In Situ Preparation of Three-Dimensional Porous Nickel Sulfide as a Battery-Type Supercapacitor
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Preparation of the Nickel Sulphide Electrode
3.2. Electrode Production
3.3. Fabrication of the ASC Device
3.4. Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Sample Availability
References
- Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Wang, Q.; Wei, T.; Fan, Z.J. Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities. Adv. Energy Mater. 2014, 4, 1300816. [Google Scholar] [CrossRef]
- Liu, F.; Su, H.; Jin, L.; Zhang, H.; Chu, X.; Yang, W. Facile synthesis of ultrafine cobalt oxide nanoparticles for high-performance supercapacitors. J. Colloid. Interface Sci. 2017, 505, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Gao, Y.; Zhang, C.; Huang, H.; Yan, C.; Chu, X.; Xu, Z.; Wang, Z.; Zhang, H.; Xiao, X.; et al. Highly microporous carbon with nitrogen-doping derived from natural biowaste for high-performance flexible solid-state supercapacitor. J. Colloid. Interface Sci. 2019, 548, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Zhang, H.; Liu, F.; Chun, F.; Zhang, B.; Chu, X.; Huang, H.; Deng, W.; Gu, B.; Zhang, H.; et al. High power supercapacitors based on hierarchically porous sheet-like nanocarbons with ionic liquid electrolytes. Chem. Eng. J. 2017, 322, 73–81. [Google Scholar] [CrossRef]
- Rakhi, R.; Chen, W.; Hedhili, M.N.; Cha, D.; Alshareef, H.N. Enhanced rate performance of mesoporous Co3O4 nanosheet supercapacitor electrodes by hydrous RuO2 nanoparticle decoration. ACS Appl. Mater. Interfaces 2014, 6, 4196–4206. [Google Scholar] [CrossRef]
- Xia, Q.X.; Yun, J.M.; Mane, R.S.; Li, L.; Fu, J.; Lim, J.H.; Kim, K.H. Enhanced electrochemical activity of perforated graphene in nickel-oxide-based supercapacitors and fabrication of potential asymmetric supercapacitors. Sustain. Energy Fuels 2017, 1, 529–539. [Google Scholar] [CrossRef]
- He, Y.; Chen, W.; Li, X.; Zhang, Z.; Fu, J.; Zhao, C.; Xie, E. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 2012, 7, 174–182. [Google Scholar] [CrossRef]
- Hui, K.N.; San Hui, K.; Tang, Z.; Jadhav, V.; Xia, Q.X. Hierarchical chestnut-like MnCo2O4 nanoneedles grown on nickel foam as binder-free electrode for high energy density asymmetric supercapacitors. J. Power Sources 2016, 330, 195–203. [Google Scholar] [CrossRef]
- Xie, M.; Xu, Z.; Duan, S.; Tian, Z.; Zhang, Y.; Xiang, K.; Lin, M.; Guo, X.; Ding, W. Facile growth of homogeneous Ni(OH)2 coating on carbon nanosheets for high-performance asymmetric supercapacitor applications. Nano Res. 2017, 11, 216–224. [Google Scholar] [CrossRef]
- Xie, M.; Duan, S.; Shen, Y.; Fang, K.; Wang, Y.; Lin, M.; Guo, X. In-Situ-Grown Mg(OH)2-Derived Hybrid α-Ni(OH)2 for Highly Stable Supercapacitor. ACS Energy Lett. 2016, 1, 814–819. [Google Scholar] [CrossRef]
- Wang, X.; Song, H.; Ma, S.; Li, M.; He, G.; Xie, M.; Guo, X. Template ion-exchange synthesis of Co-Ni composite hydroxides nanosheets for supercapacitor with unprecedented rate capability. Chem. Eng. J. 2022, 432, 134319. [Google Scholar] [CrossRef]
- Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430. [Google Scholar] [CrossRef]
- Li, Y.; Huang, B.; Zhao, X.; Luo, Z.; Liang, S.; Qin, H.; Chen, L. Zeolitic imidazolate framework-L-assisted synthesis of inorganic and organic anion-intercalated hetero-trimetallic layered double hydroxide sheets as advanced electrode materials for aqueous asymmetric super-capacitor battery. J. Power Sources 2022, 527, 231149. [Google Scholar] [CrossRef]
- Li, Y.; Luo, Z.; Qin, H.; Liang, S.; Chen, L.; Wang, H.; Zhao, C.; Chen, S. Benzoate anions-intercalated cobalt-nickel layered hydroxide nanobelts as high-performance electrode materials for aqueous hybrid supercapacitors. J. Colloid. Interface Sci. 2021, 582 Pt B, 842–851. [Google Scholar] [CrossRef]
- Zhao, C.; Zhu, J.; Jiang, Y.; Gao, F.; Xie, L.; Chen, L. Facile synthesis of spinel MgCo2O4 nanosheets for high-performance asymmetric supercapacitors. Mater. Lett. 2020, 271, 127799. [Google Scholar] [CrossRef]
- Zhao, C.; Liang, S.; Jiang, Y.; Gao, F.; Xie, L.; Chen, L. Mn doped Co(OH)2 nanosheets as electrode materials for high performance supercapacitors. Mater. Lett. 2020, 270, 127751. [Google Scholar] [CrossRef]
- Li, Y.; Luo, Z.; Liang, S.; Qin, H.; Zhao, X.; Chen, L.; Wang, H.; Chen, S. Two-dimensional porous zinc cobalt sulfide nanosheet arrays with superior electrochemical performance for supercapatteries. J. Mater. Sci. Technol. 2021, 89, 199–208. [Google Scholar] [CrossRef]
- Liang, J.-Y.; Zeng, X.-X.; Zhang, X.-D.; Wang, P.-F.; Ma, J.-Y.; Yin, Y.-X.; Wu, X.-W.; Guo, Y.-G.; Wan, L.-J. Mitigating Interfacial Potential Drop of Cathode–Solid Electrolyte via Ionic Conductor Layer To Enhance Interface Dynamics for Solid Batteries. J. Am. Chem. Soc. 2018, 140, 6767–6770. [Google Scholar] [CrossRef]
- Li, X.-X.; Chen, G.-F.; Xiao, K.; Li, N.; Ma, T.-Y.; Liu, Z.-Q. Self-Supported Amorphous-Edge Nickel Sulfide Nanobrush for Excellent Energy Storage. Electrochim. Acta 2017, 255, 153–159. [Google Scholar] [CrossRef]
- Cai, H.; Li, X.; Li, G.; Xia, H.; Wang, P.; Sun, P.; Huang, J.; Wang, L.; Yang, Y. Synthesis of honeycomb-like nickel-manganese sulfide composite nanosheets as advanced battery-type electrodes for hybrid supercapacitor. Mater. Lett. 2019, 255, 126505. [Google Scholar] [CrossRef]
- Wei, C.; Cheng, C.; Zhao, J.; Wang, Y.; Cheng, Y.; Xu, Y.; Du, W.; Pang, H. NiS Hollow Spheres for High-Performance Supercapacitors and Non-Enzymatic Glucose Sensors. Chem.–Asian J. 2015, 10, 679–686. [Google Scholar] [CrossRef]
- Wang, N.; Pan, Q.; Yang, X.; Zhu, H.; Ding, G.; Jia, Z.; Wu, Y.; Zhao, L. High Performance Asymmetric Supercapacitor Based on NixSy/MoS2 Nanoparticles. ACS Appl. Nano Mater. 2019, 2, 4910–4920. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J.; Zhang, L.L.; Dai, B.; Xu, M.; Ji, M.; Zhao, X.S.; Cao, C.; Zhang, J.; Zhu, H. Rigid three-dimensional Ni3S4 nanosheet frames: Controlled synthesis and their enhanced electrochemical performance. RSC Adv. 2015, 5, 8422–8426. [Google Scholar] [CrossRef]
- Mu, X.; Wang, D.; Du, F.; Chen, G.; Wang, C.; Wei, Y.; Gogotsi, Y.; Gao, Y.; Dall’Agnese, Y. Revealing the Pseudo-Intercalation Charge Storage Mechanism of MXenes in Acidic Electrolyte. Adv. Funct. Mater. 2019, 29, 1902953. [Google Scholar] [CrossRef]
- Ando, Y.; Okubo, M.; Yamada, A.; Otani, M. Capacitive versus Pseudocapacitive Storage in MXene. Adv. Funct. Mater. 2020, 30, 2000820. [Google Scholar] [CrossRef]
- Chen, C.; Pang, D.; Wang, X.; Chen, G.; Du, F.; Gao, Y. Electrochemical Behavior of Vanadium Carbide in Neutral Aqueous Electrolytes. Chin. Phys. Lett. 2021, 38, 058201. [Google Scholar] [CrossRef]
- Xiao, N.; Lu, X.-H.; Yan, W.-J.; Wen, M.-X.; Sun, W.; Xu, J.-L.; Sun, Y.-H.; Sun, Q. Self-template synthesis of hollow nano-spherical nickel silicate/nickel sulfide composite and its application for lithium-sulfur battery. Mater. Lett. 2021, 300, 130215. [Google Scholar] [CrossRef]
- Shen, M.; Liu, J.; Liu, T.; Yang, C.; He, Y.; Li, Z.; Li, J.; Qian, D. Oxidant-assisted direct-sulfidization of nickel foam toward a self-supported hierarchical Ni3S2@Ni electrode for asymmetric all-solid-state supercapacitors. J. Power Sources 2020, 448, 227408. [Google Scholar] [CrossRef]
- Du, X.; Ma, G.; Zhang, X. Cobalt and nitrogen co-doped Ni3S2 nanoflowers on nickel foam as high-efficiency electrocatalysts for overall water splitting in alkaline media. Dalton Trans. 2021, 50, 8955–8962. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Z.; Wang, Q.; Min, S.; Qian, X. Vertically oriented Ni3S2/RGO/Ni3S2 nanosheets on Ni foam for superior supercapacitors. RSC Adv. 2015, 5, 63528–63536. [Google Scholar] [CrossRef]
- Moradabadi, A.; Kaghazchi, P. Mechanism of Li intercalation/deintercalation into/from the surface of LiCoO2. Phys. Chem. Chem. Phys. 2015, 17, 22917–22922. [Google Scholar] [CrossRef] [PubMed]
- Pfaffmann, L.; Birkenmaier, C.; Müller, M.; Bauer, W.; Mitsch, T.; Feinauer, J.; Krämer, Y.; Scheiba, F.; Hintennach, A.; Schleid, T.; et al. Investigation of the electrochemically active surface area and lithium diffusion in graphite anodes by a novel OsO4 staining method. J. Power Sources 2016, 307, 762–771. [Google Scholar] [CrossRef]
- Luo, X.-y.; Chen, Y.; Mo, Y. A review of charge storage in porous carbon-based supercapacitors. New Carbon Mater. 2021, 36, 49–68. [Google Scholar] [CrossRef]
- Chen, S.; Li, Y.; Wu, B.; Wu, Z.; Li, F.; Wu, J.; Liu, P.; Li, H. 3D meso/macroporous Ni3S2@Ni composite electrode for high-performance supercapacitor. Electrochim. Acta 2018, 275, 40–49. [Google Scholar] [CrossRef]
- Wang, X.; Gao, J.; Wu, X.; Wang, X.; Que, R.; Wu, K. A facile one-pot hydrothermal synthesis of Co9S8/Ni3S2 nanoflakes for supercapacitor application. RSC Adv. 2016, 6, 54142–54148. [Google Scholar] [CrossRef]
- Nandhini, S.; Muralidharan, G. Graphene encapsulated NiS/Ni3S4 mesoporous nanostructure: A superlative high energy supercapacitor device with excellent cycling performance. Electrochim. Acta 2021, 365, 137367. [Google Scholar] [CrossRef]
- Pu, X.; Zhao, D.; Fu, C.; Chen, Z.; Cao, S.; Wang, C.; Cao, Y. Understanding and Calibration of Charge Storage Mechanism in Cyclic Voltammetry Curves. Angew. Chem. Int. Ed. 2021, 60, 21310–21318. [Google Scholar] [CrossRef]
- Kudchi, R.S.; Shetti, N.P.; Malode, S.J.; Todakar, A.B. Electroanalysis of an antihistamine drug at nano structured modified electrode. Mater. Today Proc. 2019, 18, 558–565. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, J.; Liu, A.; Ma, T. 2D heterostructure comprised of Ni3S2/d-Ti3C2 supported on Ni foam as binder-free electrode for hybrid supercapacitor. J. Alloys Compd. 2020, 814, 152271. [Google Scholar] [CrossRef]
- Xia, Q.X.; Fu, J.; Yun, J.M.; Mane, R.S.; Kim, K.H. High volumetric energy density annealed-MXene-nickel oxide/MXene asymmetric supercapacitor. RSC Adv. 2017, 7, 11000–11011. [Google Scholar] [CrossRef]
- Ghosh, S.; Sharath Kumar, J.; Chandra Murmu, N.; Sankar Ganesh, R.; Inokawa, H.; Kuila, T. Development of carbon coated NiS2 as positive electrode material for high performance asymmetric supercapacitor. Compos. Part B Eng. 2019, 177, 107373. [Google Scholar] [CrossRef]
- Xu, P.; Wei, B.; Cao, Z.; Zheng, J.; Gong, K.; Li, F.; Yu, J.; Li, Q.; Lu, W.; Byun, J.-H.; et al. Stretchable Wire-Shaped Asymmetric Supercapacitors Based on Pristine and MnO2 Coated Carbon Nanotube Fibers. ACS Nano 2015, 9, 6088–6096. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Bai, W.; Guan, G.; Zhang, Y.; Peng, H. Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber. Adv. Mater. 2013, 25, 5965–5970. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X.; Wang, J.; Seveno, D.; Fransaer, J.; Locquet, J.P.; Seo, J.W. Carbon Nanotube Fibers Decorated with MnO2 for Wire-Shaped Supercapacitor. Molecules 2021, 26, 3479. [Google Scholar] [CrossRef]
- Reddy, A.E.; Anitha, T.; Muralee Gopi, C.V.V.; Srinivasa Rao, S.; Kim, H.J. NiMoO4@NiWO4 honeycombs as a high performance electrode material for supercapacitor applications. Dalton Trans. 2018, 47, 9057–9063. [Google Scholar] [CrossRef]
- Wen, J.; Li, S.; Li, B.; Song, Z.; Wang, H.; Xiong, R.; Fang, G. Synthesis of three dimensional Co9S8 nanorod@Ni(OH)2 nanosheet core-shell structure for high performance supercapacitor application. J. Power Sources 2015, 284, 279–286. [Google Scholar] [CrossRef]
- Wei, W.; Mi, L.; Gao, Y.; Zheng, Z.; Chen, W.; Guan, X. Partial Ion-Exchange of Nickel-Sulfide-Derived Electrodes for High Performance Supercapacitors. Chem. Mater. 2014, 26, 3418–3426. [Google Scholar] [CrossRef]
- Hu, Q.; Zou, X.; Huang, Y.; Wei, Y.; Wang, Y.; Chen, F.; Xiang, B.; Wu, Q.; Li, W. Graphene oxide-drove transformation of NiS/Ni3S4 microbars towards Ni3S4 polyhedrons for supercapacitor. J. Colloid. Interface Sci. 2020, 559, 115–123. [Google Scholar] [CrossRef]
- Chang, Y.; Sui, Y.; Qi, J.; Jiang, L.; He, Y.; Wei, F.; Meng, Q.; Jin, Y. Facile synthesis of Ni3S2 and Co9S8 double-size nanoparticles decorated on rGO for high-performance supercapacitor electrode materials. Electrochim. Acta 2017, 226, 69–78. [Google Scholar] [CrossRef]
- Chen, L.; Guan, L.; Tao, J. Morphology control of Ni3S2 multiple structures and their effect on supercapacitor performances. J. Mater. Sci. 2019, 54, 12737–12746. [Google Scholar] [CrossRef]
- Si, L.; Xia, Q.; Liu, K.; Guo, W.; Shinde, N.; Wang, L.; Hu, Q.; Zhou, A. Hydrothermal synthesis of layered NiS2/Ti3C2Tx composite electrode for supercapacitors. Mater. Chem. Phys. 2022, 291, 126733. [Google Scholar] [CrossRef]
- Xia, Q.; Hui, K.S.; Hui, K.; Hwang, D.; Lee, S.; Zhou, W.; Cho, Y.; Kwon, S.; Wang, Q.; Son, Y. A facile synthesis method of hierarchically porous NiO nanosheets. Mater. Lett. 2012, 69, 69–71. [Google Scholar] [CrossRef]
- Xia, Q.X.; San Hui, K.; Hui, K.N.; Kim, S.D.; Lim, J.H.; Choi, S.Y.; Zhang, L.J.; Mane, R.S.; Yun, J.M.; Kim, K.H. Facile synthesis of manganese carbonate quantum dots/Ni(HCO3)2–MnCO3 composites as advanced cathode materials for high energy density asymmetric supercapacitors. J. Mater. Chem. A 2015, 3, 22102–22117. [Google Scholar] [CrossRef]
- Liu, K.; Xia, Q.; Si, L.; Kong, Y.; Shinde, N.; Wang, L.; Wang, J.; Hu, Q.; Zhou, A. Defect engineered Ti3C2Tx MXene electrodes by phosphorus doping with enhanced kinetics for supercapacitors. Electrochim. Acta 2022, 435, 141372. [Google Scholar] [CrossRef]
Electrode Material | Electrolyte | Capacitance (Cs/Scan Rate) | Refs. |
---|---|---|---|
NiMoO4@NiWO4 | 3 M KOH | 1290 F g−1/2 A g−1 | [46] |
Co9S8@Ni(OH)2 | 2 M KOH | 1620 F g−1/0.5 A g−1 | [47] |
NiS@NiSe2 | 2 M KOH | 1412 F g−1/0.5 A g−1 | [48] |
Ni3S2@Co9S8 | 2 M KOH | 925 F g−1/0.5 A g−1 | [48] |
Ni3S4@rGO | 2 M KOH | 1830 F g−1/2 A g−1 | [49] |
Co-Ni3S2 | 2 M KOH | 1075.5 F g−1/1 A g−1 | [50] |
Ni3S2@NF | 1 M KOH | 736.64 F g−1/0.8 A g−1 | [51] |
NiS2/Ti3C2Tx | 1 M KOH | 72.0 mAh g−1/1 A g−1 | [52] |
Ni3S2@Ni | 6 M KOH | 945.71 F g−1/17.15 A g−1 | [35] |
Ni3S2/NF | 1 M KOH | 1839.6 F g−1 (Corresponding specific capacity: 255.5 mAh g−1/3 A g−1) | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Q.; Si, L.; Liu, K.; Zhou, A.; Su, C.; Shinde, N.M.; Fan, G.; Dou, J. In Situ Preparation of Three-Dimensional Porous Nickel Sulfide as a Battery-Type Supercapacitor. Molecules 2023, 28, 4307. https://doi.org/10.3390/molecules28114307
Xia Q, Si L, Liu K, Zhou A, Su C, Shinde NM, Fan G, Dou J. In Situ Preparation of Three-Dimensional Porous Nickel Sulfide as a Battery-Type Supercapacitor. Molecules. 2023; 28(11):4307. https://doi.org/10.3390/molecules28114307
Chicago/Turabian StyleXia, Qixun, Lijun Si, Keke Liu, Aiguo Zhou, Chen Su, Nanasaheb M. Shinde, Guangxin Fan, and Jun Dou. 2023. "In Situ Preparation of Three-Dimensional Porous Nickel Sulfide as a Battery-Type Supercapacitor" Molecules 28, no. 11: 4307. https://doi.org/10.3390/molecules28114307
APA StyleXia, Q., Si, L., Liu, K., Zhou, A., Su, C., Shinde, N. M., Fan, G., & Dou, J. (2023). In Situ Preparation of Three-Dimensional Porous Nickel Sulfide as a Battery-Type Supercapacitor. Molecules, 28(11), 4307. https://doi.org/10.3390/molecules28114307