Toll-like Receptor 4 Inflammatory Perspective on Doxorubicin-Induced Cardiotoxicity
Abstract
:1. Introduction
2. The Mechanism of TLR4 on Dox-Induced Cardiotoxicity
3. The Effects of Dox on TLR4 Expression in Cardiomyocytes: Reports from In Vitro Studies
4. The TLR4 Expression in Dox-Induced in Cardiomyocytes: Reports from In Vivo Studies
5. The Potential Role of TLR4 Inhibition in Dox-Induced Cardiotoxicity: Reports from In Vivo Studies
Model | Protocol (Dose, Duration) | Intervention of TLR4 Inhibition (Agent, Dose, Route, Duration) | Major Findings | Interpretation | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
Cardiac Function | Inflammatory Markers | Cardiac Remodeling/Fibrosis | Oxidative Stress | Apoptosis | |||||
C57BL/6J mice | Dox (20 mg/kg, i.p., single dose) -Sacrifice on day 5 | TLR4−/− | ↑ LVESPVR | n/a | n/a | n/a | ↓ TUNEL+ | TLR4 deficiency attenuated Dox-induced cardiac apoptosis and dysfunction in mice. | [31] |
C57BL/10ScSn mice | Dox (20 mg/kg, i.p., single dose) -Sacrifice on day 5 | TLR4−/− | ↑ SV ↑ CO | ↓ TNF-α ↓ CD3+ ↓ CD11b+ ↓ CD8a+ | n/a | ↓ Lipid peroxidation ↓ Nitrotyrosine | ↓ Bax ↑ Bcl-2 ↓ TUNEL+ | TLR4 deficiency rescued Dox-induced cardiotoxicity in mice. | [22] |
C57BL/6J mice | Dox (3.4 mg/kg/wk, i.p., 8 wk) -Sacrifice on day 103 | TLR4ab (first dose was 200 µg/mg and following doses were 100 µg/mg, tv.i., on day 64, 68, 72, 79, 86, 96, and 100 after Dox injection) | ↓ %LVEF ↓ %LVFS | ↔TLR4 ↔ HMGB1 ↔ Hsp70 ↑ MCP-1 ↑ IL-13 ↑ TGF-β1 | ↑ Fibrosis ↑ α-SMA | n/a | n/a | Immunomodulation of TLR4 exacerbated cardiac dysfunction in Dox-treated mic by increasing inflammation and fibrosis. | [40] |
C57BL/6J mice | Dox (15 mg/kg, i.p., single dose) -Sacrifice on day 21 | AAV-Hsp22 (5 × 1010 viral genome particles, tv.i., single dose, before Dox injection for 4 wk) | ↑ %LVEF | ↓ TLR4 ↓ TNF-α ↓ IL-6 ↓ NF-kB ↓ CD68 ↓ CD45 | n/a | n/a | ↓ Bax ↑ Bcl-2 ↓ Cyt c ↓ TUNEL+ | Hsp22 protected the heart against Dox-induced cardiotoxicity via inhibited TLR4/NF-kB signaling pathway in mice. | [14] |
Wistar rats | Dox (2.5 mg/kg/3 doses/wk, i.p., 2 wk) -Sacrifice on day 28 | VA (10, 20, and 40 mg/kg/d, p.o., 4 wk, before Dox injection for 14 days) | n/a | ↓ TLR4 | n/a | ↓ MDA | n/a | VA protected the heart against Dox-induced cardiotoxicity via inhibited TLR4 signaling pathway in rats. | [23] |
6. The Effects of Dox on Systemic TLR4 Expression: Reports from Clinical Studies
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OH | hydroxyl radical |
AAV-Hsp22 | adeno-associated virus-heat shock protein 22 |
AC16 | human cardiomyocyte cell line |
Ad-Hsp22 | adenovirus-heat-shock protein 22 |
Bax | Bcl-2-associated X |
Bcl-2 | B-cell lymphoma-2 |
C34 | 2-acetamidopyranoside |
CO | cardiac output |
Cyt c | cytochrome c |
DAMP | damage-associated molecular pattern |
DIC | Dox-induced cardiotoxicity |
DNA | deoxyribonucleic acid |
Dox | doxorubicin |
ERK | extracellular signal-regulated kinase |
H2O2 | hydrogen peroxide |
hCmPCs | human cardiac mesenchymal progenitor cells |
HMGB1 | high mobility group box 1 |
Hsp | heat shock protein |
Hsp70 | heat shock protein 70 |
i.p. | intraperitoneal injection |
IKK | inhibitory κB kinase |
IL-1β | interleukin-1 beta |
IL-6 | interleukin-6 |
JNK | c-Jun N-terminal kinase |
LPS | lipopolysaccharide |
LVESPVR | left ventricular end-systolic pressure-volume relation |
MAPK | mitogen-activated protein kinase |
MCP-1 | monocyte chemotactic protein 1 |
MD2 | myeloid differentiation factor 2 |
MDA | malondialdehyde |
MyD88 | myeloid differentiation factor 88 |
NPM | nucleophosmin |
O2− | superoxide anion |
PAMP | pathogen-associated molecular pattern |
ROS | reactive oxygen species |
SV | stroke volume |
TGF-β1 | tumor growth factor β1 |
TLR4 | Toll-like receptor 4 |
TNF-α | tumor necrosis factor-alpha |
TUNEL | Terminal deoxynucleotidyl transferase dUTP nick end labeling |
VA | vanillic acid |
α-SMA | α-smooth muscle actin |
References
- Anand, P.; Kunnumakkara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res. 2008, 25, 2097–2116. [Google Scholar] [CrossRef]
- Behranvand, N.; Nasri, F.; Zolfaghari Emameh, R.; Khani, P.; Hosseini, A.; Garssen, J.; Falak, R. Chemotherapy: A double-edged sword in cancer treatment. Cancer Immunol. Immunother. 2022, 71, 507–526. [Google Scholar] [CrossRef]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Thun, M.J.; DeLancey, J.O.; Center, M.M.; Jemal, A.; Ward, E.M. The global burden of cancer: Priorities for prevention. Carcinogenesis 2010, 31, 100–110. [Google Scholar] [CrossRef]
- Sohail, M.; Sun, Z.; Li, Y.; Gu, X.; Xu, H. Research progress in strategies to improve the efficacy and safety of doxorubicin for cancer chemotherapy. Expert Rev. Anticancer Ther. 2021, 21, 1385–1398. [Google Scholar] [CrossRef] [PubMed]
- Christidi, E.; Brunham, L.R. Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death Dis. 2021, 12, 339. [Google Scholar] [CrossRef]
- Benjanuwattra, J.; Siri-Angkul, N.; Chattipakorn, S.C.; Chattipakorn, N. Doxorubicin and its proarrhythmic effects: A comprehensive review of the evidence from experimental and clinical studies. Pharmacol. Res. 2020, 151, 104542. [Google Scholar] [CrossRef]
- Tacar, O.; Sriamornsak, P.; Dass, C.R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol. 2013, 65, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, Q.; Qi, H.; Wang, C.; Wang, C.; Zhang, J.; Dong, L. Doxorubicin-Induced Systemic Inflammation Is Driven by Upregulation of Toll-Like Receptor TLR4 and Endotoxin Leakage. Cancer Res. 2016, 76, 6631–6642. [Google Scholar] [CrossRef] [PubMed]
- Yarmohammadi, F.; Karbasforooshan, H.; Hayes, A.W.; Karimi, G. Inflammation suppression in doxorubicin-induced cardiotoxicity: Natural compounds as therapeutic options. Naunyn-Schmiedebergs Arch. Pharmacol. 2021, 394, 2003–2011. [Google Scholar] [CrossRef] [PubMed]
- Hadi, N.; Yousif, N.G.; Al-amran, F.G.; Huntei, N.K.; Mohammad, B.I.; Ali, S.J. Vitamin E and telmisartan attenuates doxorubicin induced cardiac injury in rat through down regulation of inflammatory response. BMC Cardiovasc. Disord. 2012, 12, 63. [Google Scholar] [CrossRef] [PubMed]
- Singla, D.K.; Johnson, T.A.; Tavakoli Dargani, Z. Exosome Treatment Enhances Anti-Inflammatory M2 Macrophages and Reduces Inflammation-Induced Pyroptosis in Doxorubicin-Induced Cardiomyopathy. Cells 2019, 8, 1224. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Wang, Y.; Huang, K.; Zeng, Q. Heat Shock Protein 22 Attenuates Doxorubicin-Induced Cardiotoxicity via Regulating Inflammation and Apoptosis. Front. Pharmacol. 2020, 11, 257. [Google Scholar] [CrossRef]
- Amin, M.N.; Siddiqui, S.A.; Ibrahim, M.; Hakim, M.L.; Ahammed, M.S.; Kabir, A.; Sultana, F. Inflammatory cytokines in the pathogenesis of cardiovascular disease and cancer. SAGE Open Med. 2020, 8, 2050312120965752. [Google Scholar] [CrossRef]
- Vijay, K. Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int. Immunopharmacol. 2018, 59, 391–412. [Google Scholar] [CrossRef]
- Spirig, R.; Tsui, J.; Shaw, S. The Emerging Role of TLR and Innate Immunity in Cardiovascular Disease. Cardiol. Res. Pract. 2012, 2012, 181394. [Google Scholar] [CrossRef]
- Sumneang, N.; Oo, T.T.; Singhanat, K.; Maneechote, C.; Arunsak, B.; Nawara, W.; Pratchayasakul, W.; Benjanuwattra, J.; Apaijai, N.; Liang, G.; et al. Inhibition of myeloid differentiation factor 2 attenuates cardiometabolic impairments via reducing cardiac mitochondrial dysfunction, inflammation, apoptosis and ferroptosis in prediabetic rats. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2022, 1868, 166301. [Google Scholar] [CrossRef]
- Oo, T.T.; Sumneang, N.; Ongnok, B.; Arunsak, B.; Chunchai, T.; Kerdphoo, S.; Apaijai, N.; Pratchayasakul, W.; Liang, G.; Chattipakorn, N.; et al. L6H21 protects against cognitive impairment and brain pathologies via toll-like receptor 4–myeloid differentiation factor 2 signalling in prediabetic rats. Br. J. Pharmacol. 2022, 179, 1220–1236. [Google Scholar] [CrossRef]
- Alanazi, A.M.; Fadda, L.; Alhusaini, A.; Ahmad, R.; Hasan, I.H.; Mahmoud, A.M. Liposomal Resveratrol and/or Carvedilol Attenuate Doxorubicin-Induced Cardiotoxicity by Modulating Inflammation, Oxidative Stress and S100A1 in Rats. Antioxidants 2020, 9, 159. [Google Scholar] [CrossRef]
- Sumneang, N.; Apaijai, N.; Chattipakorn, S.C.; Chattipakorn, N. Myeloid differentiation factor 2 in the heart: Bench to bedside evidence for potential clinical benefits? Pharmacol. Res. 2021, 163, 105239. [Google Scholar] [CrossRef]
- Riad, A.; Bien, S.; Gratz, M.; Escher, F.; Westermann, D.; Heimesaat, M.M.; Bereswill, S.; Krieg, T.; Felix, S.B.; Schultheiss, H.P.; et al. Toll-like receptor-4 deficiency attenuates doxorubicin-induced cardiomyopathy in mice. Eur. J. Heart Fail. 2008, 10, 233–243. [Google Scholar] [CrossRef]
- Baniahmad, B.; Safaeian, L.; Vaseghi, G.; Rabbani, M.; Mohammadi, B. Cardioprotective effect of vanillic acid against doxorubicin-induced cardiotoxicity in rat. Res. Pharm. Sci. 2020, 15, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, O.M.; Galaly, S.R.; Mostafa, M.M.A.; Eed, E.M.; Ali, T.M.; Fahmy, A.M.; Zaky, M.Y. Thyme Oil and Thymol Counter Doxorubicin-Induced Hepatotoxicity via Modulation of Inflammation, Apoptosis, and Oxidative Stress. Oxid. Med. Cell. Longev. 2022, 2022, 6702773. [Google Scholar] [CrossRef] [PubMed]
- Oo, T.T.; Pratchayasakul, W.; Chattipakorn, N.; Chattipakorn, S.C. Emerging roles of toll-like receptor 4 in chemotherapy-induced neurotoxicity. Neurotoxicology 2022, 93, 112–127. [Google Scholar] [CrossRef] [PubMed]
- Rawat, P.S.; Jaiswal, A.; Khurana, A.; Bhatti, J.S.; Navik, U. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed. Pharmacother. 2021, 139, 111708. [Google Scholar] [CrossRef]
- Feng, P.; Yang, Y.; Liu, N.; Wang, S. Baicalin regulates TLR4/IκBα/NFκB signaling pathway to alleviate inflammation in Doxorubicin related cardiotoxicity. Biochem. Biophys. Res. Commun. 2022, 637, 1–8. [Google Scholar] [CrossRef]
- Kashani, B.; Zandi, Z.; Pourbagheri-Sigaroodi, A.; Bashash, D.; Ghaffari, S.H. The role of toll-like receptor 4 (TLR4) in cancer progression: A possible therapeutic target? J. Cell. Physiol. 2021, 236, 4121–4137. [Google Scholar] [CrossRef]
- Vaure, C.; Liu, Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front. Immunol. 2014, 5, 316. [Google Scholar] [CrossRef]
- Yang, D.; Han, Z.; Oppenheim, J.J. Alarmins and immunity. Immunol. Rev. 2017, 280, 41–56. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, X.; Zhang, G.; Zhang, Y.; Qian, W.; Rui, T. Role of HMGB1 in doxorubicin-induced myocardial apoptosis and its regulation pathway. Basic Res. Cardiol. 2012, 107, 267. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Cai, X.; Wang, Y.; Zhu, H.; Zhang, P.; Jiang, P.; Yang, X.; Sun, J.; Hong, L.; Shao, L. Circ-SKA3 Enhances Doxorubicin Toxicity in AC16 Cells Through miR-1303/TLR4 Axis. Int. Heart J. 2021, 62, 1112–1123. [Google Scholar] [CrossRef]
- Xu, L.; Wang, C.; Zou, Z.; Wu, Z. Ozone Attenuated H9c2 Cell Injury Induced by Doxorubicin. J. Cardiovasc. Pharmacol. 2021, 78, e86–e93. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli Dargani, Z.; Singla, D.K. Embryonic stem cell-derived exosomes inhibit doxorubicin-induced TLR4-NLRP3-mediated cell death-pyroptosis. Am. J. Physiol. Heart Circ. Physiol. 2019, 317, H460–H471. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Bianchi, M.E.; Coleman, T.R.; Tracey, K.J.; Al-Abed, Y. Exploring the biological functional mechanism of the HMGB1/TLR4/MD-2 complex by surface plasmon resonance. Mol. Med. 2018, 24, 21. [Google Scholar] [CrossRef]
- Tripathi, A.; Shrinet, K.; Kumar, A. HMGB1 protein as a novel target for cancer. Toxicol. Rep. 2019, 6, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, H.; Andersson, U. Targeting Inflammation Driven by HMGB1. Front. Immunol. 2020, 11, 484. [Google Scholar] [CrossRef] [PubMed]
- Syukri, A.; Budu; Hatta, M.; Amir, M.; Rohman, M.S.; Mappangara, I.; Kaelan, C.; Wahyuni, S.; Bukhari, A.; Junita, A.R.; et al. Doxorubicin induced immune abnormalities and inflammatory responses via HMGB1, HIF1-α and VEGF pathway in progressive of cardiovascular damage. Ann. Med. Surg. 2022, 76, 103501. [Google Scholar] [CrossRef]
- Beji, S.; D’Agostino, M.; Gambini, E.; Sileno, S.; Scopece, A.; Vinci, M.C.; Milano, G.; Melillo, G.; Napolitano, M.; Pompilio, G.; et al. Doxorubicin induces an alarmin-like TLR4-dependent autocrine/paracrine action of Nucleophosmin in human cardiac mesenchymal progenitor cells. BMC Biol. 2021, 19, 124. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, X.; Bao, H.; Mi, S.; Cai, W.; Yan, H.; Wang, Q.; Wang, Z.; Yan, J.; Fan, G.-C.; et al. Toll-like receptor (TLR) 2 and TLR4 differentially regulate doxorubicin induced cardiomyopathy in mice. PLoS ONE 2012, 7, e40763. [Google Scholar] [CrossRef]
- Saadat, S.; Noureddini, M.; Mahjoubin-Tehran, M.; Nazemi, S.; Shojaie, L.; Aschner, M.; Maleki, B.; Abbasi-kolli, M.; Rajabi Moghadam, H.; Alani, B.; et al. Pivotal Role of TGF-β/Smad Signaling in Cardiac Fibrosis: Non-coding RNAs as Effectual Players. Front. Cardiovasc. Med. 2021, 7, 588347. [Google Scholar] [CrossRef]
- Tawadros, P.S.; Powers, K.A.; Ailenberg, M.; Birch, S.E.; Marshall, J.C.; Szaszi, K.; Kapus, A.; Rotstein, O.D. Oxidative Stress Increases Surface Toll-Like Receptor 4 Expression in Murine Macrophages Via Ceramide Generation. Shock 2015, 44, 157–165. [Google Scholar] [CrossRef]
- Hedhli, N.; Wang, L.; Wang, Q.; Rashed, E.; Tian, Y.; Sui, X.; Madura, K.; Depre, C. Proteasome activation during cardiac hypertrophy by the chaperone H11 Kinase/Hsp22. Cardiovasc. Res. 2008, 77, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Lizano, P.; Rashed, E.; Kang, H.; Dai, H.; Sui, X.; Yan, L.; Qiu, H.; Depre, C. The valosin-containing protein promotes cardiac survival through the inducible isoform of nitric oxide synthase. Cardiovasc. Res. 2013, 99, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Chen, Y.; Luo, Z.; Nie, G.; Dai, Y. Role of oxidative stress and inflammation-related signaling pathways in doxorubicin-induced cardiomyopathy. Cell Commun. Signal. 2023, 21, 61. [Google Scholar] [CrossRef] [PubMed]
- Pop-Moldovan, A.L.; Trofenciuc, N.M.; Dărăbanţiu, D.A.; Precup, C.; Branea, H.; Christodorescu, R.; Puşchiţă, M. Customized laboratory TLR4 and TLR2 detection method from peripheral human blood for early detection of doxorubicin-induced cardiotoxicity. Cancer Gene Ther. 2017, 24, 203–207. [Google Scholar] [CrossRef]
- Trofenciuc, N.M.; Bordejevic, A.D.; Tomescu, M.C.; Petrescu, L.; Crisan, S.; Geavlete, O.; Mischie, A.; Onel, A.F.M.; Sasu, A.; Pop-Moldovan, A.L. Toll-like receptor 4 (TLR4) expression is correlated with T2* iron deposition in response to doxorubicin treatment: Cardiotoxicity risk assessment. Sci. Rep. 2020, 10, 17013. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wang, X.; Wallen, R.; Deng, X.; Du, X.; Hallberg, E.; Andersson, R. The influence of apoptosis on intestinal barrier integrity in rats. Scand. J. Gastroenterol. 1998, 33, 415–422. [Google Scholar] [CrossRef]
- Cray, P.; Sheahan, B.J.; Cortes, J.E.; Dekaney, C.M. Doxorubicin increases permeability of murine small intestinal epithelium and cultured T84 monolayers. Sci. Rep. 2020, 10, 21486. [Google Scholar] [CrossRef]
- Huang, J.; Wei, S.; Jiang, C.; Xiao, Z.; Liu, J.; Peng, W.; Zhang, B.; Li, W. Involvement of Abnormal Gut Microbiota Composition and Function in Doxorubicin-Induced Cardiotoxicity. Front. Cell. Infect. Microbiol. 2022, 12, 808837. [Google Scholar] [CrossRef]
- Lu, Y.-C.; Yeh, W.-C.; Ohashi, P.S. LPS/TLR4 signal transduction pathway. Cytokine 2008, 42, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Kuzmich, N.N.; Sivak, K.V.; Chubarev, V.N.; Porozov, Y.B.; Savateeva-Lyubimova, T.N.; Peri, F. TLR4 Signaling Pathway Modulators as Potential Therapeutics in Inflammation and Sepsis. Vaccines 2017, 5, 34. [Google Scholar] [CrossRef]
- Shimazu, R.; Akashi, S.; Ogata, H.; Nagai, Y.; Fukudome, K.; Miyake, K.; Kimoto, M. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 1999, 189, 1777–1782. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Zhu, X.; Jin, L.; Chen, M.; Zhang, W.; Su, J. SMGR: A joint statistical method for integrative analysis of single-cell multi-omics data. NAR Genom. Bioinform. 2022, 4, lqac056. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Zhang, T.; Yang, B.; Su, J.; Song, Q. spaCI: Deciphering spatial cellular communications through adaptive graph model. Brief Bioinform. 2023, 24, bbac563. [Google Scholar] [CrossRef]
Model | Protocol (Drug, Dose, Duration) | Major Findings | Interpretation | Ref. | |
---|---|---|---|---|---|
Inflammatory Markers | Apoptosis | ||||
AC16 cells |
|
|
| Dox treatment increased the expressions of TLR4 and apoptotic proteins in AC16 cells. | [32] |
H9c2 |
|
|
| Dox administration induced TLR4 signaling pathway activation in H9c2. | [27] |
Neonatal cardiomyocytes |
|
|
| Dox treatment increased the release of HMGB1 and caspase-3 expression in neonatal cardiomyocytes. | [31] |
hCmPCs cells |
|
|
| Dox treatment increased the level of NPM in hCmPCs cells. | [39] |
Model | Protocol (Dose, Route, Duration) | Major Findings | Interpretation | Ref. | ||||
---|---|---|---|---|---|---|---|---|
Cardiac Function | Inflammatory Markers | Cardiac Remodeling/Fibrosis | Oxidative Stress | Apoptosis | ||||
C57BL/6J mice | Dox (3.4 mg/kg/wk, i.p., 8 wk) | ↓ %LVEF ↓ %LVFS | ↑ TLR4 ↑ HMGB1 ↑ Hsp70 ↑ MCP-1 ↑ IL-13 ↑ TGF-β1 | ↑ Fibrosis ↑ α-SMA | n/a | n/a | Dox induced cardiac inflammation via increasing TLR4 signaling pathway, leading to cardiac dysfunction in mice. | [40] |
C57BL/6J mice | Dox (15 mg/kg, i.p., single dose) | ↓ %LVEF | ↑ TLR4 ↑ TNF-α ↑ IL-6 ↑ NF-kB ↑ CD68 ↑ CD45 | n/a | n/a | ↑ Bax ↓ Bcl-2 ↑ Cyt c ↑ TUNEL+ | Dox induced cardiac inflammation and apoptosis via increasing TLR4/NF-kB signaling pathway, leading to impaired cardiac function in mice. | [14] |
Wistar rats | Dox (2.5 mg/kg/3 doses/wk, i.p., 2 wk) | n/a | ↑ TLR4 | n/a | ↑ MDA | n/a | Dox induced cardiac inflammation and oxidative stress via increasing TLR4 and MDA in rats. | [23] |
Model | Methods | Major Findings | Interpretation | Ref. |
---|---|---|---|---|
Patients with hematological malignancy who received treatment with doxorubicin (n = 25);
|
| 16 patients (64%) developed left ventricular diastolic dysfunction, associated with high gene expression of TLR4 after 6 months of Dox treatment. | The TLR4 expression may play as a marker for risk of doxorubicin-induced cardiotoxicity. | [46] |
Patients with hematological malignancy who received treatment with doxorubicin (n = 25);
|
| There is a strong negative linear relationship between TLR4 expression and LVEF in patients after 6 weeks of Dox treatment. | Elevation of TLR4 levels were implicated in Dox-induced left ventricular dysfunction. | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sumneang, N.; Tanajak, P.; Oo, T.T. Toll-like Receptor 4 Inflammatory Perspective on Doxorubicin-Induced Cardiotoxicity. Molecules 2023, 28, 4294. https://doi.org/10.3390/molecules28114294
Sumneang N, Tanajak P, Oo TT. Toll-like Receptor 4 Inflammatory Perspective on Doxorubicin-Induced Cardiotoxicity. Molecules. 2023; 28(11):4294. https://doi.org/10.3390/molecules28114294
Chicago/Turabian StyleSumneang, Natticha, Pongpan Tanajak, and Thura Tun Oo. 2023. "Toll-like Receptor 4 Inflammatory Perspective on Doxorubicin-Induced Cardiotoxicity" Molecules 28, no. 11: 4294. https://doi.org/10.3390/molecules28114294
APA StyleSumneang, N., Tanajak, P., & Oo, T. T. (2023). Toll-like Receptor 4 Inflammatory Perspective on Doxorubicin-Induced Cardiotoxicity. Molecules, 28(11), 4294. https://doi.org/10.3390/molecules28114294