Centranthus ruber (L.) DC. and Tropaeolum majus L.: Phytochemical Profile, In Vitro Anti-Denaturation Effects and Lipase Inhibitory Activity of Two Ornamental Plants Traditionally Used as Herbal Remedies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Yields
2.2. Phytochemical Analysis
2.3. In Vitro Antioxidant Potential
2.4. In Vitro Nitric Oxide (NO) Production Inhibition
2.5. Anti-Denaturation Effects
2.6. In Vitro Pancreatic Lipase Inhibition
3. Materials and Methods
3.1. Plant Material and Extraction Procedure
3.2. GC-MS Analyses
3.3. Quantification of Total phenolic and Flavonoid Content
3.4. HPTLC Analyses
3.5. In Vitro Methods for Antioxidant Activity Assessment
3.6. In Vitro Evaluation of the Inhibitory Properties on Nitric Oxide (NO) Production
3.7. In Vitro Anti-Denaturation Effects
3.8. Measurement of Pancreatic Lipase Inhibition
3.9. Statistical analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Mileva, M.; Ilieva, Y.; Jovtchev, G.; Gateva, S.; Zaharieva, M.M.; Georgieva, A.; Dimitrova, L.; Dobreva, A.; Angelova, T.; Vilhelmova-Ilieva, N.; et al. Rose flowers—A delicate perfume or a natural healer? Biomolecules 2021, 11, 127. [Google Scholar] [CrossRef] [PubMed]
- Saini, I.; Chauhan, J.; Kaushik, P. Medicinal value of domiciliary ornamental plants of the Asteraceae family. J. Young Pharm. 2020, 12, 3. [Google Scholar] [CrossRef]
- Grumezescu, A.M. Nutrients in Beverages. In The Science of Beverages; Holban, A.M., Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 12. [Google Scholar]
- Mlcek, J.; Rop, O. Fresh edible flowers of ornamental plants–A new source of nutraceutical foods. Trends Food Sci. Technol. 2011, 22, 561–569. [Google Scholar] [CrossRef]
- Fuentes, J.L.; Pedraza Barrera, C.A.; Villamizar Mantilla, D.A.; Flórez González, S.J.; Sierra, L.J.; Ocazionez, R.E.; Stashenko, E.E. Flower extracts from ornamental plants as sources of sunscreen ingredients: Determination by in vitro methods of photoprotective efficacy, antigenotoxicity and safety. Molecules 2022, 27, 5525. [Google Scholar] [CrossRef]
- Rios-Chavez, P.; Perez-Gonzalez, J.; Salgado-Garciglia, R.; Ramirez-Chavez, E.; Molina-Torres, J.; Martinez-Trujillo, M.; Carreon-Abud, Y. Antibacterial and cytotoxicity activities and phytochemical analysis of three ornamental plants grown in Mexico. An. Acad. Bras. Cienc. 2019, 91, e20180468. [Google Scholar] [CrossRef]
- Alexenizer, M.; Dorn, A. Screening of medicinal and ornamental plants for insecticidal and growth regulating activity. J. Pest Sci. 2007, 80, 205–215. [Google Scholar] [CrossRef]
- Marrelli, M.; Statti, G.; Conforti, F. A review of biologically active natural products from Mediterranean wild edible plants: Benefits in the treatment of obesity and its related disorders. Molecules 2020, 25, 649. [Google Scholar] [CrossRef] [Green Version]
- Marrelli, M.; Loizzo, M.R.; Nicoletti, M.; Menichini, F.; Conforti, F. In vitro investigation of the potential health benefits of wild Mediterranean dietary plants as anti-obesity agents with α-amylase and pancreatic lipase inhibitory activities. J. Sci. Food Agric. 2014, 94, 2217–2224. [Google Scholar] [CrossRef]
- Marrelli, M.; Loizzo, M.R.; Nicoletti, M.; Menichini, F.; Conforti, F. Inhibition of key enzymes linked to obesity by preparations from Mediterranean dietary plants: Effects on α-amylase and pancreatic lipase activities. Plant Foods Hum. Nutr. 2013, 68, 340–346. [Google Scholar] [CrossRef]
- Conforti, F.; Perri, V.; Menichini, F.; Marrelli, M.; Uzunov, D.; Statti, G.A.; Menichini, F. Wild Mediterranean dietary plants as inhibitors of pancreatic lipase. Phytother. Res. 2012, 26, 600–604. [Google Scholar] [CrossRef]
- Conforti, F.; Marrelli, M.; Carmela, C.; Menichini, F.; Valentina, P.; Uzunov, D.; Statti, G.A.; Duez, P.; Menichini, F. Bioactive phytonutrients (omega fatty acids, tocopherols, polyphenols), in vitro inhibition of nitric oxide production and free radical scavenging activity of non-cultivated Mediterranean vegetables. Food Chem. 2011, 129, 1413–1419. [Google Scholar] [CrossRef]
- Conforti, F.; Sosa, S.; Marrelli, M.; Menichini, F.; Statti, G.A.; Uzunov, D.; Tubaro, A.; Menichini, F.; Della Loggia, R. In vivo anti-inflammatory and in vitro antioxidant activities of Mediterranean dietary plants. J. Ethnopharmacol. 2008, 116, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Conforti, F.; Sosa, S.; Marrelli, M.; Menichini, F.; Statti, G.A.; Uzunov, D.; Tubaro, A.; Menichini, F. The protective ability of Mediterranean dietary plants against the oxidative damage: The role of radical oxygen species in inflammation and the polyphenol, flavonoid and sterol contents. Food Chem. 2009, 112, 587–594. [Google Scholar] [CrossRef]
- Marrelli, M.; Cristaldi, B.; Menichini, F.; Conforti, F. Inhibitory effects of wild dietary plants on lipid peroxidation and on the proliferation of human cancer cells. Food Chem. Toxicol. 2015, 86, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Marrelli, M.; Russo, N.; Chiocchio, I.; Statti, G.; Poli, F.; Conforti, F. Potential use in the treatment of inflammatory disorders and obesity of selected wild edible plants from Calabria region (Southern Italy). S. Afr. J. Bot. 2020, 128, 304–311. [Google Scholar] [CrossRef]
- WFO. Centranthus ruber (L.) DC. Published on the Internet. 2022. Available online: http://www.worldfloraonline.org/taxon/wfo-0000594324 (accessed on 9 November 2022).
- Peruzzi, L. Checklist dei generi e delle famiglie della flora vascolare italiana. Inform. Bot. Ital. 2010, 42, 151–170. [Google Scholar]
- Tsymbalyuk, Z.M.; Ivanova, D.; Nitsenko, L.M. Taxonomic significance of palynomorphological characteristics of selected Centranthus (Caprifoliaceae) species. Hacquetia 2021, 20, 243–256. [Google Scholar]
- Das, G.; Shin, H.S.; Tundis, R.; Gonçalves, S.; Tantengco, O.A.G.; Campos, M.G.; Acquaviva, R.; Malfa, G.A.; Romano, A.; Robles, J.A.H.; et al. Plant Species of Sub-Family Valerianaceae—A Review on Its Effect on the Central Nervous System. Plants 2021, 10, 846. [Google Scholar] [CrossRef]
- Holmes, P.M.; Rebelo, A.G.; Irlich, U.M. Invasive potential and management of naturalised ornamentals across an urban environmental gradient with a focus on Centranthus ruber. Afr. Biodivers. Conserv. 2018, 48, a2345. [Google Scholar] [CrossRef]
- Vanzani, P.; Rossetto, M.; De Marco, V.; Sacchetti, L.E.; Paoletti, M.G.; Rigo, A. Wild Mediterranean plants as traditional food: A valuable source of antioxidants. J. Food Sci. 2011, 76, C46–C51. [Google Scholar] [CrossRef]
- Chami, M.C.; Bouju, E.; Lequemener, C.; de Vaumas, R.; Hadji-Minaglou, F.; Fernandez, X.; Michel, T. Purification of two valepotriates from Centranthus ruber by centrifugal partition chromatography: From analytical to preparative scale. J. Chromatogr. A 2018, 1580, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Jakubczyk, K.; Janda, K.; Watychowicz, K.; Lukasiak, J.; Wolska, J. Garden nasturtium (Tropaeolum majus L.)-a source of mineral elements and bioactive compounds. Rocz. Panstw. Zakl. Hig. 2018, 69, 119–126. [Google Scholar] [PubMed]
- Jurca, T.; Baldea, I.; Filip, G.A.; Olteanu, D.; Clichici, S.; Pallag, A.; Vicas, L.; Marian, E.; Micle, O.; Muresan, M. The effect of Tropaeolum majus L. on bacterial infections and in vitro efficacy on apoptosis and DNA lesions in hyperosmotic stress. J. Physiol. Pharmacol. 2018, 69, 391–401. [Google Scholar]
- Garzón, G.A.; Wrolstad, R.E. Major anthocyanins and antioxidant activity of Nasturtium flowers (Tropaeolum majus). Food Chem. 2009, 114, 44–49. [Google Scholar] [CrossRef]
- Gomes, C.; Lourenço, E.L.B.; Liuti, É.B.; Duque, A.O.; Nihi, F.; Lourenço, A.C.; Mendes, T.C.; Gasparotto Junior, A.; Dalsenter, P.R. Evaluation of subchronic toxicity of the hydroethanolic extract of Tropaeolum majus in Wistar rats. J. Ethnopharmacol. 2012, 142, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Garzón, G.A.; Manns, D.C.; Riedl, K.; Schwartz, S.J.; Padilla-Zakour, O. Identification of phenolic compounds in petals of nasturtium flowers (Tropaeolum majus) by high-performance liquid chromatography coupled to mass spectrometry and determination of oxygen radical absorbance capacity (ORAC). J. Agric. Food Chem. 2015, 63, 1803–1811. [Google Scholar] [CrossRef]
- Niizu, P.Y.; Rodriguez-Amaya, D.B. Flowers and leaves of Tropaeolum majus L. as rich sources of lutein. J. Food Sci. 2005, 70, S605–S609. [Google Scholar]
- Bazylko, A.; Granica, S.; Filipek, A.; Piwowarski, J.; Stefańska, J.; Osińska, E.; Kiss, A.K. Comparison of antioxidant, anti-inflammatory, antimicrobial activity and chemical composition of aqueous and hydroethanolic extracts of the herb of Tropaeolum majus L. Ind. Crops Prod. 2013, 50, 88–94. [Google Scholar] [CrossRef]
- Gasparotto Junior, A.; Gasparotto, F.M.; Lourenço, E.L.B.; Crestani, S.; Stefanello, M.E.A.; Salvador, M.J.; da Silva-Santos, J.E.; Andrade Marques, M.C.; Kassuya, C.A.L. Antihypertensive effects of isoquercitrin and extracts from Tropaeolum majus L.: Evidence for the inhibition of angiotensin converting enzyme. J. Ethnopharmacol. 2011, 134, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Gasparotto Junior, A.; Prando, T.B.L.; Leme, T.D.S.V.; Gasparotto, F.M.; Lourenço, E.L.B.; Rattmann, Y.D.; da Silva-Santos, J.E.; Kassuya, C.A.L.; Marques, M.C.A. Mechanisms underlying the diuretic effects of Tropaeolum majus L. extracts and its main component isoquercitrin. J. Ethnopharmacol. 2012, 141, 501–509. [Google Scholar] [CrossRef]
- Gasparotto Junior, A.; Prando, T.B.L.; Gebara, K.S.; Gasparotto, F.M.; dos Reis Lívero, F.A.; de Lima, D.P.; da Silva Gomes, R.; Lourenço, E.L.B. Protective cardiorenal effects of Tropaeolum majus L. in rats with renovascular hypertension. J. Young Pharm. 2017, 9, 251–257. [Google Scholar]
- Butnariu, M.; Bostan, C. Antimicrobial and anti-inflammatory activities of the volatile oil compounds from Tropaeolum majus L. (Nasturtium). Afr. J. Biotechnol. 2011, 10, 5900–5909. [Google Scholar]
- Rahmati, M.; Mobasheri, A.; Mozafari, M. Inflammatory mediators in osteoarthritis: A critical review of the state-of-the-art, current prospects, and future challenges. Bone 2016, 85, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.T.T.; Marton, M.R.; Herz, C.; Maul, R.; Baldermann, S.; Schreiner, M.; Lamy, E. Nasturtium (Indian cress, Tropaeolum majus nanum) dually blocks the COX and LOX pathway in primary human immune cells. Phytomedicine 2016, 23, 611–620. [Google Scholar] [CrossRef]
- Nicoletti, M.; Petitto, V.; Gallo, F.R.; Multari, G.; Federici, E.; Palazzino, G. The modern analytical determination of botanicals and similar novel natural products by the HPTLC fingerprint approach. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Oxford, UK, 2012; pp. 217–258. [Google Scholar]
- Kowalska, T.; Sajewicz, M. Thin-Layer Chromatography (TLC) in the Screening of Botanicals–Its Versatile Potential and Selected Applications. Molecules 2022, 27, 6607. [Google Scholar] [CrossRef]
- Bryan, N.S.; Grisham, M.B. Methods to detect nitric oxide and its metabolites in biological samples. Free Radic. Biol. Med. 2007, 43, 645–657. [Google Scholar] [CrossRef]
- Khaleghi, M. New arthritis foundation guidelines on CBD use could be first of many more to come. Altern. Ther. Health Med. 2020, 26, 8–11. [Google Scholar]
- Ahmed, S.; Anuntiyo, J.; Malemud, C.J.; Haqqi, T.M. Biological basis for the use of botanicals in osteoarthritis and rheumatoid arthritis: A review. Evid.-Based Complement. Altern. Med. 2005, 2, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Subramoniam, A.; Madhavachandran, V.; Gangaprasad, A. Medicinal plants in the treatment of arthritis. Ann. Phytomed. 2013, 2, 3–36. [Google Scholar]
- Arya, V.; Gupta, V.K.; Kaur, R. A review on plants having anti-arthritic potential. Int. J. Pharm. Sci. Rev. Res. 2011, 7, 131–136. [Google Scholar]
- Sadia, S.; Tariq, A.; Shaheen, S.; Malik, K.; Ahmad, M.; Qureshi, H.; Nayyar, B.G. Ethnopharmacological profile of anti-arthritic plants of Asia-a systematic review. J. Herb. Med. 2018, 13, 8–25. [Google Scholar] [CrossRef]
- Marrelli, M.; Amodeo, V.; Perri, M.R.; Conforti, F.; Statti, G. Essential oils and bioactive components against arthritis: A novel perspective on their therapeutic potential. Plants 2020, 9, 1252. [Google Scholar] [CrossRef] [PubMed]
- Marrelli, M.; Conforti, F.; Araniti, F.; Statti, G.A. Effects of saponins on lipid metabolism: A review of potential health benefits in the treatment of obesity. Molecules 2016, 21, 1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, G.C.; Kim, J.S.; Kim, G.M.; Choi, S.Y. Anti-adipogenic effects of Tropaeolum majus (Nasturtium) ethanol extract on 3T3-L1 cells. Food Nutr. Res. 2017, 61, 133955. [Google Scholar] [CrossRef] [Green Version]
- Mnafgui, K.; Derbali, A.; Sayadi, S.; Gharsallah, N.; Elfeki, A.; Allouche, N. Anti-obesity and cardioprotective effects of cinnamic acid in high fat diet-induced obese rats. J. Food Sci. Technol. 2015, 52, 4369–4377. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.G.; Kim, H.S.; Je, J.G.; Hwang, J.; Sanjeewa, K.A.; Lee, D.S.; Song, K.M.; Choi, Y.S.; Kang, M.C.; Jeon, Y.J. Lipid inhibitory effect of (−)-loliolide isolated from Sargassum horneri in 3T3-L1 adipocytes: Inhibitory mechanism of adipose-specific proteins. Mar. Drugs 2021, 19, 96. [Google Scholar] [CrossRef]
- Marrelli, M.; Morrone, F.; Argentieri, M.P.; Gambacorta, L.; Conforti, F.; Avato, P. Phytochemical and biological profile of Moricandia arvensis (L.) DC.: An inhibitor of pancreatic lipase. Molecules 2018, 23, 2829. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-Phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Rababah, T.M.; Hettiarachchy, N.S.; Horax, R. Total phenolics and antioxidant activities of fenugreek, green tea, black tea, grape seed, ginger, rosemary, gotu kola, and ginkgo extracts, vitamin E, and tert-butylhydroquinone. J. Agric. Food Chem. 2004, 52, 5183–5186. [Google Scholar] [CrossRef]
- Amorati, R.; Valgimigli, L. Advantages and limitations of common testing methods for antioxidants. Free Radic. Res. 2015, 49, 633–649. [Google Scholar] [CrossRef]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- Amodeo, V.; Marrelli, M.; Pontieri, V.; Cassano, R.; Trombino, S.; Conforti, F.; Statti, G. Chenopodium album L. and Sisymbrium officinale (L.) Scop.: Phytochemical content and in vitro antioxidant and anti-inflammatory potential. Plants 2019, 8, 505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conforti, F.; Marrelli, M.; Statti, G.; Menichini, F.; Uzunov, D.; Solimene, U.; Menichini, F. Comparative chemical composition and antioxidant activity of Calamintha nepeta (L.) Savi subsp. glandulosa (Req.) Nyman and Calamintha grandiflora (L.) Moench (Labiatae). Nat.-Prod. Res. 2012, 26, 91–97. [Google Scholar] [PubMed]
- Delfine, S.; Marrelli, M.; Conforti, F.; Formisano, C.; Rigano, D.; Menichini, F.; Senatore, F. Variation of Malva sylvestris essential oil yield, chemical composition and biological activity in response to different environments across Southern Italy. Ind. Crops Prod. 2017, 98, 29–37. [Google Scholar] [CrossRef]
- Marrelli, M.; Russo, C.; Statti, G.; Argentieri, M.P.; Meleleo, D.; Mallamaci, R.; Avato, P.; Conforti, F. Phytochemical and biological characterization of dry outer scales extract from Tropea red onion (Allium cepa L. var. Tropea)–A promising inhibitor of pancreatic lipase. Phytomedicine Plus 2022, 2, 100235. [Google Scholar] [CrossRef]
- Choudhary, M.; Kumar, V.; Malhotra, H.; Singh, S. Medicinal plants with potential anti-arthritic activity. J. Intercult. Ethnopharmacol. 2015, 4, 147. [Google Scholar] [CrossRef]
- Kaur, A.; Nain, P.; Nain, J. Herbal plants used in treatment of rheumatoid arthritis: A review. Int. J. Pharm. Pharm. Sci. 2012, 4, 44–57. [Google Scholar]
- Shang, A.; Gan, R.Y.; Xu, X.Y.; Mao, Q.Q.; Zhang, P.Z.; Li, H.B. Effects and mechanisms of edible and medicinal plants on obesity: An updated review. Crit. Rev. Food Sci. Nutr. 2021, 61, 2061–2077. [Google Scholar] [CrossRef]
- Liu, T.T.; Liu, X.T.; Chen, Q.X.; Shi, Y. Lipase inhibitors for obesity: A review. Biomed. Pharmacother. 2020, 128, 110314. [Google Scholar] [CrossRef]
- Marshall, W.G.; Bockstahler, B.A.; Hulse, D.A.; Carmichael, S. A review of osteoarthritis and obesity: Current understanding of the relationship and benefit of obesity treatment and prevention in the dog. Veter Comp. Orthop. Traumatol. 2009, 22, 339–345. [Google Scholar]
No. | Compound | RI 1 | RAP 2 | ID 3 | |
---|---|---|---|---|---|
C. ruber (L.) DC. | T. majus L. | ||||
Fatty Acids | |||||
1 | Isolauric acid | 1401 | 0.10 ± 0.01 | - | a,b |
2 | Lauric acid | 1590 | 0.12 ± 0.01 | 0.50 ± 0.04 | a,b |
3 | Azelaic acid | 1665 | 0.10 ± 0.01 | - | a,b |
4 | Myristic acid | 1798 | 0.21 ± 0.02 | 0.22 ± 0.02 | a,b |
5 | Pentadecanoic acid | 1866 | 0.21 ± 0.02 | 0.20 ± 0.02 | a,b |
6 | 7,10,13-Hexadecatrienoic acid | 1949 | - | 0.20 ± 0.02 | a,b |
7 | Palmitic acid | 1970 | 6.87 ± 0.23 | 5.08 ± 0.20 | a,b |
8 | Margaric acid | 2050 | - | 0.10 ± 0.01 | a,b |
9 | α-Linolenic acid | 2158 | - | 0.29 ± 0.01 | a,b |
10 | Linoleic acid | 2169 | - | 0.51 ± 0.04 | a,b |
11 | 9-Octadecenoic acid | 2183 | - | 1.51 ± 0.05 | a,b |
12 | Stearic acid | 2199 | 1.02 ± 0.03 | 1.00 ± 0.08 | a,b |
13 | Arachidic acid | 2350 | - | 0.41 ± 0.03 | a,b |
14 | Heneicosanoic acid | 2459 | - | 0.10 ± 0.01 | a,b |
15 | Behenic acid | 2560 | 2.13 ± 0.06 | 0.39 ± 0.03 | a,b |
16 | Tricosylic acid | 2662 | 0.51 ± 0.03 | - | a,b |
Terpenes | |||||
17 | 2,6-Di-tert-butyl-1,4-benzoquinone | 1452 | 0.20 ± 0.02 | - | a,b,c |
18 | Dihydroactinidiolide | 1573 | 0.41 ± 0.03 | 0.10 ± 0.01 | a,b |
19 | Neophytadiene | 1777 | - | 0.40 ± 0.02 | a,b,c |
20 | Phytone | 1830 | 2.80 ± 0.05 | 0.60 ± 0.04 | a,b |
Phytosterols | |||||
21 | Campesterol | 3107 | - | 1.20 ± 0.04 | a,b |
22 | Stigmasterol | 3150 | - | 0.10 ± 0.01 | a,b |
23 | β-Sitosterol | 3182 | 2.10 ± 0.04 | - | a,b |
24 | Tremulone | 3438 | 0.94 ± 0.06 | - | a,b |
Others | |||||
25 | β-Tocopherol | 3070 | - | 0.30 ± 0.02 | a,b |
No. | Compound | RI 1 | RAP 2 | ID 3 | |
---|---|---|---|---|---|
C. ruber (L.) DC. | T. majus L. | ||||
26 | 3-Cresol | 1046 | 0.10 ± 0.01 | - | a,b |
27 | Benzoic acid | 1158 | 1.10 ± 0.02 | - | a,b |
28 | Ethylmethylmaleimide | 1230 | 0.51 ± 0.03 | 0.10 ± 0.01 | a,b |
29 | Cinnamic acid | 1421 | 0.20 ± 0.02 | 0.10 ± 0.01 | a,b |
30 | Isoeugenol | 1436 | 0.20 ± 0.01 | 0.10 ± 0.01 | a,b,c |
31 | 2,6-Bis(tert-butyl)phenol | 1454 | 0.40 ± 0.03 | - | a,b |
32 | Mandelic acid | 1480 | - | 6.63 ± 0.10 | a,b |
33 | Vanillic acid | 1560 | - | 0.10 ± 0.01 | a,b |
34 | Loliolide | 1696 | - | 2.21 ± 0.04 | a,b |
Species | Sample | IC50 (μg/mL) | ||
---|---|---|---|---|
DPPH Test | β-Carotene Bleaching Test | |||
30 min | 60 min | |||
Centranthus ruber (L.) DC. | raw extract | 79.86 ± 1.27 d | 38.15 ± 1.34 c | 62.58 ± 2.51 e |
n-hexane fraction | n.a. | n.a. | n.a. | |
CH2Cl2 fraction | 119.50 ± 1.44 e | n.a. | n.a. | |
AcOEt fraction | 84.22 ± 0.48 d | 28.17 ± 0.49 b | 55.61 ± 0.38 d | |
H2O fraction | 151.8 ± 1.75 f | 49.48 ± 1.20 d | 79.59 ± 2.23 g | |
Tropaeolum majus L. | raw extract | 53.34 ± 0.34 c | 39.57 ± 0.49 c | 70.53 ± 1.54 f |
n-hexane fraction | n.a. | n.a. | n.a. | |
CH2Cl2 fraction | 53.72 ± 0.52 c | 49.00 ± 0.93 d | n.a. | |
AcOEt fraction | 14.08 ± 0.29 b | 41.68 ± 1.38 c | 63.41 ± 0.17 e | |
H2O fraction | 77.55 ± 2.81 d | n.a. | n.a. | |
Ascorbic acid 1 | 2.00 ± 0.01 a | - | - | |
Propyl gallate 1 | - | 1.00 ± 0.02 a | 1.00 ± 0.02 a |
Species | Sample | IC50 (μg/mL) | |
---|---|---|---|
NO Inhibition | Cytotoxicity | ||
Centranthus ruber (L.) DC. | raw extract | 348.0 ± 8.3 d | n.a. |
n-hexane fraction | 105.4 ± 3.2 b | 300.2 ± 3.7 d | |
CH2Cl2 fraction | 28.77 ± 1.2 a | 221.7 ± 2.1 c | |
AcOEt fraction | 789.1 ± 24.3 g | n.a. | |
H2O fraction | 775.8 ± 21.6 g | n.a. | |
Tropaeolum majus L. | raw extract | 219.4 ± 8.4 c | 613.4 ± 17.3 e |
n-hexane fraction | 108.5 ± 2.5 b | 225.3 ± 5.3 c | |
CH2Cl2 fraction | n.a. | 711.6 ± 17.3 f | |
AcOEt fraction | 651.2 ± 15.8 e,f | 744.1 ± 6.8 f,g | |
H2O fraction | 683.8 ± 15.6 f | n.a. | |
Indomethacin 1 | 58.0 ± 0.9 b a,b | - | |
L-NAME 1 | 45.9 ± 0.5 a,b | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musolino, V.; Marrelli, M.; Perri, M.R.; Palermo, M.; Gliozzi, M.; Mollace, V.; Conforti, F. Centranthus ruber (L.) DC. and Tropaeolum majus L.: Phytochemical Profile, In Vitro Anti-Denaturation Effects and Lipase Inhibitory Activity of Two Ornamental Plants Traditionally Used as Herbal Remedies. Molecules 2023, 28, 32. https://doi.org/10.3390/molecules28010032
Musolino V, Marrelli M, Perri MR, Palermo M, Gliozzi M, Mollace V, Conforti F. Centranthus ruber (L.) DC. and Tropaeolum majus L.: Phytochemical Profile, In Vitro Anti-Denaturation Effects and Lipase Inhibitory Activity of Two Ornamental Plants Traditionally Used as Herbal Remedies. Molecules. 2023; 28(1):32. https://doi.org/10.3390/molecules28010032
Chicago/Turabian StyleMusolino, Vincenzo, Mariangela Marrelli, Maria Rosaria Perri, Martina Palermo, Micaela Gliozzi, Vincenzo Mollace, and Filomena Conforti. 2023. "Centranthus ruber (L.) DC. and Tropaeolum majus L.: Phytochemical Profile, In Vitro Anti-Denaturation Effects and Lipase Inhibitory Activity of Two Ornamental Plants Traditionally Used as Herbal Remedies" Molecules 28, no. 1: 32. https://doi.org/10.3390/molecules28010032
APA StyleMusolino, V., Marrelli, M., Perri, M. R., Palermo, M., Gliozzi, M., Mollace, V., & Conforti, F. (2023). Centranthus ruber (L.) DC. and Tropaeolum majus L.: Phytochemical Profile, In Vitro Anti-Denaturation Effects and Lipase Inhibitory Activity of Two Ornamental Plants Traditionally Used as Herbal Remedies. Molecules, 28(1), 32. https://doi.org/10.3390/molecules28010032