Hard-Carbon Negative Electrodes from Biomasses for Sodium-Ion Batteries
Abstract
:1. Introduction
2. The Mechanism of Sodium Storage in Hard Carbons
3. Hard Carbons Prepared from Biomass
3.1. Undoped Hard Carbons
3.2. Heteroatomic Doped Hard Carbons
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Wang, L.; Zhuo, M.; Ni, W.; Wang, H.; Ma, J. Layered tin sulfide and selenide anode materials for Li-and Na-ion batteries. J. Mater. Chem. A 2018, 6, 12185–12214. [Google Scholar] [CrossRef]
- Nayak, P.K.; Yang, L.; Brehm, W.; Adelhelm, P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem. Int. Ed. 2018, 57, 102–120. [Google Scholar] [CrossRef] [PubMed]
- Alcántara, R.; Jaraba, M.; Lavela, P.; Tirado, J.L. NiCo2O4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem. Mater. 2022, 14, 2847–2848. [Google Scholar] [CrossRef]
- Qiu, S.; Xiao, L.; Ai, X.; Yang, H.; Cao, Y. Yolk–shell TiO2@C nanocomposite as high-performance anode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Li, X.; Xu, B.; Twu, N.; Liu, L.; Ceder, G. NaTiO2: A layered anode material for sodium-ion batteries. Energy Environ. Sci. 2015, 8, 195–202. [Google Scholar] [CrossRef]
- Pham, X.M.; Ngo, D.T.; Le, H.T.; Didwal, P.N.; Verma, R.; Min, C.W.; Park, C.N.; Park, C.J. A self-encapsulated porous Sb–C nanocomposite anode with excellent Na-ion storage performance. Nanoscale 2018, 10, 19399–19408. [Google Scholar] [CrossRef]
- Wu, L.; Hu, X.; Qian, J.; Pei, F.; Wu, F.; Mao, R.; Ai, X.; Yang, H.; Cao, Y. Sb–C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. Energy Environ. Sci. 2014, 7, 323–328. [Google Scholar] [CrossRef]
- Ni, D.; Sun, W.; Wang, Z.; Bai, Y.; Lei, H.; Lai, X.; Sun, K. Heteroatom-doped mesoporous hollow carbon spheres for fast sodium storage with an ultralong cycle life. Adv. Energy Mater. 2019, 9, 1900036. [Google Scholar] [CrossRef]
- Gaddam, R.R.; Yang, D.; Narayan, R.; Raju, K.V.S.N.; Kumar, N.A.; Zhao, X.S. Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 2016, 26, 346–352. [Google Scholar] [CrossRef]
- Wang, J.; Okabe, J.; Urita, K.; Moriguchi, I.; Wei, M. Cu2S hollow spheres as an anode for high-rate sodium storage performance. J. Electroanal. Chem. 2020, 874, 114523. [Google Scholar] [CrossRef]
- Wang, J.; Handoko, A.D.; Bai, Y.; Yang, G.; Li, Y.; Xing, Z.; Seh, Z.W. High-performance NiS2 hollow nanosphere cathodes in magnesium-ion batteries enabled by tunable redox chemistry. Nano Lett. 2022, 22, 10184–10191. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Sun, G.; Hu, L.; Xiao, Y.; Zhang, Z.; Qu, L. Recent progress in graphene-based electrodes for flexible batteries. Infomat 2020, 2, 509–526. [Google Scholar] [CrossRef]
- Delmas, C. Sodium and sodium-ion batteries: 50 years of research. Adv. Energy Mater. 2018, 8, 1703137. [Google Scholar] [CrossRef]
- Thomas, P.; Billaud, D. Electrochemical insertion of sodium into hard carbons. Electrochim. Acta 2002, 47, 3303–3307. [Google Scholar] [CrossRef]
- Kamiyama, A.; Kubota, K.; Igarashi, D.; Youn, Y.; Tateyama, Y.; Ando, H.; Komaba, S. MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery. Angew. Chem. Int. Ed. 2021, 60, 5114–5120. [Google Scholar] [CrossRef]
- Ponrouch, A.; Palacín, M.R. Optimisation of performance through electrode formulation in conversion materials for lithium ion batteries: Co3O4 as a case example. J. Power Sources 2012, 212, 233–246. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, B.; Xie, J.; Hu, J.; Lu, Z.; Cao, Y. Phosphorus/sulfur co-doped hard carbon with a well-designed porous bowl-like structure and enhanced initial coulombic efficiency for high-performance sodium storage. J. Alloys Comp. 2022, 911, 164979. [Google Scholar] [CrossRef]
- Xia, H.; Yuan, P.; Zan, L.; Qu, G.; Tu, Y.; Zhu, K.; Zhang, J. Probing the active sites of 2D nanosheets with Fe-NC carbon shell encapsulated FexC/Fe species for boosting sodium-ion storage performances. Nano Res. 2022, 15, 7154–7162. [Google Scholar] [CrossRef]
- Li, S.; Fan, Y.; Li, X.; Sun, T.; Liu, Z.; Wang, K.; Zhao, Y. Ultralight hard carbon nanotubes nanofiber foam/epoxy nanocomposites for comprehensive microwave absorption performance. Polym. Compos. 2021, 42, 4673–4683. [Google Scholar] [CrossRef]
- Beda, A.; Taberna, P.L.; Simon, P.; Ghimbeu, C.M. Hard carbons derived from green phenolic resins for Na-ion batteries. Carbon 2018, 139, 248–257. [Google Scholar] [CrossRef]
- Tyagi, A.; Puravankara, S. Insights into the diverse precursor-based micro-spherical hard carbons as anode materials for sodium–ion and potassium–ion batteries. Mater. Adv. 2022, 3, 810–836. [Google Scholar]
- Yu, C.; Hou, H.; Liu, X.; Yao, Y.; Liao, Q.; Dai, Z.; Li, D. Old-loofah-derived hard carbon for long cyclicity anode in sodium ion battery. Int. J. Hydrog. Energy 2018, 43, 3253–3260. [Google Scholar] [CrossRef]
- Xiang, J.; Lv, W.; Mu, C.; Zhao, J.; Wang, B. Activated hard carbon from orange peel for lithium/sodium ion battery anode with long cycle life. J. Alloys Comp. 2017, 701, 870–874. [Google Scholar] [CrossRef]
- Chu, Y.; Zhang, J.; Zhang, Y.; Li, Q.; Jia, Y.; Dong, X.; Xiao, J.; Tao, Y.; Yang, Q.H. Reconfiguring Hard Carbons with Emerging Sodium-ion Batteries: A Perspective. Adv. Mater. 2023, 2212186. [Google Scholar] [CrossRef]
- Xie, J.; Lu, Y.C. A retrospective on lithium-ion batteries. Nat. Commun. 2020, 11, 2499. [Google Scholar] [CrossRef]
- Stevens, D.A.; Dahn, J.R. An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell. J. Electrochem. Soc. 2000, 147, 4428. [Google Scholar] [CrossRef]
- Cao, Y.; Xiao, L.; Sushko, M.L. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012, 12, 3783–3787. [Google Scholar] [CrossRef]
- Bommier, C.; Surta, T.W.; Dolgos, M.; Ji, X. New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett. 2015, 15, 5888–5892. [Google Scholar] [CrossRef]
- Zhang, B.; Ghimbeu, C.M.; Laberty, C.; Vix-Guterl, C.; Tarascon, J.M. Correlation between microstructure and Na storage behavior in hard carbon. Adv. Energy Mater. 2016, 6, 1501588. [Google Scholar] [CrossRef]
- Wu, S.; Lu, X.; Zhang, K.; Xu, J.; Sun, Z. Nitrogen/Phosphorus Dual-Doped Hard Carbon Anode with High Initial Coulombic Efficiency for Superior Sodium Storage. Batter. Supercaps 2023, 6, e202200427. [Google Scholar] [CrossRef]
- Chen, X.; Liu, C.; Fang, Y.; Ai, X.; Zhong, F.; Yang, H.; Cao, Y. Understanding of the sodium storage mechanism in hard carbon anodes. Carbon Energy 2022, 4, 1133–1150. [Google Scholar] [CrossRef]
- Wang, D.; Dong, S.; Ashour, A.; Wang, X.; Qiu, L.; Han, B. Biomass-derived nanocellulose-modified cementitious composites: A review. Mater. Today Sustain. 2022, 18, 100115. [Google Scholar] [CrossRef]
- Kong, M.; Li, M.; Shang, R.; Wu, J.; Yan, P.; Xu, D.; Li, C. Nacre-templated synthesis of highly dispersible carbon nanomeshes for layered membranes with high-flux filtration and sensing properties. ACS Appl. Mater. Interfaces 2018, 10, 2850–2858. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Y.S.; Titirici, M.M.; Chen, L.; Huang, X. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600659. [Google Scholar] [CrossRef]
- Chen, S.; Tang, K.; Song, F.; Liu, Z.; Zhang, N.; Lan, S.; Wu, Z. Porous hard carbon spheres derived from biomass for high-performance sodium/potassium-ion batteries. Nanotechnology 2021, 33, 055401. [Google Scholar] [CrossRef]
- Wang, P.; Zhu, K.; Ye, K.; Gong, Z.; Liu, R.; Cheng, K.; Cao, D. Three-dimensional biomass derived hard carbon with reconstructed surface as a free-standing anode for sodium-ion batteries. J. Colloid Interface Sci. 2020, 561, 203–210. [Google Scholar] [CrossRef]
- Rath, P.C.; Patra, J.; Huang, H.T.; Bresser, D.; Wu, T.Y.; Chang, J.K. Carbonaceous Anodes Derived from Sugarcane Bagasse for Sodium-Ion Batteries. ChemSusChem 2019, 12, 2302–2309. [Google Scholar] [CrossRef]
- Hong, K.L.; Qie, L.; Zeng, R.; Yi, Z.Q.; Zhang, W.; Wang, D.; Yin, W.; Wu, C.; Fan, Q.-J.; Zhang, W.-X.; et al. Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. J. Mater. Chem. A 2014, 2, 12733–12738. [Google Scholar] [CrossRef]
- Zhang, T.; Mao, J.; Liu, X.; Xuan, M.; Bi, K.; Zhang, X.L.; Hu, J.; Fan, J.; Chen, S.; Shao, G. Pinecone biomass-derived hard carbon anodes for high-performance sodium-ion batteries. RSC Adv. 2017, 7, 41504–41511. [Google Scholar] [CrossRef]
- Damodar, D.; Ghosh, S.; Rani, M.U.; Martha, S.K.; Deshpande, A.S. Hard carbon derived from sepals of Palmyra palm fruit calyx as an anode for sodium-ion batteries. J. Power Sources 2019, 438, 227008. [Google Scholar] [CrossRef]
- Kumaresan, T.K.; Masilamani, S.A.; Raman, K.; Karazhanov, S.Z.; Subashchandrabose, R. High performance sodium-ion battery anode using biomass derived hard carbon with engineered defective sites. Electrochim. Acta 2021, 368, 137574. [Google Scholar] [CrossRef]
- Soltani, N.; Bahrami, A.; Pech-Canul, M.I.; González, L.A. Review on the physicochemical treatments of rice husk for production of advanced materials. Chem. Eng. J. 2015, 264, 899–935. [Google Scholar] [CrossRef]
- Liu, H.; Liu, X.; Wang, H.; Zheng, Y.; Zhang, H.; Shi, J.; Liu, W.; Huang, M.; Kan, J.; Zhao, X.; et al. High-performance sodium-ion capacitor constructed by well-matched dual-carbon electrodes from a single biomass. ACS Sustain. Chem. Eng. 2019, 7, 12188–12199. [Google Scholar] [CrossRef]
- Rybarczyk, M.K.; Li, Y.; Qiao, M.; Hu, Y.S.; Titirici, M.M.; Lieder, M. Hard carbon derived from rice husk as low cost negative electrodes in Na-ion batteries. J. Energy Chem. 2019, 29, 17–22. [Google Scholar] [CrossRef]
- Li, H.; Shen, F.; Luo, W.; Dai, J.; Han, X.; Chen, Y.; Yao, Y.; Zhu, H.; Fu, K.; Hitz, E.; et al. Carbonized-leaf membrane with anisotropic surfaces for sodium-ion battery. ACS Appl. Mater. Interfaces 2016, 8, 2204–2210. [Google Scholar] [CrossRef] [PubMed]
- Lakienko, G.P.; Bobyleva, Z.V.; Apostolova, M.O.; Sultanova, Y.V.; Dyakonov, A.K.; Zakharkin, M.V.; Sobolev, N.A.; Alekseeva, A.M.; Drozhzhin, O.A.; Abakumov, A.M.; et al. Sosnowskyi Hogweed-Based Hard Carbons for Sodium-Ion Batteries. Batteries 2022, 8, 131. [Google Scholar] [CrossRef]
- Wang, N.; Wang, Y.; Xu, X.; Liao, T.; Du, Y.; Bai, Z.; Dou, S. Defect sites-rich porous carbon with pseudocapacitive behaviors as an ultrafast and long-term cycling anode for sodium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 9353–9361. [Google Scholar] [CrossRef]
- Hao, R.; Yang, Y.; Wang, H.; Jia, B.; Ma, G.; Yu, D.; Guo, L.; Yang, S. Direct chitin conversion to N-doped amorphous carbon nanofibers for high-performing full sodium-ion batteries. Nano Energy 2018, 45, 220–228. [Google Scholar] [CrossRef]
- Xue, X.; Weng, Y.; Jiang, Z.; Yang, S.; Wu, Y.; Meng, S.; Zhang, C.; Sun, Q.; Zhang, Y. Naturally nitrogen-doped porous carbon derived from waste crab shell as anode material for high performance sodium-ion battery. J. Anal. Appl. Pyrol. 2021, 157, 105215. [Google Scholar] [CrossRef]
- Lu, M.; Yu, W.; Shi, J.; Liu, W.; Chen, S.; Wang, X.; Wang, H. Self-doped carbon architectures with heteroatoms containing nitrogen, oxygen and sulfur as high-performance anodes for lithium-and sodium-ion batteries. Electrochim. Acta 2017, 251, 396–406. [Google Scholar] [CrossRef]
- Wang, X.; Hou, M.; Shi, Z.; Liu, X.; Mizota, I.; Lou, H.; Wang, B.; Hou, X. Regulate phosphorus configuration in high P-doped hard carbon as a superanode for sodium storage. ACS Appl. Mater. Interfaces 2021, 13, 12059–12068. [Google Scholar] [CrossRef] [PubMed]
- Stoyanov, S.R.; Titov, A.V.; Král, P. Transition metal and nitrogen doped carbon nanostructures. Coordin. Chem. Rev. 2009, 253, 2852–2871. [Google Scholar] [CrossRef]
- Wood, K.N.; O’Hayre, R.; Pylypenko, S. Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ. Sci. 2014, 7, 1212–1249. [Google Scholar] [CrossRef]
- Li, C.; Li, J.; Zhang, Y.; Cui, X.; Lei, H.; Li, G. Heteroatom-doped hierarchically porous carbons derived from cucumber stem as high-performance anodes for sodium-ion batteries. J. Mater. Sci. 2019, 54, 5641–5657. [Google Scholar] [CrossRef]
- Zhu, Z.; Liang, F.; Zhou, Z.; Zeng, X.; Wang, D.; Dong, P.; Zhao, J.; Sun, S.; Zhang, Y.; Li, X. Expanded biomass-derived hard carbon with ultrastable performance in sodium-ion batteries. J. Mater. Chem. A 2018, 6, 1513–1522. [Google Scholar] [CrossRef]
- Yang, L.; Hu, M.; Zhang, H.; Yang, W.; Lv, R. Pore structure regulation of hard carbon: Towards fast and high-capacity sodium-ion storage. J. Colloid Interface Sci. 2020, 566, 257–264. [Google Scholar] [CrossRef]
- Nie, W.; Cheng, H.; Liu, X.; Sun, Q.; Tian, F.; Yao, W.; Liang, S.; Lu, X.; Zhou, J. Surface organic nitrogen-doping disordered biomass carbon materials with superior cycle stability in the sodium-ion batteries. J. Power Sources 2022, 522, 230994. [Google Scholar] [CrossRef]
- Qin, D.; Liu, Z.; Zhao, Y.; Xu, G.; Zhang, F.; Zhang, X. A sustainable route from corn stalks to N, P-dual doping carbon sheets toward high performance sodium-ion batteries anode. Carbon 2018, 130, 664–671. [Google Scholar] [CrossRef]
- Hong, Z.; Zhen, Y.; Ruan, Y.; Kang, M.; Zhou, K.; Zhang, J.M.; Huang, Z.; Wei, M. Rational design and general synthesis of S-doped hard carbon with tunable doping sites toward excellent Na-ion storage performance. Adv. Mater. 2018, 30, 1802035. [Google Scholar] [CrossRef]
- Wang, P.; Qiao, B.; Du, Y.; Li, Y.; Zhou, X.; Dai, Z.; Bao, J. Fluorine-doped carbon particles derived from lotus petioles as high-performance anode materials for sodium-ion batteries. J. Phys. Chem. C 2015, 119, 21336–21344. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, J.; He, X.; Qiao, Y.; Li, L.; Chou, S.L. Hard carbon derived from hazelnut shell with facile HCl treatment as high-initial-coulombic-efficiency anode for sodium ion batteries. Sustain. Mater. Technol. 2022, 33, e00446. [Google Scholar] [CrossRef]
- Feng, Y.; Tao, L.; He, Y.; Jin, Q.; Kuai, C.; Zheng, Y.; Li, M.; Hou, Q.; Zheng, Z.; Lin, F.; et al. Chemical-enzymatic fractionation to unlock the potential of biomass-derived carbon materials for sodium ion batteries. J. Mater. Chem. A 2019, 7, 26954–26965. [Google Scholar] [CrossRef]
- Dutta, D.; Modak, B.; Ravuri, B.R. Phosphorous/Fluorine co-doped biomass derived carbon for enhanced sodium ion and lithium ion storage. ChemNanoMat 2023, 9, e202300077. [Google Scholar] [CrossRef]
- Lotfabad, E.M.; Ding, J.; Cui, K.; Kohandehghan, A.; Kalisvaart, W.P.; Hazelton, M.; Mitlin, D. High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 2014, 8, 7115–7129. [Google Scholar] [CrossRef]
- Prabakar, S.R.; Jeong, J.; Pyo, M. Nanoporous hard carbon anodes for improved electrochemical performance in sodium ion batteries. Electrochim. Acta 2015, 161, 23–31. [Google Scholar] [CrossRef]
- Kim, K.; Lim, D.G.; Han, C.W.; Osswald, S.; Ortalan, V.; Youngblood, J.P.; Pol, V.G. Tailored carbon anodes derived from biomass for sodium-ion storage. ACS Sustain. Chem. Eng. 2017, 5, 8720–8728. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, Q.; Chen, W.; Wan, M.; Li, X.; Wang, L.; Xue, L.; Zhang, W. High capacity hard carbon derived from lotus stem as anode for sodium ion batteries. J. Power Sources 2018, 378, 331–337. [Google Scholar] [CrossRef]
- Lv, W.; Wen, F.; Xiang, J.; Zhao, J.; Li, L.; Wang, L.; Liu, Z.; Tian, Y. Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries. Electrochim. Acta 2015, 176, 533–541. [Google Scholar] [CrossRef]
- Jing, W.; Wang, M.; Li, Y.; Li, H.R.; Zhang, H.; Hu, S.; Wang, H.; He, Y.B. Pore structure engineering of wood-derived hard carbon enables their high-capacity and cycle-stable sodium storage properties. Electrochim. Acta 2021, 391, 139000. [Google Scholar] [CrossRef]
- Väli, R.; Jänes, A.; Thomberg, T.; Lust, E. D-glucose derived nanospheric hard carbon electrodes for room-temperature sodium-ion batteries. J. Electrochem. Soc. 2016, 163, A1619. [Google Scholar] [CrossRef]
- Arie, A.A.; Tekin, B.; Demir, E.; Demir-Cakan, R. Hard carbons derived from waste tea bag powder as anodes for sodium ion battery. Mater. Technol. 2019, 34, 515–524. [Google Scholar] [CrossRef]
- Zhu, X.; Jiang, X.; Liu, X.; Xiao, L.; Cao, Y. A green route to synthesize low-cost and high-performance hard carbon as promising sodium-ion battery anodes from sorghum stalk waste. Green Energy Environ. 2017, 2, 310–315. [Google Scholar] [CrossRef]
Biomass | Temperature (°C) | Structure | Capacity (mAh g−1) | High-Rate Capability (mAh g−1) | Capacity Retention (Cycles) | ICE/% | Ref |
---|---|---|---|---|---|---|---|
Coconut oil | / | / | 499 at 200 mA g−1 | 295 at 1000 mA g−1 | 77.7% (20) | 49 | [10] |
Camellia shells | 160 | sphere | 562 mAh g−1 at 100 mA g−1 | 123 at 1000 mA g−1 | 215 (100) at100 mA g−1 | 44.1 | [36] |
Hemp haulms | 600 | 3D open | 256 at 37.4 mA g−1 | 98 at 748 mA g−1 | 97.3% (100) at 37.4 mA g−1 | / | [37] |
Sugarcane | 950 | flake-type | 290 at 0.03 A g−1 | 162 at 2 A g−1 | 94% (300) 0.1 A g−1 | 70 | [38] |
Pomelo peels | 700 | 3D connected porous | 180 at 200 mA g−1 | 71 at 5 A g−1 | 86.4% (220) at 200 mA g−1 | 27 | [39] |
Pinecones | 1400 | / | 370 at 30 mA g- 1 | 142 at 300 mA g−1 | 90.3% (120) at 30 mA g−1 | 85.4 | [40] |
Palmyra palm | 700 | hierarchical porous network | 245 at 50 mA g−1 | 131 at 500 mA g−1 | 91% (50) at 30 mA g−1 | 70 | [41] |
Borassus flabellifer male inflorescences | 1400 | / | 367 at 20 mA g−1 | 117 at 2 A g−1 | 86.4% (500) at 20 mA g−1 | 86.6 | [42] |
Rice husks | 1600 | porous | 276 at 30 mA g−1 | 174 at 130 mA g−1 | 93% (100) at 30 mA g−1 | 74.8 | [45] |
Maple leaves | 1000 | / | 358.6 at 10 mA g−1 | 270 at 40 mA g−1 | 90% (200) | 74.8 | [46] |
Hogweed | 1300 | / | 221 at 25 mA g−1 | / | 95% (100) at 20 mA g−1 | 87 | [47] |
D-sodium ascorbate | 600 | 3D porous | 370 at 0.2 A g−1 | 126 at 20 A g−1 | 88.5% (15,000) at 10 A g−1 | 77 | [48] |
Pitch | / | / | 870 mAh g−1 at 0.05 A g−1 | 145 at 5 A g−1 | 94.1% (100) at0.1 A g−1 | 56 | [60] |
Carrageen | 700 | hierarchical porous | 248 at 0.2 A g−1 | 109 at 10 A g−1 | 91.5% (100) at 0.1 A g−1 | 32.7 | [51] |
Cucumber stems | 1000 | tubular porous | 305.5 at 0.1 A g−1 | 136.6 at 5 A g−1 | 82.1% (500) at 0.2 A g−1 | 64.9 | [55] |
Cherry petals | 1000 | open lamellar | 298 at 20 mA g−1 | 146.5 at 500 mA g−1 | 99.3% (100) at 20 mA g−1 | 67.3 | [56] |
Palm leaves | 1000 | parallel columnar | 373 at 25 mA g−1 | 298 at 100 mA g−1 | 95% (100) at 200 mA g−1 | 44.2 | [58] |
Corn stalks | 1200 | folded lamellar | 241 at 50 mA g−1 | 103 at 1 A g−1 | 79% (70) at 1 A g−1 | 53.1 | [59] |
Lotus petioles | 1400 | / | 230 at 50 mA g−1 | 158 at 1 A g−1 | 99.1% (200) at 200 mA g−1 | 52.3 | [61] |
Manilkara zapota | 500 | / | 378 at 100 mA g−1 | 287 at 1.5 A g−1 | 93.1% (1000) at 0.1 A g−1 | 87.5 | [64] |
Banana peels | 1100 | heterogeneous | 355 at 50 mA g−1 | 155 at 1 A g−1 | 88% (290) at 100 mA g−1 | 67.8 | [65] |
Table sugar | 1200 | / | 213 at 20 mA g- 1 | Over 100 at 0.5 A g−1 | 89% (100) at 20 mA g −1 | 89 | [66] |
Pistachio shells | 1000 | / | 225 at 10 mA g−1 | about 100 at 200 mA g−1 | 91.5% (50) at 40 mA g−1 | 71 | [67] |
Lotus stems | 1400 | / | 351 at 40 mA g−1 | 230 at 500 mA g−1 | 94.2% (450) at 100 mA g−1 | 70 | [68] |
Peanut shells | 600 | porous | 325 at 100 mA g−1 | about 150 at 1000 mA g−1 | 86% (400) at 250 mA g−1 | / | [69] |
Natural balsa | 1200 | 3D channel pore | 439 at 100 mA g−1 | 215 at 2 A g−1 | 93.5% (500) at 2 A g−1 | 31.9 | [70] |
Glucose | 1100 | spheres | 160 at 50 mA g−1 | / | 160 mAh g−1 (200) at 50 mA g−1 | / | [71] |
Tea leaves | 1000 | spheres | 375.3 at 100 mA g−1 | 142 at 1 A g−1 | 79% (200) at 1000 mA g−1 | 61.4 | [72] |
Sorghum stalks | 1300 | / | 245 at 20 mA g−1 | 172 at 200 mA g −1 | 96% (50) at 20 mA g−1 | 62.2 | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, B.; Lin, C.; Xiong, H.; Zhang, C.; Fang, L.; Sun, J.; Hu, Z.; Wu, Y.; Fan, X.; Li, G.; et al. Hard-Carbon Negative Electrodes from Biomasses for Sodium-Ion Batteries. Molecules 2023, 28, 4027. https://doi.org/10.3390/molecules28104027
Lu B, Lin C, Xiong H, Zhang C, Fang L, Sun J, Hu Z, Wu Y, Fan X, Li G, et al. Hard-Carbon Negative Electrodes from Biomasses for Sodium-Ion Batteries. Molecules. 2023; 28(10):4027. https://doi.org/10.3390/molecules28104027
Chicago/Turabian StyleLu, Bin, Chengjun Lin, Haiji Xiong, Chi Zhang, Lin Fang, Jiazhou Sun, Ziheng Hu, Yalong Wu, Xiaohong Fan, Guifang Li, and et al. 2023. "Hard-Carbon Negative Electrodes from Biomasses for Sodium-Ion Batteries" Molecules 28, no. 10: 4027. https://doi.org/10.3390/molecules28104027
APA StyleLu, B., Lin, C., Xiong, H., Zhang, C., Fang, L., Sun, J., Hu, Z., Wu, Y., Fan, X., Li, G., Fu, J., Deng, D., & Wu, Q. (2023). Hard-Carbon Negative Electrodes from Biomasses for Sodium-Ion Batteries. Molecules, 28(10), 4027. https://doi.org/10.3390/molecules28104027