Chitosan Modulates Volatile Organic Compound Emission from the Biocontrol Fungus Pochonia chlamydosporia
Abstract
:1. Introduction
2. Results
2.1. Fungal VOC Profiles—Culture in Solid Medium (Rice)
2.2. Fungal VOC Profiles—Culture in Liquid Medium (Modified Czapek–Dox)
3. Discussion
4. Materials and Methods
4.1. Fungi and Source of Chitosan
4.2. Experimental Design
4.3. SPME and GC-MS Analysis
4.4. Tentative Identification of VOCs
4.5. Statistical Analysis
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
Pc | Pochonia chlamydosporia |
DAI | Days after inoculation |
GC | Gas chromatography |
HS-SPME | Headspace solid-phase microextraction |
MS | Mass spectrometry |
VOC | Volatile organic compound |
References
- Schneider, L.; Rebetez, M.; Rasmann, S. The effect of climate change on invasive crop pests across biomes. Curr. Opin. Insect Sci. 2022, 50, 100895. [Google Scholar] [CrossRef]
- Hawkins, N.J.; Bass, C.; Dixon, A.; Neve, P. The evolutionary origins of pesticide resistance. Biol. Rev. 2019, 94, 135–155. [Google Scholar] [CrossRef] [PubMed]
- Kanchiswamy, C.N.; Malnoy, M.; Maffei, M.E. Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends Plant Sci. 2015, 20, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Brilli, F.; Loreto, F.; Baccelli, I. Exploiting plant volatile organic compounds (VOCs) in agriculture to improve sustainable defense strategies and productivity of crops. Front. Plant Sci. 2019, 10, 264. [Google Scholar] [CrossRef]
- Maurya, A.K. Application of plant volatile organic compounds (VOCs) in agriculture. In New Frontiers in Stress Management for Durable Agriculture; Springer: Singapore, 2020; pp. 369–388. [Google Scholar]
- Pagans, E.; Font, X.; Sánchez, A. Emission of volatile organic compounds from composting of different solid wastes: Abatement by biofiltration. J. Hazard. Mater. 2006, 131, 179–186. [Google Scholar] [CrossRef]
- Kramer, R.; Abraham, W.R. Volatile sesquiterpenes from fungi: What are they good for? Phytochem. Rev. 2012, 11, 15–37. [Google Scholar] [CrossRef]
- Inamdar, A.A.; Morath, S.; Bennett, J.W. Fungal volatile organic compounds: More than just a funky smell? Annu. Rev. Microbiol. 2020, 74, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Schalchli, H.; Tortella, G.; Rubilar, O.; Parra, L.; Hormazabal, E.; Quiroz, A. Fungal volatiles: An environmentally friendly tool to control pathogenic microorganisms in plants. Crit. Rev. Biotechnol. 2016, 36, 144–152. [Google Scholar] [CrossRef]
- Lozano-Soria, A.; Picciotti, U.; Lopez-Moya, F.; Lopez-Cepero, J.; Porcelli, F.; Lopez-Llorca, L.V. Volatile organic compounds from entomopathogenic and nematophagous fungi, repel banana black weevil (Cosmopolites sordidus). Insects 2020, 11, 509. [Google Scholar] [CrossRef]
- Splivallo, R.; Ottonello, S.; Mello, A.; Karlovsky, P. Truffle volatiles: From chemical ecology to aroma biosynthesis. New Phytol. 2011, 189, 688–699. [Google Scholar] [CrossRef]
- Naik, B.S. Volatile hydrocarbons from endophytic fungi and their efficacy in fuel production and disease control. Egypt. J. Biol. Pest Control 2018, 28, 1–9. [Google Scholar] [CrossRef]
- Achimón, F.; Brito, V.D.; Pizzolitto, R.P.; Zygadlo, J.A. Effect of carbon sources on the production of volatile organic compounds by Fusarium verticillioides. J. Fungi 2022, 8, 158. [Google Scholar] [CrossRef]
- Fiedler, K.; Schütz, E.; Geh, S. Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. Int. J. Hyg. Environ. Health 2001, 204, 111–121. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, L.; Kong, X.; Ji, X.; Yang, S. Changes and bioactivities on volatile organic compounds of endophytic fungi Neurospora dictyophora 3ZF-02 in different ages. J. Basic Microbiol. 2023, 63, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Manzanilla-Lopez, R.H.; Esteves, I.; Finetti-Sialer, M.M.; Hirsch, P.R.; Ward, E.; Devonshire, J.; Hidalgo-Díaz, L. Pochonia chlamydosporia: Advances and challenges to improve its performance as a biological control agent of sedentary endo-parasitic nematodes. J. Nematol. 2013, 45, 1. [Google Scholar] [PubMed]
- Forghani, F.; Hajihassani, A. Recent advances in the development of environmentally benign treatments to control root-knot nematodes. Front. Plant Sci. 2020, 11, 1125. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, R.R.; Pacheco, P.V.M.; Monteiro, T.S.A.; Balbino, H.M.; Moreira, B.C.; de Freitas, L.G. Root colonization and growth promotion of cover crops by Pochonia chlamydosporia. Rhizosphere 2021, 20, 100432. [Google Scholar] [CrossRef]
- Escudero, N.; Lopez-Llorca, L.V. Effects on plant growth and root-knot nematode infection of an endophytic GFP transformant of the nematophagous fungus Pochonia chlamydosporia. Symbiosis 2012, 57, 33–42. [Google Scholar] [CrossRef]
- Suarez-Fernandez, M.; Aragon-Perez, A.; Lopez-Llorca, L.V.; Lopez-Moya, F. Putative LysM effectors contribute to fungal lifestyle. Int. J. Mol. Sci. 2021, 22, 3147. [Google Scholar] [CrossRef]
- Younes, I.; Rinaudo, M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs 2015, 13, 1133–1174. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Shafi, M.E.; Zabermawi, N.M.; Arif, M.; Batiha, G.E.; Khafaga, A.F.; Abd El-Hakim, Y.M.; Al-Sagheer, A.A. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. Int. J. Biol. Macromol. 2020, 164, 2726–2744. [Google Scholar] [CrossRef] [PubMed]
- El-Tantawy, E. Behavior of tomato plants as affected by spraying with chitosan and aminofort as natural stimulator substances under application of soil organic amendments. Pak. J. Biol. Sci. PJBS 2009, 12, 1164–1173. [Google Scholar] [CrossRef] [PubMed]
- Iriti, M.; Faoro, F. Abscisic acid is involved in chitosan-induced resistance to tobacco necrosis virus (TNV). Plant Physiol. Biochem. 2008, 46, 1106–1111. [Google Scholar] [CrossRef]
- Palma-Guerrero, J.; Jansson, H.B.; Salinas, J.; Lopez-Llorca, L. Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi. J. Appl. Microbiol. 2008, 104, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Palma-Guerrero, J.; Gómez-Vidal, S.; Tikhonov, V.E.; Salinas, J.; Jansson, H.B.; Lopez-Llorca, L.V. Comparative analysis of extracellular proteins from Pochonia chlamydosporia grown with chitosan or chitin as main carbon and nitrogen sources. Enzym. Microb. Technol. 2010, 46, 568–574. [Google Scholar] [CrossRef]
- Aranda-Martinez, A.; Lenfant, N.; Escudero, N.; Zavala-Gonzalez, E.A.; Henrissat, B.; Lopez-Llorca, L.V. CAZyme content of Pochonia chlamydosporia reflects that chitin and chitosan modification are involved in nematode parasitism. Environ. Microbiol. 2016, 18, 4200–4215. [Google Scholar] [CrossRef]
- Escudero, N.; Lopez-Moya, F.; Ghahremani, Z.; Zavala-Gonzalez, E.A.; Alaguero-Cordovilla, A.; Ros-Ibañez, C.; Lacasa, A.; Sorribas, F.J.; Lopez-Llorca, L.V. Chitosan increases tomato root colonization by Pochonia chlamydosporia and their combination reduces root-knot nematode damage. Front. Plant Sci. 2017, 8, 1415. [Google Scholar] [CrossRef]
- Suarez-Fernandez, M.; Sambles, C.; Lopez-Moya, F.; Nueda, M.J.; Studholme, D.J.; Lopez-Llorca, L.V. Chitosan modulates Pochonia chlamydosporia gene expression during nematode egg parasitism. Environ. Microbiol. 2021, 23, 4980–4997. [Google Scholar] [CrossRef]
- He, P.Q.; Tian, L.; Chen, K.S.; Hao, L.H.; Li, G.Y. Induction of volatile organic compounds of Lycopersicon esculentum Mill. and its resistance to Botrytis cinerea Pers. by burdock oligosaccharide. J. Integr. Plant Biol. 2006, 48, 550–557. [Google Scholar] [CrossRef]
- Yin, H.; Fretté, X.C.; Christensen, L.P.; Grevsen, K. Chitosan oligosaccharides promote the content of polyphenols in Greek oregano (Origanum vulgare ssp. hirtum). J. Agric. Food Chem. 2012, 60, 136–143. [Google Scholar] [CrossRef]
- Badiali, C.; De Angelis, G.; Simonetti, G.; Brasili, E.; Tobaruela, E.d.C.; Purgatto, E.; Yin, H.; Valletta, A.; Pasqua, G. Chitosan oligosaccharides affect xanthone and VOC biosynthesis in Hypericum perforatum root cultures and enhance the antifungal activity of root extracts. Plant Cell Rep. 2018, 37, 1471–1484. [Google Scholar] [CrossRef] [PubMed]
- Peiqing, H.; Xuezheng, L.; Jihong, S.; Xiaohang, H.; Kaoshan, C.; Guangyou, L. Induction of volatile organic compound in the leaves of Lycopersicon esculentum by chitosan oligomer. High Technol. Lett. 2005, 11, 95–100. [Google Scholar]
- Zhang, P.; Chen, K. Age-dependent variations of volatile emissions and inhibitory activity toward Botrytis cinerea and Fusarium oxysporum in tomato leaves treated with chitosan oligosaccharide. J. Plant Biol. 2009, 52, 332–339. [Google Scholar] [CrossRef]
- Lopez-Moya, F.; Suarez-Fernandez, M.; Lopez-Llorca, L.V. Molecular mechanisms of chitosan interactions with fungi and plants. Int. J. Mol. Sci. 2019, 20, 332. [Google Scholar] [CrossRef] [PubMed]
- Asensio, D.; Peñuelas, J.; Filella, I.; Llusià, J. On-line screening of soil VOCs exchange responses to moisture, temperature and root presence. Plant Soil 2007, 291, 249–261. [Google Scholar] [CrossRef]
- Morath, S.U.; Hung, R.; Bennett, J.W. Fungal volatile organic compounds: A review with emphasis on their biotechnological potential. Fungal Biol. Rev. 2012, 26, 73–83. [Google Scholar] [CrossRef]
- McBride, S.G.; Osburn, E.D.; Lucas, J.M.; Simpson, J.S.; Brown, T.; Barrett, J.E.; Strickland, M.S. Volatile and Dissolved Organic Carbon Sources Have Distinct Effects on Microbial Activity, Nitrogen Content, and Bacterial Communities in Soil. Microb. Ecol. 2022, 85, 659–668. [Google Scholar] [CrossRef]
- Hung, R.; Lee, S.; Bennett, J.W. Fungal volatile organic compounds and their role in ecosystems. Appl. Microbiol. Biotechnol. 2015, 99, 3395–3405. [Google Scholar] [CrossRef]
- Karuppusamy, S. A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J. Med. Plants Res. 2009, 3, 1222–1239. [Google Scholar]
- Kaczmarek, M.B.; Struszczyk-Swita, K.; Li, X.; Szczęsna-Antczak, M.; Daroch, M. Enzymatic modifications of chitin, chitosan, and chitooligosaccharides. Front. Bioeng. Biotechnol. 2019, 7, 243. [Google Scholar] [CrossRef]
- Pan, Y.; Jin, H.; Yang, S.; Liu, H. Changes of volatile organic compounds and bioactivity of Alternaria brassicae GL07 in different ages. J. Basic Microbiol. 2019, 59, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Zawirska-Wojtasiak, R. Optical purity of (R)-(-)-1-octen-3-ol in the aroma of various species of edible mushrooms. Food Chem. 2004, 86, 113–118. [Google Scholar] [CrossRef]
- Chitarra, G.S.; Abee, T.; Rombouts, F.M.; Posthumus, M.A.; Dijksterhuis, J. Germination of Penicillium paneum conidia is regulated by 1-octen-3-ol, a volatile self-inhibitor. Appl. Environ. Microbiol. 2004, 70, 2823–2829. [Google Scholar] [CrossRef] [PubMed]
- Kheloul, L.; Kellouche, A.; Bréard, D.; Gay, M.; Gadenne, C.; Anton, S. Trade-off between attraction to aggregation pheromones and repellent effects of spike lavender essential oil and its main constituent linalool in the flour beetle Tribolium confusum. Entomol. Exp. Appl. 2019, 167, 826–834. [Google Scholar] [CrossRef]
- Chaves-López, C.; Serio, A.; Gianotti, A.; Sacchetti, G.; Ndagijimana, M.; Ciccarone, C.; Stellarini, A.; Corsetti, A.; Paparella, A. Diversity of food-borne Bacillus volatile compounds and influence on fungal growth. J. Appl. Microbiol. 2015, 119, 487–499. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, L.; Johansen, P.G.; Petersen, M.A.; Arneborg, N.; Jespersen, L. Debaryomyces hansenii strains isolated from Danish cheese brines act as biocontrol agents to inhibit germination and growth of contaminating molds. Front. Microbiol. 2021, 12, 662785. [Google Scholar] [CrossRef]
- Olivares-Bernabeu, C.M.; López-Llorca, L.V. Fungal egg-parasites of plant-parasitic nematodes from Spanish soils. Rev. Iberoam. Micol. 2002, 19, 104–110. [Google Scholar]
- Hardin, J.W.; Hilbe, J.M. Generalized Linear Models and Extensions; Stata Press: College Station, TX, USA, 2007. [Google Scholar]
- Van de Schoot, R.; Kaplan, D.; Denissen, J.; Asendorpf, J.B.; Neyer, F.J.; Van Aken, M.A. A gentle introduction to Bayesian analysis: Applications to developmental research. Child Dev. 2014, 85, 842–860. [Google Scholar] [CrossRef]
- Muth, C.; Oravecz, Z.; Gabry, J. User-friendly Bayesian regression modeling: A tutorial with rstanarm and shinystan. Quant. Methods Psychol. 2018, 14, 99–119. [Google Scholar] [CrossRef]
- Rue, H.; Martino, S.; Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B 2009, 71, 319–392. [Google Scholar] [CrossRef]
- Jeffreys, H. Theory of Probability, 3rd ed.; Clarendon Press: Oxford, UK, 1961. [Google Scholar]
- Kass, R.E.; Raftery, A.E. Bayes factors. J. Am. Stat. Assoc. 1995, 90, 773–795. [Google Scholar] [CrossRef]
- Dittrich, D.; Leenders, R.T.A.; Mulder, J. Network autocorrelation modeling: A Bayes factor approach for testing (multiple) precise and interval hypotheses. Sociol. Methods Res. 2019, 48, 642–676. [Google Scholar] [CrossRef]
Control Buffer Solution | |||
---|---|---|---|
Major VOCs | 15 DAI | 25 DAI | 35 DAI |
3-Hydroxybutan-2-one | 66,402.67 (52,092.53) | 125,554.33 (27,721.47) | 0 (0) |
Octa-1,3-diene | 56,919.33 (41,951.78) | 55,423.67 (53,923.95) | 16,699 (5750.02) |
Butane-2,3-diol | 6820.33 (11,813.16) | 0 (0) | 0 (0) |
Methoxybenzene | 69,604 (29,288.09) | 91,969.33 (50,952.5) | 39,812.67 (50,272.28) |
Oct-1-en-3-ol | 649,414 (228,962.08) | 0 (0) | 0 (0) |
Octan-3-one | 0 (0) | 399,307.33 (46,213.61) | 0 (0) |
Octan-3-ol | 119,415 (42,769.72) | 114,748 (41,654.88) | 0 (0) |
1,3-Dimethoxybenzene | 30,228,196.67 (4,503,694.87) | 23,852,155.67 (3,776,948.08) | 24,519,265 (853,358.59) |
Methyl 2-phenylacetate | 21,108.33 (36,560.71) | 26,653 (8728.81) | 0 (0) |
3-Methoxyphenol | 57,144.67 (13,644.68) | 82,675.67 (46,591.62) | 176,919.67 (282,216.43) |
1,2,3-Trimethoxybenzene | 0 (0) | 0 (0) | 79,005 (70,432.6) |
3,4-Dimethoxyphenol | 20,412 (6363.42) | 16,339.67 (4189.58) | 47,431 (28,622) |
1,2,4-Trimethoxybenzene | 0 (0) | 0 (0) | 69,126.33 (59,929.47) |
(1S,5S,6R)-2,6-Dimethyl-6-(4-methylpent-3-enyl)bicyclo[3.1.1]hept-2-ene | 91,357 (9722.48) | 95,971 (51,607.35) | 0 (0) |
(6Z)-7,11-Dimethyl-3-methylene-1,6,10-dodecatriene | 1,102,849.33 (104,001.08) | 1,402,859 (620,066.31) | 442,461.67 (217,469.06) |
Control Buffer Solution | |||
Minor VOCs | 15 DAI | 25 DAI | 35 DAI |
3-Methylbutanoic acid | 0 (0) | 0 (0) | 0 (0) |
Hept-2-enal | 0 (0) | 7376.33 (12,776.18) | 0 (0) |
1,2,7,7-Tetramethylbicyclo[2.2.1]hept-2-ene | 16,335.33 (28,293.63) | 20,317 (8170.16) | 0 (0) |
Methyl 2,4-dimethylhexanoate | 0 (0) | 0 (0) | 0 (0) |
1,3-Dimethoxy-2-methylbenzene | 14,198.33 (7099.4) | 0 (0) | 0 (0) |
(4S)-1-Methyl-4-(6-methylhepta-1,5-dien-2-yl)cyclohexene | 20,789 (2941.92) | 21,290 (11,113.46) | 14,563 (2446.21) |
1,4-Dichloro-2,5-dimethoxybenzene | 0 (0) | 0 (0) | 22,518.67 (22,153.03) |
2,4-Dimethylquinoline | 10,420.33 (3401.84) | 0 (0) | 0 (0) |
1,2,3,4-Tetramethoxybenzene | 20,149.33 (6534.38) | 0 (0) | 0 (0) |
2,7,7,10-Tetramethyl-3-oxatetracyclo[7.3.0.0.0]dodecane | 0 (0) | 21,819.67 (8513.99) | 0 (0) |
Chitosan Solution | |||
---|---|---|---|
Major VOCs | 15 DAI | 25 DAI | 35 DAI |
3-Hydroxybutan-2-one | 140,203.67 (53,930.99) | 388,898.33 (323,491.84) | 0 (0) |
Octa-1,3-diene | 89,883.33 (40,449.43) | 69,747 (19,223.05) | 40,255.33 (22,192.96) |
Butane-2,3-diol | 38,923.67 (47,948.61) | 0 (0) | 0 (0) |
Methoxybenzene | 51,741.33 (13,805.67) | 152,280.33 (17,822.66) | 3329 (5766) |
Oct-1-en-3-ol | 399,266 (405,852.5) | 0 (0) | 0 (0) |
Octan-3-one | 0 (0) | 277,246.67 (54,831.37) | 0 (0) |
Octan-3-ol | 130,339.33 (39,439.22) | 46,439.33 (15,604.4) | 0 (0) |
1,3-Dimethoxybenzene | 23,396,956.33 (2,794,659) | 27,827,414 (1,515,361.21) | 8,751,248.67 (11,680,587.39) |
Methyl 2-phenylacetate | 48,876.67 (3305.18) | 31,430.67 (5845.67) | 0 (0) |
3-Methoxyphenol | 73,917 (28,675.39) | 191,472.33 (20,750.74) | 0 (0) |
1,2,3-Trimethoxybenzene | 0 (0) | 0 (0) | 31,746.67 (54,986.84) |
3,4-Dimethoxyphenol | 12,502 (3616.14) | 25,793 (1228) | 5007.67 (8673.53) |
1,2,4-Trimethoxybenzene | 0 (0) | 0 (0) | 25,044 (43,377.48) |
(1S,5S,6R)-2,6-Dimethyl-6-(4-methylpent-3-enyl)bicyclo[3.1.1]hept-2-ene | 84,528.33 (16,562.62) | 44,375 (13,065.53) | 0 (0) |
(6Z)-7,11-Dimethyl-3-methylene-1,6,10-dodecatriene | 922,376.67 (40,678.69) | 1,068,108.67 (492,573.01) | 176,422.67 (118,053.64) |
Chitosan Solution | |||
Minor VOCs | 15 DAI | 25 DAI | 35 DAI |
3-Methylbutanoic acid | 14,420 (2770.17) | 0 (0) | 0 (0) |
Hept-2-enal | 0 (0) | 16,133 (5651.12) | 0 (0) |
1,2,7,7-Tetramethylbicyclo[2.2.1]hept-2-ene | 28,434.67 (10,528.13) | 19,826.33 (3413.38) | 0 (0) |
Methyl 2,4-dimethylhexanoate | 23,886.67 (1965.31) | 0 (0) | 0 (0) |
1,3-Dimethoxy-2-methylbenzene | 8232.33 (4957.03) | 0 (0) | 0 (0) |
(4S)-1-Methyl-4-(6-methylhepta-1,5-dien-2-yl)cyclohexene | 20,508 (3187.7) | 14,716.33 (6302.52) | 3672.67 (6361.25) |
1,4-Dichloro-2,5-dimethoxybenzene | 0 (0) | 0 (0) | 7982.67 (13,826.38) |
2,4-Dimethylquinoline | 11,458 (4963.33) | 0 (0) | 0 (0) |
1,2,3,4-Tetramethoxybenzene | 32,050 (11,831.09) | 0 (0) | 0 (0) |
2,7,7,10-Tetramethyl-3-oxatetracyclo[7.3.0.02,4.06,8]dodecane | 0 (0) | 18,851 (22,189.55) | 0 (0) |
Control Buffer Solution | |||
---|---|---|---|
Major VOCs | 24 h | 48 h | 72 h |
Oct-1-en-3-ol | 0 (0) | 0 (0) | 0 (0) |
8-Methylheptadecane | 64,212.67 (27,072.87) | 66,092.33 (31,020.32) | 33,097 (8613.77) |
2,6,11-Trimethyldodecane | 38,103.67 (12,330.32) | 34,817.33 (5539.97) | 18,099.33 (4608.43) |
Hexacosane | 23,811.67 (7685.3) | 64,745.33 (14,575.82) | 24,891.33 (3341.71) |
2,4-ditert-butylphenol | 116,881 (39,599.25) | 78,442.67 (730.06) | 59,575.33 (3437.02) |
2,6,10,15-Tetramethylheptadecane | 0 (0) | 42372.67 (16256.22) | 0 (0) |
Tetradec-1-ene | 0 (0) | 0 (0) | 0 (0) |
Hexadecan-1-ol | 361,050.67 (110,953.32) | 224,019.67 (135,154.82) | 6539.67 (11,327.03) |
Octadec-9-en-1-ol | 171,950 (42,297.08) | 90,861.33 (40,895.74) | 4027.67 (6976.12) |
Control Buffer Solution | |||
Minor VOCs | 24 h | 48 h | 72 h |
2-Methylpyrazine | 0 (0) | 0 (0) | 5531 (9579.97) |
3,7-Dimethyldecane | 15,702.67 (13,631.84) | 0 (0) | 0 (0) |
5-Methylundecane | 13,636 (11,954.55) | 0 (0) | 0 (0) |
Naphthalene | 0 (0) | 10,350 (17,926.73) | 0 (0) |
1,3-ditert-butylbenzene | 16,117.67 (14,093.38) | 0 (0) | 0 (0) |
3,4,6-Trimethylundecane | 12,117.67 (10,601.65) | 5167 (8949.51) | 0 (0) |
2,6,10-Trimethyldodecane | 4661 (8073.09) | 9740 (8511.64) | 0 (0) |
3-Ethyl-5-(2-ethylbutyl)octadecane | 9472.67 (8294.68) | 0 (0) | 0 (0) |
Nonadecane | 9776.67 (8620.81) | 30,276.33 (6070.58) | 0 (0) |
2,6,11,15-Tetramethylhexadecane | 0 (0) | 13,774 (12,290.88) | 0 (0) |
Chitosan Solution | |||
---|---|---|---|
Major VOCs | 24 h | 48 h | 72 h |
Oct-1-en-3-ol | 218,516.67 (130,830.14) | 132,448.33 (113,897.66) | 55,408.67 (24,658.18) |
8-Methylheptadecane | 87,610.33 (33,754.89) | 69,603.33 (37,892.55) | 74,636.33 (48,102.79) |
2,6,11-Trimethyldodecane | 59,529 (24,339.84) | 35,308.67 (9317.39) | 47,015.67 (30,486.18) |
Hexacosane | 51,634.33 (21,668.02) | 58,443.33 (20,214.85) | 59,734.67 (28,128.13) |
2,4-ditert-butylphenol | 131,087.33 (33,937.52) | 69,674.33 (8951) | 75,155.67 (33,691.57) |
2,6,10,15-Tetramethylheptadecane | 27,279.33 (26,850.31) | 40,188.67 (5461) | 0 (0) |
Tetradec-1-ene | 34,551.33 (30,503.11) | 0 (0) | 0 (0) |
Hexadecan-1-ol | 1,036,705 (126,868.82) | 191,852.33 (29,836.23) | 17,328.67 (15,497.53) |
Octadec-9-en-1-ol | 626,179.33 (96,866.49) | 118,469 (33,443.61) | 21,290.33 (6700.12) |
Minor VOCs | 24 h | 48 h | 72 h |
2-Methylpyrazine | 0 (0) | 0 (0) | 5023 (8700.09) |
3,7-Dimethyldecane | 11179.67 (9686.23) | 0 (0) | 0 (0) |
5-Methylundecane | 10,221 (8929.62) | 0 (0) | 0 (0) |
Naphthalene | 0 (0) | 6897.67 (5980.28) | 0 (0) |
1,3-ditert-butylbenzene | 25,663 (9942.73) | 0 (0) | 0 (0) |
3,4,6-Trimethylundecane | 16,235.67 (14,948.86) | 10,693.33 (9270.68) | 13,517.67 (12,817.11) |
2,6,10-Trimethyldodecane | 11,949 (11,228.94) | 0 (0) | 17,214.67 (16,102.73) |
3-Ethyl-5-(2-ethylbutyl)octadecane | 14,332.67 (13,385.78) | 0 (0) | 11,371.33 (10,643.96) |
Nonadecane | 27,725.33 (11,623.31) | 27,063 (4893.47) | 24,760 (21,735.48) |
2,6,11,15-Tetramethylhexadecane | 0 (0) | 16,144 (949.76) | 0 (0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mestre-Tomás, J.; Esgueva-Vilà, D.; Fuster-Alonso, A.; Lopez-Moya, F.; Lopez-Llorca, L.V. Chitosan Modulates Volatile Organic Compound Emission from the Biocontrol Fungus Pochonia chlamydosporia. Molecules 2023, 28, 4053. https://doi.org/10.3390/molecules28104053
Mestre-Tomás J, Esgueva-Vilà D, Fuster-Alonso A, Lopez-Moya F, Lopez-Llorca LV. Chitosan Modulates Volatile Organic Compound Emission from the Biocontrol Fungus Pochonia chlamydosporia. Molecules. 2023; 28(10):4053. https://doi.org/10.3390/molecules28104053
Chicago/Turabian StyleMestre-Tomás, Jorge, David Esgueva-Vilà, Alba Fuster-Alonso, Federico Lopez-Moya, and Luis V. Lopez-Llorca. 2023. "Chitosan Modulates Volatile Organic Compound Emission from the Biocontrol Fungus Pochonia chlamydosporia" Molecules 28, no. 10: 4053. https://doi.org/10.3390/molecules28104053