ReS2 Nanoflowers-Assisted Confined Growth of Gold Nanoparticles for Ultrasensitive and Reliable SERS Sensing
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation Process and Characterization Analysis of ReS2/AuNPs Complexes
2.2. The Controlled Growth of AuNPs Assisted by ReS2 Nanoflowers
2.3. Feasibility and Sensitivity Analysis of the ReS2/AuNPs SERS Substrate
2.4. Stability Analysis of the ReS2/AuNPs SERS Substrate
2.5. The Detector Range and Practical Applications of ReS2/AuNPs SERS Substrate
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Three-Dimensional ReS2 Nanoflowers
3.3. Synthesis of the ReS2/AuNPs Complexes
3.4. Materials Characterization
3.5. SERS Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Fan, M.; Andrade, G.F.S.; Brolo, A.G. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal. Chim. Acta 2020, 1097, 1–29. [Google Scholar] [CrossRef]
- Xu, K.; Zhou, R.; Takei, K.; Hong, M. Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Adv. Sci. 2019, 6, 1900925. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Hassan, M.M.; Ali, S.; Li, H.; Sheng, R.; Chen, Q. Evolving trends in SERS-based techniques for food quality and safety: A review. Trends Food Sci. Technol. 2021, 112, 225–240. [Google Scholar] [CrossRef]
- Liu, H.; Gao, X.; Xu, C.; Liu, D. SERS tags for biomedical detection and bioimaging. Theranostics 2022, 12, 1870. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.X.; Duan, G.; Xu, W.; Xu, C.; Jiang, J.; Yang, Z.; Pi, F. Flexible surface-enhanced Raman scatting substrates: Recent advances in their principles, design strategies, diversified material selections and applications. Crit. Rev. Food Sci. Nutri. 2022. [Google Scholar] [CrossRef]
- Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- Wang, K.; Sun, D.-W.; Pu, H.; Wei, Q. Surface-enhanced Raman scattering of core-shell Au@Ag nanoparticles aggregates for rapid detection of difenoconazole in grapes. Talanta 2019, 191, 449–456. [Google Scholar] [CrossRef]
- Almehmadi, L.M.; Curley, S.M.; Tokranova, N.A.; Tenenbaum, S.A.; Lednev, I.K. Surface enhanced Raman spectroscopy for single molecule protein detection. Sci. Rep. 2019, 9, 12356. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y.; Jiang, X.; Dong, C.; Song, C.; Han, C.; Wang, L. Ultrasensitive SERS detection of nucleic acids via simultaneous amplification of target-triggered enzyme-free recycling and multiple-reporter. Biosens. Bioelectron. 2019, 141, 111402. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, J.; Hu, L.; Tan, Y.; Liu, S.; Yin, J. Recent advances in formaldehyde-responsive fluorescent probes. Chin. Chem. Lett. 2017, 28, 1935–1942. [Google Scholar] [CrossRef]
- Yeh, T.; Lin, T.; Chen, C.; Wen, H. Analysis of free and bound formaldehyde in squid and squid products by gas chromatography–mass spectrometry. J. Food Drug Anal. 2013, 21, 190–197. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, C.; Li, S.; Fan, J. A hydrophobic deep eutectic solvent based vortex-assisted liquid-liquid microextraction for the determination of formaldehyde from biological and indoor air samples by high performance liquid chromatography. J. Chromatogr. A 2019, 1589, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yan, B.; Chen, L. SERS tags: Novel optical nanoprobes for bioanalysis. Chem. Rev. 2013, 113, 1391–1428. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Hao, Q.; Li, M.; Fan, X.; Li, G.; Tang, X.; Qiu, T. Flexible plasmonic nanocavity: A universal platform for the identification of molecular orientations. Nanoscale 2023, 15, 6588–6595. [Google Scholar] [CrossRef]
- Fu, Q.; Zhan, Z.; Dou, J.; Zheng, X.; Xu, R.; Wu, M. Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique. ACS Appl. Mater. Interfaces 2015, 7, 13322–13328. [Google Scholar] [CrossRef]
- Jin, J.; Guo, Z.; Fan, D.; Zhao, B. Spotting the driving forces for SERS of two-dimensional nanomaterials. Mater. Horiz. 2023, 10, 1087–1104. [Google Scholar] [CrossRef]
- Yin, Z.; Xu, K.; Jiang, S.; Luo, D.; Chen, R.; Xu, C.; Liu, Y. Recent progress on two-dimensional layered materials for surface-enhanced Raman spectroscopy and their applications. Mater. Today Phys. 2021, 18, 100378. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, E.; Shi, H.; Tao, Y.; Ren, X. Semiconductor-based surface-enhanced Raman scattering (SERS): From active materials to performance improvement. Analyst 2022, 147, 1257–1272. [Google Scholar] [CrossRef]
- Muehlethaler, C.; Considine, C.R.; Menon, V.; Lin, W.-C.; Lee, Y.-H.; Lombardi, J.R. Ultrahigh Raman enhancement on monolayer MoS2. ACS Photonics 2016, 3, 1164–1169. [Google Scholar] [CrossRef]
- Yang, B.; Jin, S.; Guo, S.; Park, Y.; Chen, L.; Zhao, B.; Jung, Y.M. Recent development of SERS technology: Semiconductor-based study. Acs Omega 2019, 4, 20101–20108. [Google Scholar] [CrossRef]
- Yu, L.; Lv, R. Two–dimensional layer materials for highly efficient molecular sensing based on surface–enhanced Raman scattering. New Carbon Mater. 2021, 36, 995–1012. [Google Scholar] [CrossRef]
- Lv, Q.; Wu, X.; Tan, J.; Liu, B.; Gan, L.; Li, J.; Lv, R. Ultrasensitive molecular sensing of few-layer niobium diselenide. J. Mater. Chem. A 2021, 9, 2725–2733. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, S.; Soni, R.K. Synthesis of 3D-MoS2 nanoflowers with tunable surface area for the application in photocatalysis and SERS based sensing. J. Alloys Compd. 2020, 849, 156502. [Google Scholar] [CrossRef]
- Singha, S.S.; Mondal, S.; Bhattacharya, T.S.; Das, L.; Sen, K.; Satpati, B.; Singha, A. Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing. Biosens.Bioelectron. 2018, 119, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Lv, K.; Si, H.; Liu, J.; Zhu, T.; Xia, Y.; Chen, S.; Yang, C. Plasmonic filters based on MoS2@Au/Ag hybrids: Controllable separation, preconcentration, and sensitive SERS detection. J. Alloys Compd. 2020, 846, 156438. [Google Scholar] [CrossRef]
- Yu, X.; Sun, Y.; Hu, J.; Wang, J.; Zhuang, X.; Zhang, S.; Hu, Y. MoS2/Au/Ag Nanostructures for ratiometric surface–enhanced Raman scattering determination of pesticide residues. ACS Appl. Nano Mater. 2023, 6, 685–694. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Z.; Chen, M.; Tan, Y.; Chen, F. Enhanced Raman scattering of CuPc films on imperfect WSe2 monolayer correlated to exciton and charge-transfer resonances. Adv. Funct. Mater. 2018, 28, 1805710. [Google Scholar] [CrossRef]
- Gong, C.; Zhang, Y.; Chen, W.; Chu, J.; Lei, T.; Pu, J.; Xiong, J. Electronic and optoelectronic applications based on 2D novel anisotropic transition metal dichalcogenides. Adv. Sci. 2017, 4, 1700231. [Google Scholar] [CrossRef]
- Lv, Q.; Qin, X.; Lv, R. Controllable growth of few-layer niobium disulfide by atmospheric pressure chemical vapor deposition for molecular sensing. Front. Mater. 2019, 6, 279. [Google Scholar] [CrossRef]
- Rahman, M.; Davey, K.; Qiao, S.Z. Advent of 2D rhenium disulfide (ReS2): Fundamentals to applications. Adv. Funct. Mater. 2017, 27, 1606129. [Google Scholar] [CrossRef]
- Zhang, Q.; Fu, L. Novel insights and perspectives into weakly coupled ReS2 toward emerging applications. Chem 2019, 5, 505–525. [Google Scholar] [CrossRef]
- Miao, P.; Qin, J.K.; Shen, Y.; Su, H.; Dai, J.; Song, B.; Xu, P. Unraveling the Raman enhancement mechanism on 1T′–phase ReS2 nanosheets. Small 2018, 14, 1704079. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Liang, L.; Ling, X.; Zhang, S.; Mao, N.; Zhang, N.; Zhang, J. Enhanced Raman scattering on in–plane anisotropic layered materials. J. Am. Chem. Soc. 2015, 137, 15511–15517. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wei, Y.; Fan, X.; Li, G.; Hao, Q.; Qiu, T. Mixed-dimensional van der Waals heterojunction-enhanced Raman scattering. Nano Res. 2022, 15, 637–643. [Google Scholar] [CrossRef]
- Wang, L.; Yu, D.; Huang, B.; Ou, Z.; Tao, L.; Tao, L.; Zhao, Y. Large-area ReS2 monolayer films on flexible substrates for SERS based molecular sensing with strong fluorescence quenching. Appl. Surf. Sci. 2021, 542, 148757. [Google Scholar] [CrossRef]
- Liu, R.; Jiang, L.; Yu, Z.; Jing, X.; Liang, X.; Wang, D.; Jin, S. MXene (Ti3C2Tx)-Ag nanocomplex as efficient and quantitative SERS biosensor platform by in-situ PDDA electrostatic self-assembly synthesis strategy. Sens. Actuators B Chem. 2021, 333, 129581. [Google Scholar] [CrossRef]
- Liu, L.; Shangguan, C.; Guo, J.; Ma, K.; Jiao, S.; Yao, Y.; Wang, J. Ultrasensitive SERS detection of cancer-related miRNA-182 by MXene/MoS2@AuNPs with controllable morphology and optimized self-internal standards. Adv. Opt. Mater. 2020, 8, 2001214. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Rao, G.; Wang, Y.; Du, X.; Hu, A.; Xiong, J. Coupling enhancement mechanisms, materials, and strategies for surface-enhanced Raman scattering devices. Analyst 2021, 146, 5008–5032. [Google Scholar] [CrossRef]
- Lin, S.; Mandavkar, R.; Burse, S.; Habib, M.A.; Khalid, T.; Joni, M.H.; Lee, J. MoS2 nanoplatelets on hybrid core-shell (HyCoS) AuPd NPs for hybrid SERS platform for detection of R6G. Nanomaterials 2023, 13, 769. [Google Scholar] [CrossRef]
- Liu, X.; Dang, A.; Li, T.; Sun, Y.; Lee, T.C.; Deng, W.; Li, H. Plasmonic coupling of Au nanoclusters on a flexible MXene/Graphene oxide fiber for ultrasensitive SERS sensing. ACS Sens. 2023, 8, 1287–1298. [Google Scholar] [CrossRef]
- Shao, M.; Zhang, C.; Yu, J.; Jiang, S.; Zhao, X.; Li, Z.; Li, Z. Noble metal modified ReS2 nanocavity for surface-enhanced Raman spectroscopy (SERS) analysis. Opt. Express 2021, 29, 28664–28679. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, K.; Pan, G.M.; Luo, Z.J.; Xie, Y.; Li, Y.Y.; Wang, Q.Q. Largely enhanced photocatalytic hydrogen production rate of CdS/(Au-ReS2) nanospheres by the dielectric–plasmon hybrid antenna effect. Nanoscale 2018, 10, 19586–19594. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Fang, C.; Zhu, Z.; Wang, J.; Yu, B.; Zhang, J. Nanoscale engineering and Mo-doping of 2D ultrathin ReS2 nanosheets for remarkable electrocatalytic hydrogen generation. Nanoscale 2020, 12, 17045–17052. [Google Scholar] [CrossRef]
- Mubeen, B.; Rasool, M.G.; Ullah, I.; Rasool, R.; Imam, S.S.; Alshehri, S.; Kazmi, I. Phytochemicals mediated synthesis of AuNPs from citrullus colocynthis and their characterization. Molecules 2022, 27, 1300. [Google Scholar] [CrossRef]
- Nam, N.N.; Bui, T.L.; Son, S.J.; Joo, S.W. Ultrasonication-induced self-Assembled fixed nanogap arrays of monomeric plasmonic nanoparticles inside nanopores. Adv. Funct. Mater. 2019, 29, 1809146. [Google Scholar] [CrossRef]
- Chen, H.Y.; Xin, P.L.; Xu, H.B.; Lv, J.; Qian, R.C.; Li, D. W Self-Assembled plasmonic nanojunctions mediated by host-guest interaction for ultrasensitive dual-mode detection of cholesterol. ACS Sens. 2023, 8, 388–396. [Google Scholar] [CrossRef]
- Li, M.; Gao, Y.; Fan, X.; Wei, Y.; Hao, Q.; Qiu, T. Origin of layer-dependent SERS tunability in 2D transition metal dichalcogenides. Nanoscale Horiz. 2021, 6, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Ji, B.; Dai, Z.; Du, X.; He, B.; Chen, G.; Pan, H. Vertically-aligned 1T/2H-MS2 (M=Mo, W) nanosheets for surface-enhanced Raman scattering with long-term stability and large-scale uniformity. Appl. Surf. Sci. 2020, 527, 146769. [Google Scholar] [CrossRef]
- Yang, B.; Wang, Y.; Guo, S.; Jin, S.; Park, E.; Chen, L.; Jung, Y.M. Charge transfer study for semiconductor and semiconductor/metal composites based on surface-enhanced Raman scattering. Bull Korean Chem Soc. 2021, 42, 1411–1418. [Google Scholar] [CrossRef]
- Dai, X.; Xue, D.; Liu, X.; Gu, C.; Jiang, T. An adhesive SERS substrates based on a stretched silver nanowire-tape for the in situ multicomponent analysis of pesticide residues. Anal. Methods 2023, 15, 1261–1273. [Google Scholar] [CrossRef]
- Wu, M.T.; Wu, C.F.; Wu, J.R.; Chen, B.H.; Chen, E.K.; Chao, M.C.; Ho, C.K. The public health threat of phthalate-tainted foodstuffs in Taiwan: The policies the government implemented and the lessons we learned. Environ. Int. 2012, 44, 75–79. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liao, H.; Wu, S.; Weng, X.; Wang, Y.; Liu, L.; Qu, J.; Song, J.; Ye, S.; Yu, X.; et al. ReS2 Nanoflowers-Assisted Confined Growth of Gold Nanoparticles for Ultrasensitive and Reliable SERS Sensing. Molecules 2023, 28, 4288. https://doi.org/10.3390/molecules28114288
Li Y, Liao H, Wu S, Weng X, Wang Y, Liu L, Qu J, Song J, Ye S, Yu X, et al. ReS2 Nanoflowers-Assisted Confined Growth of Gold Nanoparticles for Ultrasensitive and Reliable SERS Sensing. Molecules. 2023; 28(11):4288. https://doi.org/10.3390/molecules28114288
Chicago/Turabian StyleLi, Yongping, Haohui Liao, Shaobing Wu, Xiaoyu Weng, Yiping Wang, Liwei Liu, Junle Qu, Jun Song, Shuai Ye, Xiantong Yu, and et al. 2023. "ReS2 Nanoflowers-Assisted Confined Growth of Gold Nanoparticles for Ultrasensitive and Reliable SERS Sensing" Molecules 28, no. 11: 4288. https://doi.org/10.3390/molecules28114288