Physicochemical Properties, Thermal Stability, and Pyrolysis Behavior of Antioxidative Lignin from Water Chestnut Shell Obtained with Ternary Deep Eutectic Solvents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Yield, Molecular Weight Distribution, and Antioxidant Activity of Lignin Extracted with Different Type DESs
2.2. Elemental Composition Analysis of Lignin
2.3. UV-Vis and FTIR Analysis of Lignin
2.4. Thermal Analisis of Lignin
2.5. Py-GC/MS Analysis of the Depolymerized Products
3. Materials and Methods
3.1. Materials and Chemical Reagents
3.2. Preparation of Deep Eutectic Solvent
3.3. Lignin Extraction
3.4. DPPH Radical Scavenging Activity Assay
3.5. Analytical Procedures
3.5.1. DES Characterization
3.5.2. Molecular Weight and Elemental Analysis of Lignin
3.5.3. UV-Vis and FTIR Spectroscopy Analysis of Lignin
3.5.4. TG-FTIR Analysis of Lignin
3.5.5. Py-GC/MS Analysis of the Depolymerized Products
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
WCS: | water chestnut shell |
DES: | deep eutectic solvent |
ChCl/EG/p-TsOH: | choline chloride/ethylene glycol/p-toluenesulfonic acid |
ChCl/OA: | choline chloride/oxalic acid |
ChCl/LA: | choline chloride/lactic acid |
ChCl/EG: | choline chloride/ethylene glycol |
DPPH: | 1,1-diphenyl-2-picrylhydrazyl |
Mw: | weight average molecular weight |
Mn: | number average molecular weigh |
PDI: | polydispersity index |
References
- Lu, X.; Gu, X.; Shi, Y. A review on lignin antioxidants: Their sources, isolations, antioxidant activities and various applications. Int. J. Biol. Macromol. 2022, 210, 716–741. [Google Scholar] [CrossRef] [PubMed]
- De França Serpa, J.; de Sousa Silva, J.; Borges Reis, C.L.; Micoli, L.; Alexandre e Silva, L.M.; Canuto, K.M.; Casimiro de Macedo, A.; Ponte Rocha, M.V. Extraction and characterization of lignins from cashew apple bagasse obtained by different treatments. Biomass Bioenerg. 2020, 141, 105728. [Google Scholar] [CrossRef]
- Kumar, A.K.; Sharma, S.; Shah, E.; Patel, A. Technical assessment of natural deep eutectic solvent (NADES) mediated biorefinery process: A case study. J. Mol. Liq. 2018, 260, 313–322. [Google Scholar] [CrossRef]
- Yang, T.; Li, Z.; Wei, W.; Wang, X.; Liu, F.; Xu, X.; Liu, Z. Antioxidant properties of lignin extracted from cotton stalks by ethanol solution-assisted liquid hot water before and after adding supercritical CO2. J. CO2 Util. 2022, 58, 101892. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 1, 70–71. [Google Scholar] [CrossRef]
- Lynam, J.G.; Kumar, N.; Wong, M.J. Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density. Bioresour. Technol. 2017, 238, 684–689. [Google Scholar] [CrossRef]
- Scelsi, E.; Angelini, A.; Pastore, C. Deep eutectic solvents for the valorisation of lignocellulosic biomasses towards Fine Chemicals. Biomass 2021, 1, 29–59. [Google Scholar] [CrossRef]
- Tan, Y.T.; Ngoh, G.C.; Chua, A.S.M. Evaluation of fractionation and delignification efficiencies of deep eutectic solvents on oil palm empty fruit bunch. Ind. Crop. Prod. 2018, 123, 271–277. [Google Scholar] [CrossRef]
- Tan, Y.T.; Ngoh, G.C.; Chua, A.S.M. Effect of functional groups in acid constituent of deep eutectic solvent for extraction of reactive lignin. Bioresour. Technol. 2019, 281, 359–366. [Google Scholar] [CrossRef]
- Zhang, C.; Xia, S.; Ma, P. Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresour. Technol. 2016, 219, 1–5. [Google Scholar] [CrossRef]
- Xie, J.; Chen, J.; Cheng, Z.; Zhu, S.; Xu, J. Pretreatment of pine lignocelluloses by recyclable deep eutectic solvent for elevated enzymatic saccharification and lignin nanoparticles extraction. Carbohyd. Polym. 2021, 269, 118321. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yang, Y.; Xu, J.; Wang, X.; Guo, Y.; Liu, C.; Zhou, J. Lignin condensation inhibition and antioxidant activity improvement in a reductive ternary DES fractionation microenvironment by thiourea dioxide self-decomposition. New J. Chem. 2022, 46, 8892–8900. [Google Scholar] [CrossRef]
- Maltari, R.; Kontro, J.; Koivu, K.; Farooq, M.; Mikkilä, J.; Zhang, R.; Hildén, K.; Sipilä, J.; Nousiainen, P.A. Fractionation of technical lignin from enzymatically treated steam-exploded poplar using ethanol and formic acid. ACS Appl. Polym. Mater. 2022, 4, 9388–9398. [Google Scholar] [CrossRef]
- Jin, H.; Shi, H.; Jia, W.; Sun, Y.; Sheng, X.; Guo, Y.; Li, H.; Sun, H. Green solvents-based molecular weight controllable fractionation process for industrial alkali lignin at room temperature. Int. J. Biol. Macromol. 2022, 207, 531–540. [Google Scholar] [CrossRef]
- Alvarez-Vasco, C.; Ma, R.; Quintero, M.; Guo, M.; Geleynse, S.; Ramasamy, K.K.; Wolcott, M.; Zhang, X. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): A source of lignin for valorization. Green Chem. 2016, 18, 5133–5141. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, W.; Xia, Q.; Guo, B.; Wang, Q.; Liu, S.; Liu, Y.; Li, J.; Yu, H. Efficient Cleavage of Lignin–Carbohydrate Complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent. ChemSusChem 2017, 10, 1692–1700. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Xiang, Z.; Ye, F.; Zhao, G. Composition and structure of an antioxidant acetic acid lignin isolated from shoot shell of bamboo (Dendrocalamus latiforus). Ind. Crop. Prod. 2016, 91, 340–349. [Google Scholar] [CrossRef]
- Luterbacher, J.S.; Azarpira, A.; Motagamwala, A.H.; Lu, F.; Ralph, J.; Dumesic, J.A. Lignin monomer production integrated into the γ-valerolactone sugar platform. Energy Environ. Sci. 2015, 8, 2657–2663. [Google Scholar] [CrossRef]
- Wang, Z.; Hong, S.; Wen, J.; Ma, C.; Tang, L.; Jiang, H.; Chen, J.; Li, S.; Shen, X.; Yuan, T. Lewis acid-facilitated deep eutectic solvent (DES) pretreatment for producing high-purity and antioxidative lignin. ACS Sustain. Chem. Eng. 2020, 8, 1050–1057. [Google Scholar] [CrossRef]
- Provost, V.; Dumarcay, S.; Ziegler-Devin, I.; Boltoeva, M.; Trébouet, D.; Villain-Gambier, M. Deep eutectic solvent pretreatment of biomass: Influence of hydrogen bond donor and temperature on lignin extraction with high β-O-4 content. Bioresour. Technol. 2022, 349, 126837. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, W.; Tang, Y.; Li, M.; Peng, F.; Bian, J. Mild pretreatment with Brønsted acidic deep eutectic solvents for fractionating β–O–4 linkage-rich lignin with high sunscreen performance and evaluation of enzymatic saccharification synergism. Bioresour. Technol. 2023, 368, 128258. [Google Scholar] [CrossRef]
- Chen, L.; Dou, J.; Ma, Q.; Li, N.; Wu, R.; Bian, H.; Yelle, D.J.; Vuorinen, T.; Fu, S.; Pan, X.; et al. Rapid and near-complete dissolution of wood lignin at ≤80 °C by a recyclable acid hydrotrope. Sci. Adv. 2017, 3, e1701735. [Google Scholar] [CrossRef]
- Zhai, Q.; Long, F.; Hse, C.; Wang, F.; Shupe, T.F.; Jiang, J.; Xu, J. Facile fractionation of bamboo wood toward biomass valorization by p-TsOH-based methanolysis pretreatment. ACS Sustain. Chem. Eng. 2019, 7, 19213–19224. [Google Scholar] [CrossRef]
- Xia, Q.; Liu, Y.; Meng, J.; Cheng, W.; Chen, W.; Liu, S.; Liu, Y.; Li, J.; Yu, H. Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass. Green Chem. 2018, 20, 2711–2721. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Q.; Zhang, X.; Zhang, X.; Pan, X.; Xu, F. Subcellular dissolution of xylan and lignin for enhancing enzymatic hydrolysis of microwave assisted deep eutectic solvent pretreated Pinus bungeana Zucc. Bioresour. Technol. 2019, 288, 121475. [Google Scholar] [CrossRef]
- De Santi, A.; Galkin, M.V.; Lahive, C.W.; Deuss, P.J.; Barta, K.J.C. Lignin-first fractionation of softwood lignocellulose using a mild dimethyl carbonate and ethylene glycol organosolv process. ChemSusChem 2020, 13, 4468–4477. [Google Scholar] [CrossRef]
- Wang, Z.W.; Liu, Y.Z.; Barta, K.; Deuss, P.J. The effect of acidic ternary deep eutectic solvent treatment on native lignin. ACS Sustain. Chem. Eng. 2022, 10, 12569–12579. [Google Scholar] [CrossRef]
- Glasser, W.G.; Kaar, W.E.; Jain, R.K.; Sealey, J.E.J.C. Isolation options for non-cellulosic heteropolysaccharides (HetPS). Cellulose 2000, 7, 299–317. [Google Scholar] [CrossRef]
- Li, F.; Mao, H.; Zeng, C.; Xu, P. Evaluation of antioxidant activity of lignin extracted from water caltrop shell. Chem. Reag. 2022, 44, 1768–1774. [Google Scholar] [CrossRef]
- Jin, J.; Ding, J.; Klett, A.; Thies, M.C.; Ogale, A.A. Carbon fibers derived from fractionated–solvated lignin precursors for enhanced mechanical performance. ACS Sustain. Chem. Eng. 2018, 6, 14135–14142. [Google Scholar] [CrossRef]
- da Silva, P.R.; do Carmo Alves de Lima, M.; Souza, T.P.; Sandes, J.M.; da Conceição Alves de Lima, A.; Neto, P.J.R.; dos Santos, F.A.B.; Alves, L.C.; da Silva, R.M.F.; de Moraes Rocha, G.J.; et al. Lignin from Morinda citrifolia leaves: Physical and chemical characterization, in vitro evaluation of antioxidant, cytotoxic, antiparasitic and ultrastructural activities. Int. J. Biol. Macromol. 2021, 193, 1799–1812. [Google Scholar] [CrossRef]
- Yun, J.; Wei, L.; Li, W.; Gong, D.; Qin, H.; Feng, X.; Li, G.; Ling, Z.; Wang, P.; Yin, B. Isolating high antimicrobial ability lignin from bamboo kraft lignin by organosolv fractionation. Front. Bioeng. Biotech. 2021, 9, 683796. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Liu, Y.; Luo, Y.; Shen, Z.; Wang, S.; Li, M.; Zhang, L. Effect of organosolv extraction on the structure and antioxidant activity of eucalyptus kraft lignin. Int. J. Biol. Macromol. 2021, 187, 462–470. [Google Scholar] [CrossRef]
- Pin, T.C.; Nascimento, V.M.; Costa, A.C.; Pu, Y.; Ragauskas, A.J.; Rabelo, S.C. Structural characterization of sugarcane lignins extracted from different protic ionic liquid pretreatments. Renew. Energy 2020, 161, 579–592. [Google Scholar] [CrossRef]
- Margeriat, A.; Bouzeggane, A.; Lorentz, C.; Laurenti, D.; Guilhaume, N.; Mirodatos, C.; Geantet, C.; Schuurman, Y. Catalytic conversion of beech wood pyrolytic vapors. J. Anal. Appl. Pyrol. 2018, 130, 149–158. [Google Scholar] [CrossRef]
- Hynynen, J.; Riddell, A.; Achour, A.; Takacs, Z.; Wallin, M.; Parkås, J.; Bernin, D. ‘Lignin and extractives first’conversion of lignocellulosic residual streams using UV light from LEDs. Green Chem. 2021, 23, 8251–8259. [Google Scholar] [CrossRef]
- Liu, X.; Li, T.; Wu, S.; Ma, H.; Yin, Y. Structural characterization and comparison of enzymatic and deep eutectic solvents isolated lignin from various green processes: Toward lignin valorization. Bioresour. Technol. 2020, 310, 123460. [Google Scholar] [CrossRef]
- Lin, X.; Sui, S.; Tan, S.; Pittman, C.U., Jr.; Sun, J.; Zhang, Z. Fast pyrolysis of four lignins from different isolation processes using Py-GC/MS. Energies 2015, 8, 5107–5121. [Google Scholar] [CrossRef]
- Lu, X.; Zhu, X.; Guo, H.; Que, H.; Wang, D.; Liang, D.; He, T.; Hu, C.; Xu, C.; Gu, X. Investigation on the thermal degradation behavior of enzymatic hydrolysis lignin with or without steam explosion treatment characterized by TG-FTIR and Py-GC/MS. Biomass Convers. Biorefin. 2022, 12, 5825–5834. [Google Scholar] [CrossRef]
- Tan, Y.T.; Chua, A.S.M.; Ngoh, G.C. Evaluation on the properties of deep eutectic solvent-extracted lignin for potential aromatic bio-products conversion. Ind. Crop. Prod. 2020, 154, 112729. [Google Scholar] [CrossRef]
- Hansen, B.; Kusch, P.; Schulze, M.; Kamm, B. Qualitative and quantitative analysis of lignin produced from beech wood by different conditions of the organosolv process. J. Polym. Environ. 2016, 24, 85–97. [Google Scholar] [CrossRef]
- Lourenço, A.; Neiva, D.M.; Gominho, J.; Marques, A.V.; Pereira, H. Characterization of lignin in heartwood, sapwood and bark from Tectona grandis using Py–GC–MS/FID. Wood Sci. Technol. 2015, 49, 159–175. [Google Scholar] [CrossRef]
- Wang, L.; Fang, Y.; Yin, J.; Li, X.; Jiang, J.; Zhang, Y.; Yang, H. Fast pyrolysis of guaiacyl-syringyl (GS) type milled wood lignin: Product characteristics and CH4 formation mechanism study. Sci. Total Environ. 2022, 838, 156395. [Google Scholar] [CrossRef]
- Zong, P.; Jiang, Y.; Tian, Y.; Li, J.; Yuan, M.; Ji, Y.; Chen, M.; Li, D.; Qiao, Y. Pyrolysis behavior and product distributions of biomass six group components: Starch, cellulose, hemicellulose, lignin, protein and oil. Energy Convers. Manag. 2020, 216, 112777. [Google Scholar] [CrossRef]
- Duan, D.; Ruan, R.; Wang, Y.; Liu, Y.; Dai, L.; Zhao, Y.; Zhou, Y.; Wu, Q. Microwave-assisted acid pretreatment of alkali lignin: Effect on characteristics and pyrolysis behavior. Bioresour. Technol. 2018, 251, 57–62. [Google Scholar] [CrossRef]
- Ma, H.; Fu, P.; Zhao, J.; Lin, X.; Wu, W.; Yu, Z.; Xia, C.; Wang, Q.; Gao, M.; Zhou, J. Pretreatment of wheat straw lignocelluloses by deep eutectic solvent for lignin extraction. Molecules 2022, 27, 7955. [Google Scholar] [CrossRef] [PubMed]
Method | Yield (%) | Purity (%) | Mw (g/mol) | Mn (g/mol) | PDI | Reference |
---|---|---|---|---|---|---|
ChCl/OA | 65.66 | 94.3 | 2884 | 1853 | 1.58 | |
ChCl/LA | 55.62 | 92.7 | 4462 | 3095 | 1.44 | |
ChCl/EG | 50.95 | 86.2 | 11,836 | 7019 | 1.68 | This study |
ChCl/GL | 46.32 | 88.8 | 5871 | 2849 | 2.06 | |
ChCl/EG/p-TsOH | 84.17 | 90.4 | 37,077 | 27,252 | 1.36 | |
p-TsOH | — | — | 16,482 | 7640 | 2.15 | [29] |
NaOH | — | — | 42,312 | 6813 | 6.21 | [29] |
Acetic acid | — | — | 10,149 | 4140 | 2.45 | [29] |
R.T./min | Product Compounds | Peak Area (%) | Origin |
---|---|---|---|
4.63 | Toluene | 1 | Aromatic |
6.28 | Ethylbenzol | 0.26 | Aromatic |
6.42 | 1,3-Xylene | 0.37 | Aromatic |
6.77 | Phenethylene | 0.42 | Aromatic |
8.36 | Phenol | 0.76 | H-lignin |
8.72 | p-Methoxytoluene | 0.86 | Aromatic |
9.29 | 2-methyl-Phenol | 0.72 | H-lignin |
9.59 | p-Methylphenol | 0.91 | H-lignin |
9.68 | Guaiacol | 3.85 | G-lignin |
10.3 | O, O-Dimethyl catechol | 1.14 | Catechol |
10.43 | 2,4-Dimethylphenol | 1.21 | H-lignin |
10.73 | 5-Methylguaiacol | 0.21 | G-lignin |
11.37 | 3,4-Dimethoxytoluene | 5.07 | Aromatic |
11.85 | p-Ethylguaiacol | 0.96 | G-lignin |
12.25 | 4-Ethyl-2-methoxyanisole | 3.29 | |
12.72 | 3,4-Dimethoxystyrene | 6.01 | Aromatic |
12.93 | Cinnamic acid, methyl ester | 0.45 | |
13.05 | Eugenol methyl ether | 0.74 | G-lignin |
13.19 | Vanillic aldehyde | 1.12 | G-lignin |
13.59 | trans-Isoeugenol | 1.75 | G-lignin |
13.89 | Methylvanillin | 8.19 | G-lignin |
13.96 | Isoeugenyl methyl ether | 1.88 | G-lignin |
14.01 | Acetoguaiacon | 0.64 | G-lignin |
14.23 | Methyl vanillate | 0.37 | G-lignin |
14.39 | Guaiacylacetone | 0.49 | G-lignin |
14.63 | Ethanone, 1-(3,4-dimethoxyphenyl) | 1.88 | G-lignin |
14.74 | 3,4-Dimethoxybenzyl methyl ketone | 2.07 | |
14.82 | Benzoic acid, 3,4-dimethoxy-, methyl ester | 3.29 | |
15.22 | 1,2-Dimethoxy-4-(2-methoxyethenyl) benzene | 1.19 | S-lignin |
15.5 | 1,2,4-trimethoxy-5-(1-propenyl)- Benzene | 1.6 | S-lignin |
15.64 | 3,4-dimethoxy-Benzenepropanol | 1.56 | S-lignin |
15.88 | Benzenepropanoic acid, 3,4-dimethoxy-, methyl ester | 0.22 | |
16.04 | 1,2-Dimethoxy-4-(3-methoxy-1-propenyl) benzene | 1.94 | S-lignin |
17.16 | Cinnamic acid, 3,4-dimethoxy-, methyl ester | 0.73 |
DES Components | Molar Ratio | Abbreviation | Viscosity (mPa·s) | Surface Tension (mN·m−1) | |
---|---|---|---|---|---|
HBA | HBD | ||||
ChCl | OA | 1:2 | ChCl/OA | ND | ND |
ChCl | LA | 1:2 | ChCl/LA | 145.1 | 40.37 |
ChCl | EG | 1:2 | ChCl/EG | 35.54 | 49.74 |
ChCl | GL | 1:2 | ChCl/GL | 503.4 | 49.92 |
ChCl | EG + p-TsOH | 1:1.8:0.2 | ChCl/EG/p-TsOH | 39.4 | 47.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Lv, W.; Huang, D.; Zeng, C.; Wang, R. Physicochemical Properties, Thermal Stability, and Pyrolysis Behavior of Antioxidative Lignin from Water Chestnut Shell Obtained with Ternary Deep Eutectic Solvents. Molecules 2023, 28, 4088. https://doi.org/10.3390/molecules28104088
Li F, Lv W, Huang D, Zeng C, Wang R. Physicochemical Properties, Thermal Stability, and Pyrolysis Behavior of Antioxidative Lignin from Water Chestnut Shell Obtained with Ternary Deep Eutectic Solvents. Molecules. 2023; 28(10):4088. https://doi.org/10.3390/molecules28104088
Chicago/Turabian StyleLi, Feng, Wenzhi Lv, Dena Huang, Chenglu Zeng, and Runping Wang. 2023. "Physicochemical Properties, Thermal Stability, and Pyrolysis Behavior of Antioxidative Lignin from Water Chestnut Shell Obtained with Ternary Deep Eutectic Solvents" Molecules 28, no. 10: 4088. https://doi.org/10.3390/molecules28104088
APA StyleLi, F., Lv, W., Huang, D., Zeng, C., & Wang, R. (2023). Physicochemical Properties, Thermal Stability, and Pyrolysis Behavior of Antioxidative Lignin from Water Chestnut Shell Obtained with Ternary Deep Eutectic Solvents. Molecules, 28(10), 4088. https://doi.org/10.3390/molecules28104088