The Antibiotics Degradation and Its Mechanisms during the Livestock Manure Anaerobic Digestion
Abstract
:1. Introduction
2. Antibiotics: Types and Concentrations in Livestock Manure
- (1)
- Polyether antibiotic: monensin, narasin, lasalocid, and salinomycin;
- (2)
- Fluorochinolones: enrofloxacin, ofloxacin, norfloxacin, danofloxacin;
- (3)
- Sulphonamides: sulphadimidine, sulphamethoxazole, trimethoprim, sulphadoxine;
- (4)
- Macrolides: azithromycin, clarithromycin, clindamycin, erythromycin, roxithromycin, spiramycin, tylosin, and vancomycin;
- (5)
- Tetracyclines: chlortetracycline, doxycycline, oxytetracycline, and tetracycline;
- (6)
- b-Lactams, penicillins: amoxicillin, ampicillin, oxacillin, piperacillin, benzylpenicillin, cloxacilin, dicloxacilin, flucloxacillin, methicillin, phenoxymethylcillin, mezlocillin, and nafcillin.
3. The Fate of Antibiotics and Antibiotics Resistance Genes during Anaerobic Digestion
3.1. Potential of Anaerobic Digestion to Degrade Antibiotics in Livestock Manure
3.2. Anaerobic Digestion
3.2.1. Operating Temperature
3.2.2. Two-Stage Anaerobic Digestion
3.2.3. Residence Time
3.2.4. Total Solids
3.2.5. Co-Digestion
4. Required Future Research
- The influence of operational parameters (pH, free available chlorine, HRT, SRT, and biomass content) and environmental variables (temperature, COD, BOD, and water flow) on the production of ARB and ARGs during wastewater treatment.
- The identification of novel mechanisms of ARG development as well as the determination of the dominant processes of ARG development (mutation, selection, and genetic exchange techniques such as conjugation, transduction, and transformation).
- Future research should focus on the wider spectrum of ARBs and ARGs resistance, including fluoroquinolone, ertapenem, and levofloxacin resistance.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [PubMed]
- Van, T.T.H.; Yidana, Z.; Smooker, P.M.; Coloe, P.J. Antibiotic use in food animals worldwide, with a focus on Africa: Pluses and minuses. J. Glob. Antimicrob. Resist. 2020, 20, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Kuppusamy, S.; Kakarla, D.; Venkateswarlu, K.; Megharaj, M.; Yoon, Y.-E.; Lee, Y.B. Veterinary antibiotics (VAs) contamination as a global agro-ecological issue: A critical view. Agric. Ecosyst. Environ. 2018, 257, 47–59. [Google Scholar] [CrossRef]
- He, Y.; Yuan, Q.; Mathieu, J.; Stadler, L.; Senehi, N.; Sun, R.; Alvarez, P.J. Antibiotic resistance genes from livestock waste: Occurrence, dissemination, and treatment. NPJ Clean Water 2020, 3, 4. [Google Scholar] [CrossRef]
- Cheng, D.; Ngo, H.; Guo, W.; Liu, Y.; Zhou, J.; Chang, S.; Nguyen, D.; Bui, X.; Zhang, X. Bioprocessing for elimination antibiotics and hormones from swine wastewater. Sci. Total Environ. 2018, 621, 1664–1682. [Google Scholar] [CrossRef]
- Massé, D.I.; Saady, N.M.C.; Gilbert, Y. Potential of biological processes to eliminate antibiotics in livestock manure: An overview. Animals 2014, 4, 146–163. [Google Scholar] [CrossRef]
- Economou, V.; Gousia, P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Resist. 2015, 8, 49. [Google Scholar] [CrossRef]
- Zhu, Y.-G.; Zhao, Y.; Li, B.; Huang, C.-L.; Zhang, S.-Y.; Yu, S.; Chen, Y.-S.; Zhang, T.; Gillings, M.R.; Su, J.-Q. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat. Microbiol. 2017, 2, 16270. [Google Scholar] [CrossRef]
- Gullberg, E.; Cao, S.; Berg, O.G.; Ilbäck, C.; Sandegren, L.; Hughes, D.; Andersson, D.I. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 2011, 7, e1002158. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Hu, H.-W.; Chen, Q.-L.; Singh, B.K.; Yan, H.; Chen, D.; He, J.-Z. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes. Environ. Int. 2019, 130, 104912. [Google Scholar] [CrossRef]
- Yazan, D.M.; Fraccascia, L.; Mes, M.; Zijm, H. Cooperation in manure-based biogas production networks: An agent-based modeling approach. Appl. Energy 2018, 212, 820–833. [Google Scholar] [CrossRef]
- Torrijos, M. State of Development of Biogas Production in Europe. Procedia Environ. Sci. 2016, 35, 881–889. [Google Scholar] [CrossRef]
- Huang, L.; Wen, X.; Wang, Y.; Zou, Y.; Ma, B.; Liao, X.; Liang, J.; Wu, Y. Effect of the chlortetracycline addition method on methane production from the anaerobic digestion of swine wastewater. J. Environ. Sci. 2014, 26, 2001–2006. [Google Scholar] [CrossRef]
- Hao, H.; Cheng, G.; Iqbal, Z.; Ai, X.; Hussain, H.I.; Huang, L.; Dai, M.; Wang, Y.; Liu, Z.; Yuan, Z. Benefits and risks of antimicrobial use in food-producing animals. Front. Microbiol. 2014, 5, 288. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.S.; Shiraj-Um-Mahmuda, S.; Hazzaz-Bin-Kabir, M. Antibiotic usage patterns in selected broiler farms of Bangladesh and their public health implications. J. Public Health Dev. Ctries. 2016, 2, 276–284. [Google Scholar]
- Braykov, N.P.; Eisenberg, J.N.; Grossman, M.; Zhang, L.; Vasco, K.; Cevallos, W.; Muñoz, D.; Acevedo, A.; Moser, K.A.; Marrs, C.F. Antibiotic resistance in animal and environmental samples associated with small-scale poultry farming in northwestern Ecuador. Msphere 2016, 1, e00021-15. [Google Scholar] [CrossRef]
- Cogliani, C.; Goossens, H.; Greko, C. Restricting antimicrobial use in food animals: Lessons from Europe. Microbe 2011, 6, 274. [Google Scholar] [CrossRef]
- Kemper, N.; Färber, H.; Skutlarek, D.; Krieter, J. Analysis of antibiotic residues in liquid manure and leachate of dairy farms in Northern Germany. Agric. Water Manag. 2008, 95, 1288–1292. [Google Scholar] [CrossRef]
- Pan, X.; Qiang, Z.; Ben, W.; Chen, M. Residual veterinary antibiotics in swine manure from concentrated animal feeding operations in Shandong Province, China. Chemosphere 2011, 84, 695–700. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Luo, Y.; Song, J. Occurrence and assessment of veterinary antibiotics in swine manures: A case study in East China. Chin. Sci. Bull. 2012, 57, 606–614. [Google Scholar] [CrossRef]
- Motoyama, M.; Nakagawa, S.; Tanoue, R.; Sato, Y.; Nomiyama, K.; Shinohara, R. Residues of pharmaceutical products in recycled organic manure produced from sewage sludge and solid waste from livestock and relationship to their fermentation level. Chemosphere 2011, 84, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Pathak, S.H. Antibiotics in manure and soil-a grave threat to human and animal health. In Policy Paper 43; National Academy of Agriculture Science: New Delhi, India, 2010. [Google Scholar]
- Mackie, R.I.; Koike, S.; Krapac, I.; Chee-Sanford, J.; Maxwell, S.; Aminov, R.I. Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities. Anim. Biotechnol. 2006, 17, 157–176. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Lou, C.; Zhai, W.; Tang, X.; Hashmi, M.Z.; Murtaza, R.; Li, Y.; Liu, X.; Xu, J. Increased occurrence of heavy metals, antibiotics and resistance genes in surface soil after long-term application of manure. Sci. Total Environ. 2018, 635, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Feinman, S.E.; Matheson, J.C. Draft Environmental Impact Statement: Subtherapeutic Antibacterial Agents in Animal Feeds; Department of Health, Education, and Welfare, Public Health Service: Washington, DC, USA, 1978.
- Elmund, G.K.; Morrison, S.; Grant, D.; Nevins, M. Role of excreted chlortetracycline in modifying the decomposition process in feedlot waste. Bull. Environ. Contam. Toxicol. 1971, 6, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Arikan, O.A. Degradation and metabolization of chlortetracycline during the anaerobic digestion of manure from medicated calves. J. Hazard. Mater. 2008, 158, 485–490. [Google Scholar] [CrossRef]
- Montforts, M.H.; Kalf, D.F.; van Vlaardingen, P.L.; Linders, J.B. The exposure assessment for veterinary medicinal products. Sci. Total Environ. 1999, 225, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Donoho, A.; Manthey, J.; Occolowitz, J.; Zornes, L. Metabolism of monensin in the steer and rat. J. Agric. Food Chem. 1978, 26, 1090–1095. [Google Scholar] [CrossRef]
- Cocito, C. Antibiotics of the virginiamycin family, inhibitors which contain synergistic components. Microbiol. Rev. 1979, 43, 145–192. [Google Scholar] [CrossRef]
- Kolz, A.; Moorman, T.; Ong, S.; Scoggin, K.; Douglass, E. Degradation and metabolite production of tylosin in anaerobic and aerobic swine-manure lagoons. Water Environ. Res. 2005, 77, 49–56. [Google Scholar] [CrossRef]
- Kumar, K.; Gupta, S.C.; Chander, Y.; Singh, A.K. Antibiotic use in agriculture and its impact on the terrestrial environment. Adv. Agron. 2005, 87, 1–54. [Google Scholar]
- Xian-Gang, H.; Yi, L.; Qi-Xing, Z.; Lin, X. Determination of thirteen antibiotics residues in manure by solid phase extraction and high performance liquid chromatography. Chin. J. Anal. Chem. 2008, 36, 1162–1166. [Google Scholar]
- Du, T.; Feng, L.; Zhen, X. Microbial community structures and antibiotic biodegradation characteristics during anaerobic digestion of chicken manure containing residual enrofloxacin. J. Environ. Sci. Health Part B 2022, 57, 102–113. [Google Scholar] [CrossRef]
- Ahmad, N.; Li, T.; Liu, Y.; Hoang, N.Q.V.; Ma, X.; Zhang, X.; Liu, J.; Yao, N.; Liu, X.; Li, H. Molecular and biochemical rhythms in dihydroflavonol 4-reductase-mediated regulation of leucoanthocyanidin biosynthesis in Carthamus tinctorius L. Ind. Crops Prod. 2020, 156, 112838. [Google Scholar] [CrossRef]
- Cromwell, G.L. Why and how antibiotics are used in swine production. Anim. Biotechnol. 2002, 13, 7–27. [Google Scholar] [CrossRef]
- Xie, W.Y.; Shen, Q.; Zhao, F. Antibiotics and antibiotic resistance from animal manures to soil: A review. Eur. J. Soil Sci. 2018, 69, 181–195. [Google Scholar] [CrossRef]
- Han, X.-M.; Hu, H.-W.; Chen, Q.-L.; Yang, L.-Y.; Li, H.-L.; Zhu, Y.-G.; Li, X.-Z.; Ma, Y.-B. Antibiotic resistance genes and associated bacterial communities in agricultural soils amended with different sources of animal manures. Soil Biol. Biochem. 2018, 126, 91–102. [Google Scholar] [CrossRef]
- Sun, W.; Gu, J.; Wang, X.; Qian, X.; Tuo, X. Impacts of biochar on the environmental risk of antibiotic resistance genes and mobile genetic elements during anaerobic digestion of cattle farm wastewater. Bioresour. Technol. 2018, 256, 342–349. [Google Scholar] [CrossRef]
- Burch, T.; Firnstahl, A.D.; Spencer, S.K.; Larson, R.; Borchardt, M. Fate and seasonality of antimicrobial resistance genes during full-scale anaerobic digestion of cattle manure across seven livestock production facilities. J. Environ. Qual. 2022, 51, 352–363. [Google Scholar] [CrossRef]
- Flores-Orozco, D.; Patidar, R.; Levin, D.B.; Sparling, R.; Kumar, A.; Çiçek, N. Effect of ceftiofur on mesophilic anaerobic digestion of dairy manure and the reduction of the cephalosporin-resistance gene cmy-2. Bioresour. Technol. 2020, 301, 122729. [Google Scholar] [CrossRef]
- Zou, Y.; Xiao, Y.; Wang, H.; Fang, T.; Dong, P. New insight into fates of sulfonamide and tetracycline resistance genes and resistant bacteria during anaerobic digestion of manure at thermophilic and mesophilic temperatures. J. Hazard. Mater. 2020, 384, 121433. [Google Scholar] [CrossRef]
- Gurmessa, B.; Pedretti, E.F.; Cocco, S.; Cardelli, V.; Corti, G. Manure anaerobic digestion effects and the role of pre-and post-treatments on veterinary antibiotics and antibiotic resistance genes removal efficiency. Sci. Total Environ. 2020, 721, 137532. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Qian, X.; Gu, J.; Wang, X.-J.; Duan, M.-L. Mechanism and effect of temperature on variations in antibiotic resistance genes during anaerobic digestion of dairy manure. Sci. Rep. 2016, 6, 30237. [Google Scholar] [CrossRef] [PubMed]
- Syafiuddin, A.; Boopathy, R. Role of anaerobic sludge digestion in handling antibiotic resistant bacteria and antibiotic resistance genes–A review. Bioresour. Technol. 2021, 330, 124970. [Google Scholar] [CrossRef]
- Turker, G.; Akyol, Ç.; Ince, O.; Aydin, S.; Ince, B. Operating conditions influence microbial community structures, elimination of the antibiotic resistance genes and metabolites during anaerobic digestion of cow manure in the presence of oxytetracycline. Ecotoxicol. Environ. Saf. 2018, 147, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Chen, Y.; Ndegwa, P. Anaerobic digestion process deactivates major pathogens in biowaste: A meta-analysis. Renew. Sustain. Energy Rev. 2022, 153, 111752. [Google Scholar] [CrossRef]
- Zhang, J.; Qi, C.; Wang, Y.; Li, Y.; Han, T.; Gong, X.; Shan, M.; Li, G.; Luo, W. Enhancing biogas production from livestock manure in solid-state anaerobic digestion by sorghum-vinegar residues. Environ. Technol. Innov. 2022, 26, 102276. [Google Scholar] [CrossRef]
- Jiang, Y.; Xie, S.H.; Dennehy, C.; Lawlor, P.G.; Hu, Z.H.; Wu, G.X.; Zhan, X.M.; Gardiner, G.E. Inactivation of pathogens in anaerobic digestion systems for converting biowastes to bioenergy: A review. Renew. Sustain. Energy Rev. 2020, 120, 109654. [Google Scholar] [CrossRef]
- Beneragama, N.; Moriya, Y.; Yamashiro, T.; Iwasaki, M.; Lateef, S.A.; Ying, C.; Umetsu, K. The survival of cefazolin-resistant bacteria in mesophilic co-digestion of dairy manure and waste milk. Waste Manag. Res. 2013, 31, 843–848. [Google Scholar] [CrossRef]
- Diehl, D.L.; LaPara, T.M. Effect of temperature on the fate of genes encoding tetracycline resistance and the integrase of class 1 integrons within anaerobic and aerobic digesters treating municipal wastewater solids. Environ. Sci. Technol. 2010, 44, 9128–9133. [Google Scholar] [CrossRef]
- Ma, Y.; Wilson, C.A.; Novak, J.T.; Riffat, R.; Aynur, S.; Murthy, S.; Pruden, A. Effect of various sludge digestion conditions on sulfonamide, macrolide, and tetracycline resistance genes and class I integrons. Environ. Sci. Technol. 2011, 45, 7855–7861. [Google Scholar] [CrossRef]
- Huang, X.; Zheng, J.; Tian, S.; Liu, C.; Liu, L.; Wei, L.; Fan, H.; Zhang, T.; Wang, L.; Zhu, G. Higher temperatures do not always achieve better antibiotic resistance gene removal in anaerobic digestion of swine manure. Appl. Environ. Microbiol. 2019, 85, e02878-18. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Li, W.; Chen, Z.; Qin, W.; Wen, X. Responses of antibiotics, antibiotic resistance genes, and mobile genetic elements in sewage sludge to thermal hydrolysis pre-treatment and various anaerobic digestion conditions. Environ. Int. 2019, 133, 105156. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Yang, Y.; Pruden, A. Effect of temperature on removal of antibiotic resistance genes by anaerobic digestion of activated sludge revealed by metagenomic approach. Appl. Microbiol. Biotechnol. 2015, 99, 7771–7779. [Google Scholar] [CrossRef] [PubMed]
- Flores-Orozco, D.; Levin, D.; Kumar, A.; Sparling, R.; Cicek, N. A meta-analysis reveals that operational parameters influence levels of antibiotic resistance genes during anaerobic digestion of animal manures. Sci. Total Environ. 2022, 814, 152711. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Zhao, R.; Wan, J.; Li, B.; Shen, Y.; Zhang, S.; Luo, G. Metagenomic analysis reveals the fate of antibiotic resistance genes in two-stage and one-stage anaerobic digestion of waste activated sludge. J. Hazard. Mater. 2021, 406, 124595. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Cui, E.; Zuo, Y.; Cheng, W.; Rensing, C.; Chen, H. Influence of two-phase anaerobic digestion on fate of selected antibiotic resistance genes and class I integrons in municipal wastewater sludge. Bioresour. Technol. 2016, 211, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Gu, J.; Wang, X.; Qian, X.; Peng, H. Solid-state anaerobic digestion facilitates the removal of antibiotic resistance genes and mobile genetic elements from cattle manure. Bioresour. Technol. 2019, 274, 287–295. [Google Scholar] [CrossRef]
- Peng, W.; Lü, F.; Hao, L.; Zhang, H.; Shao, L.; He, P. Digestate management for high-solid anaerobic digestion of organic wastes: A review. Bioresour. Technol. 2020, 297, 122485. [Google Scholar] [CrossRef]
- Wang, S.; Hu, Y.; Hu, Z.; Wu, W.; Wang, Z.; Jiang, Y.; Zhan, X. Improved reduction of antibiotic resistance genes and mobile genetic elements from biowastes in dry anaerobic co-digestion. Waste Manag. 2021, 126, 152–162. [Google Scholar] [CrossRef]
- Zhang, J.; Mao, F.; Loh, K.-C.; Gin, K.Y.-H.; Dai, Y.; Tong, Y.W. Evaluating the effects of activated carbon on methane generation and the fate of antibiotic resistant genes and class I integrons during anaerobic digestion of solid organic wastes. Bioresour. Technol. 2018, 249, 729–736. [Google Scholar] [CrossRef]
- Sui, Q.; Meng, X.; Wang, R.; Zhang, J.; Yu, D.; Chen, M.; Wang, Y.; Wei, Y. Effects of endogenous inhibitors on the evolution of antibiotic resistance genes during high solid anaerobic digestion of swine manure. Bioresour. Technol. 2018, 270, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Zhang, K.; Liu, P.; Khan, A.; Xiong, J.; Tian, F.; Li, X. A critical review on the interaction of substrate nutrient balance and microbial community structure and function in anaerobic co-digestion. Bioresour. Technol. 2018, 247, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, B.; Lin, L.; Dhar, B.R.; Islam, M.N.; McCartney, D.; Kumar, A. Enhanced biomethane recovery from fat, oil, and grease through co-digestion with food waste and addition of conductive materials. Chemosphere 2019, 236, 124362. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gu, J.; Wang, X.; Zhang, R.; Tuo, X.; Guo, A.; Qiu, L. Fate of antibiotic resistance genes and mobile genetic elements during anaerobic co-digestion of Chinese medicinal herbal residues and swine manure. Bioresour. Technol. 2018, 250, 799–805. [Google Scholar] [CrossRef]
- Jiang, M.; Song, S.; Liu, H.; Dai, X.; Wang, P. Responses of methane production, microbial community and antibiotic resistance genes to the mixing ratio of gentamicin mycelial residues and wheat straw in anaerobic co-digestion process. Sci. Total Environ. 2022, 806, 150488. [Google Scholar] [CrossRef]
- Song, W.; Wang, X.; Gu, J.; Zhang, S.; Yin, Y.; Li, Y.; Qian, X.; Sun, W. Effects of different swine manure to wheat straw ratios on antibiotic resistance genes and the microbial community structure during anaerobic digestion. Bioresour. Technol. 2017, 231, 1–8. [Google Scholar] [CrossRef] [PubMed]
Antibiotics | Manure Source | Excretion Levels (%) | Status | Reference |
---|---|---|---|---|
Tetracycline | Animal feces | 25% | Not reported | [25] |
Chlortetracycli | Steers feces | 75% | Not reported | [26] |
Oxytetracycline | Calves manure (feces, urine, and bedding) | 23% | Unchanged | [27] |
Oxytetracycline | Castrate sheeps | 21% | Unchanged | [28] |
Chlortetracycline | Young bulls | 17–75% | Unchanged | [28] |
Tylosin | Pigs | 40% | Unaltered or as potent metabolites | [25] |
Monensin | Beef cattle feces | 40% | Unchanged | [29] |
Virginiamycin | Piggeries liquid manure | 20% | After several days of storage | [30] |
Tylosin | Urine | 50–60% | Not reported | [31] |
Antibiotic | Matrix | Concentration | Reference |
---|---|---|---|
Oxytetracycline | Manure | 136 mg·L−1 | [14] |
Chlortetracycline | 46 mg·L−1 | ||
Tetracycline | Swine manure | 98 mg·L−1 | [11] |
Oxytetracycline | 354 mg·L−1 | ||
Chlortetracycline | 139 mg·L−1 | ||
Doxycycline | 37 mg·L−1 | ||
Sulfadiazine | 7.1 mg·L−1 | ||
Tetracycline | Swine manure | 30 mg·kg−1 DM | [18] |
Sulphonamides | 2 mg·kg−1 DM | ||
Tylosin | Fresh calf manure | 0.11 mg·kg−1 | [34] |
Oxytetracycline | 10 mg·kg−1 | ||
Enrofloxacin | Chicken manure | 1420.76 mg·kg−1 | [34] |
Chlortetracycline | Beef manure stockpile | 6.6 mg·kg−1 | [28,35] |
Monensin | 120 mg·kg−1 | ||
Tylosin | 8.1 mg·kg−1 | ||
Chlortetracycline | Swine manure | 764.4 mg·L−1 | [12] |
Chlortetracycline | Swine manure storage lagoon | 1 mg·L−1 | [36] |
Oxytetracycline | 0.41 mg·L−1 | ||
Oxytetracycline | Cow manure | 0.5–200 mg·L−1 | [37] |
Treatments | Antibiotics | Concentrations | Observed Reductions |
---|---|---|---|
Anaerobic digestion of cattle manure, 28 days | Monensin | 10.74 mg·L−1 | 3% (22 °C) |
10.36 mg·L−1 | 8% (38 °C) | ||
10.30 mg·L−1 | 27% (55 °C) | ||
Anaerobic digestion of swine manure, 21 days | Chlortetracycline | 6.5 mg·L−1 | 7% (22 °C) |
8.3 mg·L−1 | 80% (38 °C) | ||
5.9 mg·L−1 | 98% (55 °C) | ||
Swine manure from lagoons | Tylosin | 10–400 mg·kg−1 | 95–75% |
Anaerobic sequence batch reactor (ASBR) | Tylosin A | 1.6 mg·kg−1 | Degraded to <detection limit |
5.8 mg·kg−1 | Decreased to 0.01 mg·L−1 in 48 h | ||
Batch anaerobic digestion | Oxytetracycline | 20 mg·L−1 | 55–73% at 7 °C |
Thermophilic anaerobic digestion | Clarithromycin | 557 μg·L−1 | 36% in 40 days |
Thermophilic anaerobic digestion | Erythromycin | 356 μg·L−1 | 90% in 40 days |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zubair, M.; Li, Z.; Zhu, R.; Wang, J.; Liu, X.; Liu, X. The Antibiotics Degradation and Its Mechanisms during the Livestock Manure Anaerobic Digestion. Molecules 2023, 28, 4090. https://doi.org/10.3390/molecules28104090
Zubair M, Li Z, Zhu R, Wang J, Liu X, Liu X. The Antibiotics Degradation and Its Mechanisms during the Livestock Manure Anaerobic Digestion. Molecules. 2023; 28(10):4090. https://doi.org/10.3390/molecules28104090
Chicago/Turabian StyleZubair, Muhammad, Zhaojun Li, Rongsheng Zhu, Jiancai Wang, Xinghua Liu, and Xiayan Liu. 2023. "The Antibiotics Degradation and Its Mechanisms during the Livestock Manure Anaerobic Digestion" Molecules 28, no. 10: 4090. https://doi.org/10.3390/molecules28104090
APA StyleZubair, M., Li, Z., Zhu, R., Wang, J., Liu, X., & Liu, X. (2023). The Antibiotics Degradation and Its Mechanisms during the Livestock Manure Anaerobic Digestion. Molecules, 28(10), 4090. https://doi.org/10.3390/molecules28104090