Triggering RNA Interference by Photoreduction under Red Light Irradiation
Abstract
:1. Introduction
2. Results
2.1. Design, Synthesis, and Characterization of DNA 1 and RNA 2
2.2. Cis–Trans Isomerization of DNA 1 and Its Photoreduction
2.3. DNA 1 Cleavage Selectivity and RNA 2 Photoreduction
2.4. Knockdown Efficacy of RNA 2/3
3. Materials and Methods
3.1. Synthesis of Modified Oligonucleotides
3.2. Cis-Trans Isomerization of DNA 1
3.3. DNA 1 Cleavage by Red-Light-Induced Photoreduction
3.4. Stability in Presence of Oxidizing/Reducing Agents
3.5. RNA 2 Cleavage by Red-Light-Induced Photoreduction
3.6. Transfection
3.7. Relative Gene Expression Quantification by RT-qPCR
3.8. Statistical Analysis of Data
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Scott, L.J. Givosiran: First Approval. Drugs 2020, 80, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Scott, L.J.; Keam, S.J. Lumasiran: First Approval. Drugs 2021, 81, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Wood, H. FDA approves patisiran to treat hereditary transthyretin amyloidosis. Nat. Rev. Neurol. 2018, 14, 570. [Google Scholar] [CrossRef] [PubMed]
- Lamb, Y.N. Inclisiran: First Approval. Drugs 2021, 81, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Keam, S.J. Vutrisiran: First Approval. Drugs 2022, 82, 1419–1425. [Google Scholar] [CrossRef] [PubMed]
- Han, S.P.; Scherer, L.; Gethers, M.; Salvador, A.M.; Salah, M.B.H.; Mancusi, R.; Sagar, S.; Hu, R.; DeRogatis, J.; Kuo, Y.H.; et al. Programmable siRNA pro-drugs that activate RNAi activity in response to specific cellular RNA biomarkers. Mol. Ther. Nucleic Acids 2022, 27, 797–809. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, J.; Nishigaki, M.; Ochi, Y.; Wada, S.I.; Wada, F.; Nakagawa, O.; Obika, S.; Harada-Shiba, M.; Urata, H. Effective gene silencing activity of prodrug-type 2′-O-methyldithiomethyl siRNA compared with non-prodrug-type 2′-O-methyl siRNA. Bioorg. Med. Chem. Lett. 2018, 28, 2171–2174. [Google Scholar] [CrossRef] [PubMed]
- Mikat, V.; Heckel, A. Light-dependent RNA interference with nucleobase-caged siRNAs. RNA 2007, 13, 2341–2347. [Google Scholar] [CrossRef] [PubMed]
- Rühle, J.; Klemt, I.; Abakumova, T.; Sergeeva, O.; Vetosheva, P.; Zatsepin, T.; Mokhir, A. Reactive oxygen species-responsive RNA interference. Chem. Commun. 2022, 58, 4388–4391. [Google Scholar] [CrossRef] [PubMed]
- Antunes, F.; Cadenas, E. Estimation of H2O2 gradients across biomembranes. FEBS Lett. 2000, 475, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Rybak, C.J.; Andjaba, J.M.; Fan, C.; Zeller, M.; Uyeda, C. Dinickel-Catalyzed N=N Bond Rotation. Inorg. Chem. 2023, 62, 5886–5891. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.G.; Sadeghi-Kelishadi, A.; Langton, M.J. A Photo-responsive Transmembrane Anion Transporter Relay. J. Am. Chem. Soc. 2022, 144, 10455–10461. [Google Scholar] [CrossRef] [PubMed]
- Samanta, S.; Beharry, A.A.; Sadovski, O.; McCormick, T.M.; Babalhavaeji, A.; Tropepe, V.; Woolley, G.A. Photoswitching azo compounds in vivo with red light. J. Am. Chem. Soc. 2013, 135, 9777–9784. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Li, Z.; Sun, Y.; Wang, P.; Ma, H. Near-Infrared Fluorescent Probes for Hypoxia Detection via Joint Regulated Enzymes: Design, Synthesis, and Application in Living Cells and Mice. Anal. Chem. 2018, 90, 13759–13766. [Google Scholar] [CrossRef] [PubMed]
- Guisán-Ceinos, S.; Rivero, A.R.; Romeo-Gella, F.; Simón-Fuente, S.; Gómez-Pastor, S.; Calvo, N.; Orrego, A.H.; Guisán, J.M.; Corral, I.; Sanz-Rodriguez, F.; et al. Turn-on Fluorescent Biosensors for Imaging Hypoxia-like Conditions in Living Cells. J. Am. Chem. Soc. 2022, 144, 8185–8193. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Rühle, J.; Schikora, M.; Deussner-Helfmann, N.; Heilemann, M.; Zatsepin, T.; Duchstein, P.; Zahn, D.; Knör, G.; Mokhir, A. Red light-triggered photoreduction on a nucleic acid template. Chem. Commun. 2020, 56, 10026–10029. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Zhuang, H.; Xia, R.; Gan, L.; Wu, Y.; Ma, J.; Sun, Y.; Zhuang, Z. KIF11 is required for proliferation and self-renewal of docetaxel resistant triple negative breast cancer cells. Oncotarget 2017, 8, 92106–92118. [Google Scholar] [CrossRef] [PubMed]
- Kinesin Family Member 11 [Homo sapiens (Human)]. Available online: https://www.ncbi.nlm.nih.gov/gene/3832 (accessed on 14 April 2023).
- Meyer, A.; Mokhir, A. RNA Interference Controlled by Light of Variable Wavelength. Angew. Chem. Int. Ed. 2014, 53, 12840–12843. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rühle, J.; Klemt, I.; Mokhir, A. Triggering RNA Interference by Photoreduction under Red Light Irradiation. Molecules 2023, 28, 4204. https://doi.org/10.3390/molecules28104204
Rühle J, Klemt I, Mokhir A. Triggering RNA Interference by Photoreduction under Red Light Irradiation. Molecules. 2023; 28(10):4204. https://doi.org/10.3390/molecules28104204
Chicago/Turabian StyleRühle, Jennifer, Insa Klemt, and Andriy Mokhir. 2023. "Triggering RNA Interference by Photoreduction under Red Light Irradiation" Molecules 28, no. 10: 4204. https://doi.org/10.3390/molecules28104204
APA StyleRühle, J., Klemt, I., & Mokhir, A. (2023). Triggering RNA Interference by Photoreduction under Red Light Irradiation. Molecules, 28(10), 4204. https://doi.org/10.3390/molecules28104204