based Spinning SERS Substrates. Molecules 2022, 27, 30. [Google Scholar] [CrossRef]
- Virkler, K.; Lednev, I.K. Forensic body fluid identification: The Raman spectroscopic signature of saliva. Analyst 2010, 135, 512–517. [Google Scholar] [CrossRef]
- Rekha, P.; Aruna, P.; Brindha, E.; Koteeswaran, D.; Baludavid, M.; Ganesan, S. Near-infrared Raman spectroscopic characterization of salivary metabolites in the discrimination of normal from oral premalignant and malignant conditions. J. Raman Spectrosc. 2016, 47, 763–772. [Google Scholar] [CrossRef]
- Gittings, S.; Turnbull, N.; Henry, B.; Roberts, C.J.; Gershkovich, P. Characterisation of human saliva as a platform for oral dissolution medium development. Eur. J. Pharm. Biopharm. 2015, 91, 16–24. [Google Scholar] [CrossRef]
- Villa, N.S. Development of a SERS Technique for Therapeutic Drug Monitoring: Case Study on Perampanel. Master’s Thesis, Politecnico di Milano, Milano, Italy, 2018. [Google Scholar]
- Agha-Hosseini, F.; Dizgah, I.M.; Amirkhani, S. The composition of unstimulated whole saliva of healthy dental students. J. Contemp. Dent. Pract. 2006, 7, 104–111. [Google Scholar] [CrossRef]
- Gong, X.; Liao, X.; Li, Y.; Cao, H.; Zhao, Y.; Li, H.; Cassidy, D.P. Sensitive detection of polycyclic aromatic hydrocarbons with gold colloid coupled chloride ion SERS sensor. Analyst 2019, 144, 6698–6705. [Google Scholar] [CrossRef] [PubMed]
- Fycompa Prescribing Information. Available online: https://www.fycompa.com/-/media/Files/Fycompa/Fycompa_Prescribing_Information.pdf (accessed on 20 April 2023).
- Perampanel, Item No. 23003. Available online: https://www.caymanchem.com/product/23003/perampanel (accessed on 20 April 2023).
- Zanchi, C.; Lucotti, A.; Tommasini, M.; Pistaffa, M.; Giuliani, L.; Trusso, S.; Ossi, P.M. Pulsed laser deposition of gold thin films with long-range spatial uniform SERS activity. Appl. Phys. A Mater. Sci. Proc. 2019, 125, 311. [Google Scholar] [CrossRef]
Sample Composition (Volume Ratios: Saliva/Solution A) | pH | |
saliva | 6–7 | |
1:2 | 5 | |
1:4 | 4 | |
1:6 | 3 | |
1:7 | 3 | |
1:8 | 2–3 | |
1:9 | ca. 2 | |
1:10 | 2 | |
Acidic solution A | 2 |
PER Solution in MeOH (μL, Either 10−2 or 10−3 M) | Saliva (μL) | Acidic Solution B (μL) | Final PER Concentration (M) | pH |
---|---|---|---|---|
10 (10−2 M) | 90 | 0.6 | 10−3 | 4 |
100 (10−3 M) | 100 | 1 | 5 × 10−4 | 4 |
50 (10−3 M) | 150 | 1.1 | 2.5 × 10−4 | 4 |
20 (10−3 M) | 180 | 1.2 | 10−4 | 4 |
c (mM) | 671 cm−1 | 880 cm−1 | 1000 cm−1 | 2224 cm−1 | |
---|---|---|---|---|---|
1.0 | 2.6 | 5.9 | 21 | 7.8 | |
6.5 | 7.2 | 20.3 | 3.1 | ||
7.7 | 13.4 | 22.4 | 9.2 | ||
6.1 | 9.1 | 22 | 9.1 | ||
4.3 | 8.1 | 21.5 | 5.2 | ||
5.4 | 8.7 | 21.4 | 6.9 | average | |
2 | 2.9 | 0.8 | 2.7 | st. dev. | |
0.5 | 4.5 | 9.6 | 25 | 6.3 | |
7.1 | 7.8 | 16.7 | 5.8 | ||
5.5 | 7.6 | 18.4 | 6.3 | ||
5.4 | 6.9 | 13.1 | 6.2 | ||
4.7 | 8.9 | 17.9 | 6.1 | ||
5.4 | 8.1 | 18.2 | 6.2 | average | |
1.1 | 1.1 | 4.3 | 0.2 | st. dev. | |
0.25 | 3.5 | 6.4 | 11.4 | 5.4 | |
5.2 | 7.3 | 12.7 | 4.8 | ||
6.6 | 5.6 | 13.6 | 4.7 | ||
3.7 | 4.1 | 12.7 | 4 | ||
3.6 | 5 | 12.7 | 3.2 | ||
4.5 | 5.7 | 12.6 | 4.4 | average | |
1.4 | 1.2 | 0.8 | 0.9 | st. dev. | |
0.1 | 3.5 | 4.4 | 12.2 | 5.5 | |
6.1 | 5.8 | 15.9 | 5.7 | ||
3.8 | 5.7 | 11.2 | 5.9 | ||
4.1 | 5.1 | 9.3 | 5.2 | ||
4.5 | 3.7 | 10 | 4.9 | ||
4.4 | 4.9 | 11.7 | 5.4 | average | |
1 | 0.9 | 2.6 | 0.4 | st. dev. |
10−3 M PER in MeOH (μL) | Saliva (μL) | PER Concentration at Step 1 (M) | PER Concentration at Step 6 (M) |
---|---|---|---|
(a) | |||
80 | 1920 | 4 × 10−5 | 10−5 |
64 | 1936 | 3.2 × 10−5 | 8 × 10−6 |
48 | 1942 | 2.4 × 10−5 | 6 × 10−6 |
40 | 1960 | 2 × 10−5 | 5 × 10−6 |
16 | 1984 | 8 × 10−6 | 2 × 10−6 |
(b) | |||
20 | 480 | 4 × 10−5 | 10−5 |
16 | 484 | 3.2 × 10−5 | 8 × 10−6 |
12 | 488 | 2.4 × 10−5 | 6 × 10−6 |
10 | 490 | 2 × 10−5 | 5 × 10−6 |
4 | 496 | 8 × 10−6 | 2 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tommasini, M.; Lucotti, A.; Stefani, L.; Trusso, S.; Ossi, P.M. SERS Detection of the Anti-Epileptic Drug Perampanel in Human Saliva. Molecules 2023, 28, 4309. https://doi.org/10.3390/molecules28114309
Tommasini M, Lucotti A, Stefani L, Trusso S, Ossi PM. SERS Detection of the Anti-Epileptic Drug Perampanel in Human Saliva. Molecules. 2023; 28(11):4309. https://doi.org/10.3390/molecules28114309
Chicago/Turabian StyleTommasini, Matteo, Andrea Lucotti, Luca Stefani, Sebastiano Trusso, and Paolo M. Ossi. 2023. "SERS Detection of the Anti-Epileptic Drug Perampanel in Human Saliva" Molecules 28, no. 11: 4309. https://doi.org/10.3390/molecules28114309
APA StyleTommasini, M., Lucotti, A., Stefani, L., Trusso, S., & Ossi, P. M. (2023). SERS Detection of the Anti-Epileptic Drug Perampanel in Human Saliva. Molecules, 28(11), 4309. https://doi.org/10.3390/molecules28114309