High-Performance Dual-Ion Battery Based on Silicon–Graphene Composite Anode and Expanded Graphite Cathode
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and Morphology Analysis
2.2. Electrochemical Studies
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Material Preparation
3.2.1. Preparation of Si@G Anode Material
3.2.2. Preparation of EG Cathode Material
3.3. Material Characterization
3.4. Electrochemical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Hadjipaschalis, I.; Poullikkas, A.; Efthimiou, V. Overview of current and future energy storage technologies for electric power applications. Renew. Sustain. Energy Rev. 2009, 13, 1513–1522. [Google Scholar] [CrossRef]
- Naik, M.V. Recent advancements and key challenges with energy storage technologies for electric vehicles. Int. J. Electr. Hybrid Veh. 2021, 13, 256–288. [Google Scholar] [CrossRef]
- Niu, J.; Zhang, S.; Niu, Y.; Song, H.; Chen, X.; Zhou, J. Silicon-Based Anode Materials for Lithium-Ion Batteries. Prog. Chem. 2015, 27, 1275–1290. [Google Scholar]
- Ji, B.; Zhang, F.; Song, X.; Tang, Y. A Novel Potassium-Ion-Based Dual-Ion Battery. Adv. Mater. 2017, 29, 1700519. [Google Scholar] [CrossRef]
- Wang, S.; Jiao, S.; Tian, D.; Chen, H.-S.; Jiao, H.; Tu, J.; Liu, Y.; Fang, D.-N. A Novel Ultrafast Rechargeable Multi-Ions Battery. Adv. Mater. 2017, 29, 1606349. [Google Scholar] [CrossRef]
- Sui, Y.; Liu, C.; Masse, R.C.; Neale, Z.G.; Atif, M.; AlSalhi, M.; Cao, G. Dual-ion batteries: The emerging alternative rechargeable batteries. Energy Storage Mater. 2020, 25, 1–32. [Google Scholar] [CrossRef]
- Wang, M.; Tang, Y. A Review on the Features and Progress of Dual-Ion Batteries. Adv. Energy Mater. 2018, 8, 1703320. [Google Scholar] [CrossRef]
- Zheng, C.; Wu, J.; Li, Y.; Liu, X.; Zeng, L.; Wei, M. High-Performance Lithium-Ion-Based Dual-Ion Batteries Enabled by Few-Layer MoSe2/Nitrogen-Doped Carbon. ACS Sustain. Chem. Eng. 2020, 8, 5514–5523. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, Y.; Zhang, F.; Lee, C.-S. A Novel Aluminum–Graphite Dual-Ion Battery. Adv. Energy Mater. 2016, 6, 1502588. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, Y.; Zhang, X.; Cheng, L.; Qian, M.; Wei, W.; Wang, H. Germanium-based high-performance dual-ion batteries. Nanoscale 2020, 12, 79–84. [Google Scholar] [CrossRef]
- Luo, P.; Zheng, C.; He, J.; Tu, X.; Sun, W.; Pan, H.; Zhou, Y.; Rui, X.; Zhang, B.; Huang, K. Structural Engineering in Graphite-Based Metal-Ion Batteries. Adv. Funct. Mater. 2021, 32, 2107277. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, H.; Zhang, X.; Tang, Y. A Review of Emerging Dual-Ion Batteries: Fundamentals and Recent Advances. Adv. Funct. Mater. 2021, 31, 2010958. [Google Scholar] [CrossRef]
- Ou, X.; Gong, D.; Han, C.; Liu, Z.; Tang, Y. Advances and Prospects of Dual-Ion Batteries. Adv. Energy Mater. 2021, 11, 2102498. [Google Scholar] [CrossRef]
- Han, Y.; Qi, P.; Feng, X.; Li, S.; Fu, X.; Li, H.; Chen, Y.; Zhou, J.; Li, X.; Wang, B. In Situ Growth of MOFs on the Surface of Si Nanoparticles for Highly Efficient Lithium Storage: Si@MOF Nanocomposites as Anode Materials for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2015, 7, 2178–2182. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.; Sun, J.; Liu, H.; Wang, R.; Liu, C.; Zhao, Y.; Li, J.; Zheng, Y.; Rui, X. Microstructure Engineered Silicon Alloy Anodes for Lithium-Ion Batteries: Advances and Challenges. Batter. Supercaps 2023, 6, e202200481. [Google Scholar] [CrossRef]
- Raić, M.; Mikac, L.; Marić, I.; Štefanić, G.; Škrabić, M.; Gotić, M.; Ivanda, M. Nanostructured Silicon as Potential Anode Material for Li-Ion Batteries. Molecules 2020, 25, 891. [Google Scholar] [CrossRef]
- Shi, C.; Chen, J.; Guo, T.; Luo, G.; Shi, H.; Shi, Z.; Qin, G.; Zhang, L.; He, X. Controllable Preparation to Boost High Performance of Nanotubular SiO2@C as Anode Materials for Lithium-Ion Batteries. Batteries 2023, 9, 107. [Google Scholar] [CrossRef]
- Fang, H.; Liu, Q.; Feng, X.; Yan, J.; Wang, L.; He, L.; Zhang, L.; Wang, G. Carbon-Coated Si Nanoparticles Anchored on Three-Dimensional Carbon Nanotube Matrix for High-Energy Stable Lithium-Ion Batteries. Batteries 2023, 9, 118. [Google Scholar] [CrossRef]
- Duan, H.; Xu, H.; Wu, Q.; Zhu, L.; Zhang, Y.; Yin, B.; He, H. Silicon/Graphite/Amorphous Carbon as Anode Materials for Lithium Secondary Batteries. Molecules 2023, 28, 464. [Google Scholar] [CrossRef]
- Shi, F.; Song, Z.; Ross, P.N.; Somorjai, G.A.; Ritchie, R.O.; Komvopoulos, K. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries. Nat. Commun. 2016, 7, 11886. [Google Scholar] [CrossRef]
- Jung, H.; Park, M.; Yoon, Y.-G.; Kim, G.-B.; Joo, S.-K. Amorphous silicon anode for lithium-ion rechargeable batteries. J. Power Sources 2003, 115, 346–351. [Google Scholar] [CrossRef]
- Du, F.-H.; Wang, K.-X.; Chen, J.-S. Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials. J. Mater. Chem. A 2016, 4, 32–50. [Google Scholar] [CrossRef]
- Chae, S.; Ko, M.; Kim, K.; Ahn, K.; Cho, J. Confronting Issues of the Practical Implementation of Si Anode in High-Energy Lithium-Ion Batteries. Joule 2017, 1, 47–60. [Google Scholar] [CrossRef]
- He, S.; Wang, S.; Chen, H.; Hou, X.; Shao, Z. A new dual-ion hybrid energy storage system with energy density comparable to that of ternary lithium ion batteries. J. Mater. Chem. A 2020, 8, 2571–2580. [Google Scholar] [CrossRef]
- Li, C.; Ju, Y.; Yoshitake, H.; Yoshio, M.; Wang, H. Preparation of Si-graphite dual-ion batteries by tailoring the voltage window of pretreated Si-anodes. Mater. Today Energy 2018, 8, 174–181. [Google Scholar] [CrossRef]
- Jiang, C.; Xiang, L.; Miao, S.; Shi, L.; Xie, D.; Yan, J.; Zheng, Z.; Zhang, X.; Tang, Y. Flexible interface design for stress regulation of a silicon anode toward highly stable dual-ion batteries. Adv. Mater. 2020, 32, 1908470. [Google Scholar] [CrossRef]
- Feng, K.; Ahn, W.; Lui, G.; Park, H.W.; Kashkooli, A.G.; Jiang, G.; Wang, X.; Xiao, X.; Chen, Z. Implementing an in-situ carbon network in Si/reduced graphene oxide for high performance lithium-ion battery anodes. Nano Energy 2016, 19, 187–197. [Google Scholar] [CrossRef]
- Fatima, A.; Majid, A.; Haider, S.; Akhtar, M.S.; Alkhedher, M. First principles study of layered silicon carbide as anode in lithium ion battery. Int. J. Quantum Chem. 2022, 122, e26895. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, C.; Xue, Q.; Li, C.; Miao, J.; Ren, P.; Yang, L.; Yang, Z. Atomic mechanism of the distribution and diffusion of lithium in a cracked Si anode. Scr. Mater. 2021, 197, 113807. [Google Scholar] [CrossRef]
- Han, C.; Si, H.; Sang, S.; Liu, K.; Liu, H.; Wu, Q. Achieving fully reversible conversion in Si anode for lithium-ion batteries by design of pomegranate-like Si@C structure. Electrochem. Acta 2021, 389, 138736. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, D.; Qiu, X.; Ma, Y.; Kong, D.; Müllen, K.; Li, X.; Zhi, L. Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation. Nat. Commun. 2020, 11, 3826. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.-S.; Choi, J.; Hong, S.-H. Meso-porous silicon-coated carbon nanotube as an anode for lithium-ion battery. Nano Res. 2016, 9, 2174–2181. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, H.-H.; Chen, H.; Cheng, Y.; Zhang, Q.; Xie, Q.; Wang, L.; Zhang, K.; Wang, M.-S.; Peng, D.-L.; et al. Fabrication and understanding of Cu3Si-Si@ carbon@ graphene nanocomposites as high-performance anodes for lithium-ion batteries. Nanoscale 2018, 10, 22203–22214. [Google Scholar] [CrossRef] [PubMed]
- Ke, C.-Z.; Liu, F.; Zheng, Z.-M.; Zhang, H.-H.; Cai, M.-T.; Li, M.; Yan, Q.-Z.; Chen, H.-X.; Zhang, Q.-B. Boosting lithium storage performance of Si nanoparticles via thin carbon and nitrogen/phosphorus co-doped two-dimensional carbon sheet dual encapsulation. Rare Met. 2021, 40, 1347–1356. [Google Scholar] [CrossRef]
- Xu, Y.; Yin, G.; Ma, Y.; Zuo, P.; Cheng, X. Nanosized core/shell silicon@carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source. J. Mater. Chem. 2010, 20, 3216–3220. [Google Scholar] [CrossRef]
- Wan, X.; Tang, Z.; Chen, J.; Xue, Y.; Zhang, J.; Guo, X.; Liu, Y.; Kong, Q.; Yuan, A.; Fan, H. Molten Salt-assisted Magnesiothermic Reduction Synthesis of Spherical Si Hollow Structure as Promising Anode Materials of Lithium Ion Batteries. Chem. Lett. 2019, 48, 1547–1550. [Google Scholar] [CrossRef]
- Matsuo, Y.; Sekito, K.; Ashida, Y.; Inamoto, J.; Tamura, N. Factors Affecting the Electrochemical Behaviors of Graphene-like Graphite as a Positive Electrode of a Dual-Ion Battery. ChemSusChem 2023, 16, e202201127. [Google Scholar] [CrossRef]
- Li, X.; Sun, X.; Hu, X.; Fan, F.; Cai, S.; Zheng, C.; Stucky, G.D. Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries. Nano Energy 2020, 77, 105143. [Google Scholar] [CrossRef]
- Lei, H.; Wang, H.; Cheng, B.; Zhang, F.; Liu, X.; Wang, G.; Wang, B. Anion-Vacancy Modified WSSe Nanosheets on 3D Cross-Networked Porous Carbon Skeleton for Non-Aqueous Sodium-Based Dual-Ion Storage. Small 2023, 19, e2206340. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Liu, X.; Ma, X.; Tang, X.; Zhang, X.; Dong, J.; Ma, Y.; Zang, X.; Cao, N.; Shao, Q. High-Performance Dual-Ion Battery Based on Silicon–Graphene Composite Anode and Expanded Graphite Cathode. Molecules 2023, 28, 4280. https://doi.org/10.3390/molecules28114280
Liu G, Liu X, Ma X, Tang X, Zhang X, Dong J, Ma Y, Zang X, Cao N, Shao Q. High-Performance Dual-Ion Battery Based on Silicon–Graphene Composite Anode and Expanded Graphite Cathode. Molecules. 2023; 28(11):4280. https://doi.org/10.3390/molecules28114280
Chicago/Turabian StyleLiu, Guoshun, Xuhui Liu, Xingdong Ma, Xiaoqi Tang, Xiaobin Zhang, Jianxia Dong, Yunfei Ma, Xiaobei Zang, Ning Cao, and Qingguo Shao. 2023. "High-Performance Dual-Ion Battery Based on Silicon–Graphene Composite Anode and Expanded Graphite Cathode" Molecules 28, no. 11: 4280. https://doi.org/10.3390/molecules28114280
APA StyleLiu, G., Liu, X., Ma, X., Tang, X., Zhang, X., Dong, J., Ma, Y., Zang, X., Cao, N., & Shao, Q. (2023). High-Performance Dual-Ion Battery Based on Silicon–Graphene Composite Anode and Expanded Graphite Cathode. Molecules, 28(11), 4280. https://doi.org/10.3390/molecules28114280